CHAPTER 1 OVERVIEW.. 1-1
ARTICLE 1-1 INTRODUCTION... 1-2
ARTICLE 1-2 PURPOSE OF THE DPM.. 1-3
ARTICLE 1-3 RELATIONSHIP TO OTHER REGULATORY DOCUMENTS………….. 1-4
 Part 1-3(A) Integrated Development Ordinance (IDO)................................. 1-4
 Part 1-3(B) Standard Specifications... 1-4
 Part 1-3(C) Standard Details... 1-5
 Part 1-3(D) Reference Lists and Other Applicable Design Manuals and Resources
 ... 1-5
 Part 1-3(E) Abbreviations.. 1-5
ARTICLE 1-4 DPM UPDATE PROCEDURE.. 1-8
 Part 1-4(A) User Comments... 1-8
 Part 1-4(B) Committees Responsible for Review of Administrative Changes... 1-8
 Part 1-4(C) Procedure for Changing the Administrative Rules.................... 1-9
 Part 1-4(D) Notification of Proposed Rule Changes.. 1-10
 Part 1-4(E) Emergency Effective Date.. 1-10
 Part 1-4(F) Appeals.. 1-11

CHAPTER 2 DEVELOPMENT PROCEDURES... 2-1
ARTICLE 2-1 DETERMINING THE APPROPRIATE PROCEDURE....................... 2-5
ARTICLE 2-2 SUBDIVISION OF LAND... 2-11
 Part 2-2(A) Governing Regulations... 2-11
 Part 2-2(B) Standard Subdivision Procedure... 2-11
 Part 2-2(C) Non-compliant Parcel Procedure... 2-12
 Part 2-2(D) Bulk Land Subdivision Criteria... 2-13
ARTICLE 2-3 PUBLIC INFRASTRUCTURE IMPROVEMENT PROCEDURES...... 2-14
 Part 2-3(A) Governing Regulations... 2-14
 Part 2-3(B) Infrastructure Design Development Procedure.......................... 2-15
 Part 2-3(C) Construction Agreements.. 2-20
 Part 2-3(D) Work Order.. 2-26
ARTICLE 2-4 PRIVATE INFRASTRUCTURE IMPROVEMENTS.............................. 2-36
 Part 2-4(A) Applicability.. 2-36
 Part 2-4(B) Governing Regulations... 2-36
 Part 2-4(C) Private Facilities in Public Right-of-Way...................................... 2-37
 Part 2-4(D) Procedural Differences... 2-37
ARTICLE 2-5 COMMERCIAL, PUBLIC, AND MULTI-FAMILY BUILDING PERMITS 2-39
 Part 2-5(A) Applicability.. 2-39
 Part 2-5(B) Governing Regulations... 2-39
 Part 2-5(C) Procedure... 2-39
ARTICLE 2-6 RELATED PERMITS.. 2-45
 Part 2-6(A) Demolition Permits.. 2-47
 Part 2-6(B) Floodplain Development Permit.. 2-48
Part 2-6(C) Foundation Only Permits ... 2-49
Part 2-6(D) Grading Permit and Paving Permit .. 2-50
Part 2-6(E) Plumbing, Mechanical, and Electrical Permits 2-51
Part 2-6(F) Relocation of Existing Buildings Permits .. 2-52
Part 2-6(G) Sign Permits ... 2-53
Part 2-6(H) Wall, Fence, and Retaining Wall Permits ... 2-54

ARTICLE 3-3 OTHER CONSTRUCTION PERMITS ...2-55
Part 2-7(A) Air Contaminant Sources Registration ... 2-58
Part 2-7(B) Authority-to-Construct Permit .. 2-58
Part 2-7(C) Barricade Permit .. 2-59
Part 2-7(D) Blasting Permit .. 2-60
Part 2-7(E) Encroachment Agreement (Approval to Place Private Infrastructure in a Public Easement) ... 2-60
Part 2-7(F) Excavation Permit ... 2-60
Part 2-7(G) Integrated Development Ordinance (IDO) Approvals 2-61
Part 2-7(H) Median Cuts and Left Turn Lane Approval 2-62
Part 2-7(I) Oversize, Overweight and/or Overlength Truckloads Permit 2-63
Part 2-7(J) Permit SO-19 (Private Storm Drain Facilities within a City Right-of-Way and/or Easement) .. 2-63
Part 2-7(K) Private Use of Fire Hydrants ... 2-64
Part 2-7(L) Public Swimming Pool Operating Permit 2-65
Part 2-7(M) Revocable Permit (Approval to Place Private Infrastructure in the Public Right-Of-Way) ... 2-66
Part 2-7(N) Sewer Tapping Permit ... 2-67
Part 2-7(O) Sidewalk, Drive Pad, and Curb and Gutter Permits 2-67
Part 2-7(P) Solar Rights Permit .. 2-68
Part 2-7(Q) Stormwater Control Permit for Erosion and Sediment Control 2-69
Part 2-7(R) Fugitive Dust Permit ... 2-69
Part 2-7(S) Water Meter and Fire Line Application ... 2-70

ARTICLE 2-8 DRAINAGE AND TRANSPORTATION SUBMITTALS2-71
Part 2-8(A) Drainage and Transportation Submittal and Review Procedures 2-71
Part 2-8(B) Drainage Facilities and Roadway Improvements Construction Agreement and Financial Guarantee ... 2-72
Part 2-8(C) Forms and Certificates .. 2-72

ARTICLE 2-9 DPM WAIVER .. 2-73
Part 2-9(A) Waiver for DPM Standards ... 2-73
Part 2-9(B) Sidewalk Waiver .. 2-74
Part 2-9(C) Temporary Sidewalk Deferral .. 2-76
Part 2-9(D) Stub Street/Cul-de-Sac Waiver .. 2-77
Part 2-9(E) Vacation Of Right-Of-Way Or Easement 2-78

CHAPTER 3

IMACT FEES REGULATIONS ...3-1
ARTICLE 3-1 ADMINISTRATIVE ORGANIZATION AND RESPONSIBILITY ...3-4
Part 3-1(A) Impact Fees Administrator ... 3-4
Part 3-1(B) Other Departments ... 3-5

ARTICLE 3-2 IMPOSITION OF IMPACT FEE .. 3-5
Part 3-2(A) Fee Payer .. 3-5
Part 3-2(B) Determination and Assessment of the Impact Fee 3-6
Part 3-2(C) Collection of Impact Fee.. 3-6
Part 3-2(D) Expiration of Building Permits .. 3-7
Part 3-2(E) Private Security ... 3-8
Part 3-2(F) Private Fire Protection or Rescue...3-8
ARTICLE 3-3 DETERMINATION OF AN IMPACT FEE BASED ON FEE
SCHEDULES ..3-8
Part 3-3(A) Payment from Schedule ...3-8
Part 3-3(B) Residential Heated Area ...3-9
Part 3-3(C) Gross Floor Area ..3-9
Part 3-3(D) Mixed-use Development ...3-9
Part 3-3(E) Mixed-use Structures ..3-9
Part 3-3(F) Shell Permit ..3-9
Part 3-3(G) Change of Use ..3-10
Part 3-3(H) Accessory or Auxiliary Uses ...3-10
Part 3-3(I) House Moves and Mobile Home Moves3-11
Part 3-3(J) Mobile Home/Recreational Vehicles (RVs) Parks....................3-11
Part 3-3(K) Model Homes ...3-11
Part 3-3(L) Remodeling and Redevelopment ...3-11
Part 3-3(M) Miscellaneous Land Use Types ..3-11
ARTICLE 3-4 INDEPENDENT FEE DETERMINATION3-12
Part 3-4(A) Option of the Fee payer ...3-12
Part 3-4(B) Notice of Intent by Fee Payer ..3-12
Part 3-4(C) Pre-Application Meeting ..3-12
Part 3-4(D) Guidelines ...3-12
Part 3-4(E) Sufficiency Determination ...3-13
Part 3-4(F) Determination of Impact Fee ..3-14
Part 3-4(G) Effective Date ...3-14
Part 3-4(H) Application for Permit ...3-14
ARTICLE 3-5 COLLECTION AND DEPOSIT OF THE IMPACT FEE3-15
Part 3-5(A) Road (Transportation) Impact Fee ..3-15
Part 3-5(B) Drainage (Stormwater) Impact Fees3-15
Part 3-5(C) Park, Open Space and/or Trails Impact Fees3-15
Part 3-5(D) Fire and Police Impact Fees ..3-16
ARTICLE 3-6 USE OF IMPACT FEE FUNDS ...3-17
Part 3-6(A) Purpose ...3-17
Part 3-6(B) System Improvements ..3-17
ARTICLE 3-7 REFUNDS..3-18
Part 3-7(A) Refund for Failure to Construct or Provide Service3-18
Part 3-7(B) Overpayment ..3-18
Part 3-7(C) Underpayment ..3-18
ARTICLE 3-8 EXEMPTIONS..3-19
Part 3-8(A) Exemptions Claimed by Fee Payers ..3-19
Part 3-8(B) Total Exemptions ...3-19
ARTICLE 3-9 CREDITS..3-20
Part 3-9(A) General Conditions ...3-20
Part 3-9(B) General Documentation and Procedures3-20
Part 3-9(C) Excess Credits ...3-24
ARTICLE 3-10 EXEMPTIONS ..3-25
Part 3-10(A) Affordable Housing ...3-25
Part 3-10(B) Development in Metropolitan Redevelopment Areas3-27
ARTICLE 3-11 AMENDMENTS ..3-27
CHAPTER 4 CONSTRUCTION PLAN STANDARDS.............................4-1

ARTICLE 4-1 GENERAL PLAN INFORMATION4-4
 Part 4-1(A) AutoCAD Software ...4-4
 Part 4-1(B) Plan Submittals ..4-4

ARTICLE 4-2 PLAN SHEET ORGANIZATION4-7
 Part 4-2(A) File Accuracy (Units) ...4-7
 Part 4-2(B) Sheet Sizes ..4-7
 Part 4-2(C) Sheet Borders ...4-7
 Part 4-2(D) Plan Sheet Assembly ...4-7
 Part 4-2(E) Construction Document Arrangement4-7

ARTICLE 4-3 GRAPHIC STANDARDS ...4-8
 Part 4-3(A) Plan Scales ..4-8
 Part 4-3(B) Line Weights ..4-8
 Part 4-3(C) Line Types/Styles ...4-9
 Part 4-3(D) Screening ...4-9
 Part 4-3(E) Text Styles and Fonts ...4-9
 Part 4-3(F) General Text Placement4-9
 Part 4-3(G) Drawing Callouts ...4-10
 Part 4-3(H) Keyed Notes ...4-10
 Part 4-3(I) Bar Scales ..4-10
 Part 4-3(J) Dimensioning ...4-10
 Part 4-3(K) Legend ...4-10
 Part 4-3(L) North Arrow ..4-11

ARTICLE 4-4 DRAFTING PRACTICES ...4-12
 Part 4-4(A) Drawing Layout ..4-12
 Part 4-4(B) Required Notation and Topography4-13
 Part 4-4(C) Cross Referencing Between Drawings4-16

ARTICLE 4-5 PLAN SHEET CONTENT ...4-17
 Part 4-5(A) Cover Sheet ..4-17
 Part 4-5(B) Index of Sheets/Key Map4-18
 Part 4-5(C) General Notes/Legend Sheet4-18
 Part 4-5(D) Summary of Quantities Sheet (For City of Albuquerque Projects Only) ...4-19
 Part 4-5(E) Survey Control Sheet ..4-19
 Part 4-5(F) Horizontal Layout Sheet4-19
 Part 4-5(G) Removal Sheet ...4-20
 Part 4-5(H) Plat Sheet ...4-20
 Part 4-5(I) Approved Grading and Drainage Plan4-20
 Part 4-5(J) Erosion Control Plan ..4-21
 Part 4-5(K) Master Paving Plan (For Private Development Only) ...4-21
 Part 4-5(L) Typical Sections Sheet4-21
 Part 4-5(M) Environmental Sheet ...4-22
 Part 4-5(N) Roadway Plans ...4-22
 Part 4-5(O) Geometric Details/Special Details4-25
 Part 4-5(P) Construction Traffic Control Details (For City of Albuquerque Projects Only) ...4-26
 Part 4-5(Q) Signing and Striping Details/Layout Sheets4-26
 Part 4-5(R) Traffic Signalization Details/Design Sheets4-28
 Part 4-5(S) Lighting Details/Design Sheets4-30
 Part 4-5(T) Street Cross Sections ...4-30
 Part 4-5(U) Drainage Details ..4-31
 Part 4-5(V) Utility Sheets ..4-34
CHAPTER 5

RECORDABLE AND DEVELOPMENT DOCUMENTS 5-1

GOVERNING REGULATIONS .. 5-3
ARTICLE 5-1 GENERAL REQUIREMENTS FOR ALL PLATS 5-3
 Part 5-1(A) Nature and Purpose of Plat 5-3
 Part 5-1(B) Title of Plat ... 5-4
 Part 5-1(C) Date of Plat ... 5-4
 Part 5-1(D) Location Map / Zone Atlas Map Number 5-4
 Part 5-1(E) Scale and North Arrow 5-4
 Part 5-1(F) Plat Boundary Lines ... 5-4
 Part 5-1(G) Tie to Permanent Survey Monuments 5-4
 Part 5-1(H) Existing Easements .. 5-5
 Part 5-1(I) Existing Public Right-of-Way 5-5
 Part 5-1(J) Total Area of Plat ... 5-5
 Part 5-1(K) Monument Description and Location 5-5
 Part 5-1(L) Special Flood Hazard Areas 5-5
ARTICLE 5-2 PRELIMINARY PLAT REQUIREMENTS 5-5
 Part 5-2(A) Scale ... 5-6
 Part 5-2(B) Proposed Monumentation 5-6
 Part 5-2(C) Existing Conditions .. 5-6
 Part 5-2(D) Proposal Elements 5-7
ARTICLE 5-3 FINAL PLAT DETAILED REQUIREMENTS 5-7
 Part 5-3(A) Scale ... 5-7
 Part 5-3(B) Monuments ... 5-7
 Part 5-3(C) Plat Boundary .. 5-8
 Part 5-3(D) Plat Area ... 5-8
 Part 5-3(E) Reference to Federal Rectangular System 5-9
 Part 5-3(F) Interior Data .. 5-9
 Part 5-3(G) Exterior Data ... 5-10
 Part 5-3(H) Subdivision Data 5-10
 Part 5-3(I) Metes and Bounds Description / Legal Description . 5-10
 Part 5-3(J) Consent and Dedication Statements 5-10
 Part 5-3(K) Certifications .. 5-11
ARTICLE 5-4 GRANT OF DRAINAGE EASEMENT 5-13
ARTICLE 5-5 DRAINAGE COVENANTS 5-13
ARTICLE 5-6 GRAPHIC STANDARDS 5-14
 Part 5-6(A) Materials ... 5-14
 Part 5-6(B) Drafting Standards 5-15
ARTICLE 5-7 ACCEPTABLE FORMS OF LANGUAGE 5-15

CHAPTER 6 DRAINAGE, FLOOD CONTROL, AND EROSION CONTROL

... 6-1

ARTICLE 6-1 GOVERNING REGULATIONS 6-8
ARTICLE 6-2 HYDROLOGY ... 6-9
 Part 6-2(A) Procedure for 40-Acre and Smaller Basins 6-9
 Part 6-2(B) Time of Concentration, Lag Time, and Time to Peak . 6-23
 Part 6-2(C) Procedure for Small and Large Watersheds 6-31
 Part 6-2(D) Symbols and Bibliography 6-33
ARTICLE 6-3 SITE DEVELOPMENT .. 6-38
ARTICLE 6-10(J) Flappgates
Part 6-10(I) Closed Conduit Angle of Confluence
Part 6-10(H) Protection and Debris Barriers
Part 6-10(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds
Part 6-10(F) Earthen Channels to Storm Drain Structures
Part 6-10(E) Inlet Placement and Design Criteria
Part 6-10(D) Design Requirements for Maintenance and Access
Part 6-10(C) Instructions for Hydraulic Calculations
Part 6-10(B) Hydraulic Grade Line (HGL) Calculations
Part 6-10(A) General Hydraulic Criteria
ARTICLE 6-9 STREET HYDRAULICS
Part 6-9(J) Street Hydraulic Design Criteria
Part 6-9(I) Option to Drain the Street to the Median
Part 6-9(H) Effects of Hydraulic Jump or Superelevation
Part 6-9(G) Intersection
Part 6-9(F) Drainage Design Criteria in Street Design
Part 6-9(E) Inlet Placement and Design Criteria
Part 6-9(D) Grading in and Adjacent to Major Facilities
Part 6-9(C) Slope Criteria
Part 6-9(B) Grading near the Property Line
Part 6-9(A) Single-lot Residential Development and Additions
ARTICLE 6-8 ENGINEERED CHANNELS AND NATURAL ARROYOS
Part 6-8(J) Channel Treatment Selection Guidelines
Part 6-8(I) Channel Design Criteria
Part 6-8(H) Water Surface Profile Calculations
Part 6-8(G) Maximum Froude Number
Part 6-8(F) Sharp Curves
Part 6-8(E) Channel Design Criteria
Part 6-8(D) Determination of Base Flood Elevation (BFE) in an AO Zone
Part 6-8(C) Historic Flow Path through Adjacent Private Property
Part 6-8(B) General Hydraulic Criteria
Part 6-8(A) General Hydraulic Criteria
ARTICLE 6-7 DOWNSTREAM CAPACITY AND OFF-SITE FLOWS
Part 6-7(J) Compensatory Volume
Part 6-7(I) Off-site Flows
Part 6-7(H) Determination of Base Flood Elevation (BFE) in an AO Zone
Part 6-7(G) Historic Flow Path through Adjacent Private Property
Part 6-7(F) Compensatory Volume
Part 6-7(E) Off-site Flows
Part 6-7(D) Grading in and Adjacent to Major Facilities
Part 6-7(C) Slope Criteria
Part 6-7(B) Grading near the Property Line
ARTICLE 6-6 DEVELOPING IN OR ADJACENT TO A FLOOD ZONE
Part 6-6(J) Determination of Base Flood Elevation (BFE) in an AO Zone
Part 6-6(I) Compensatory Volume
Part 6-6(H) Determination of Base Flood Elevation (BFE) in an AO Zone
Part 6-6(G) Historic Flow Path through Adjacent Private Property
Part 6-6(F) Letters of Map Revision (LOMR)
Part 6-6(E) Floodplain Development Permit
Part 6-6(D) A Zone
Part 6-6(C) Determination of Base Flood Elevation (BFE) in an AO Zone
Part 6-6(B) Compensatory Volume
Part 6-6(A) Grading
ARTICLE 6-5 VALLEY DRAINAGE CRITERIA
Part 6-5(J) Channel Treatment Selection Guidelines
Part 6-5(I) Channel Design Criteria
Part 6-5(H) Grading in and Adjacent to Major Facilities
Part 6-5(G) Non-single-family Residential Development and Commercial Development
Part 6-5(F) Flat Grading Scheme for Residential Subdivisions
Part 6-5(E) Residential Subdivisions
Part 6-5(D) Grading in and Adjacent to Major Facilities
Part 6-5(C) Slope Criteria
Part 6-5(B) Residential Subdivisions
Part 6-5(A) Single-lot Residential Development and Additions
ARTICLE 6-4 GRADING AND EROSION CRITERIA
Part 6-4(J) Erosion Control
Part 6-4(I) Protection and Debris Barriers
Part 6-4(H) Earthen Channels to Storm Drain Structures
Part 6-4(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds
Part 6-4(F) Levees and Berms
Part 6-4(E) Means of Erosion Control
Part 6-4(D) Design Requirements for Maintenance and Access
Part 6-4(C) Grading in and Adjacent to Major Facilities
Part 6-4(B) Grading near the Property Line
Part 6-4(A) Slope Criteria
ARTICLE 6-3 DEVELOPMENT AND DEBRIS CONTROL
Part 6-3(J) Erosion Control
Part 6-3(I) Protection and Debris Barriers
Part 6-3(H) Earthen Channels to Storm Drain Structures
Part 6-3(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds
Part 6-3(F) Levees and Berms
Part 6-3(E) Means of Erosion Control
Part 6-3(D) Design Requirements for Maintenance and Access
Part 6-3(C) Grading in and Adjacent to Major Facilities
Part 6-3(B) Grading near the Property Line
Part 6-3(A) Slope Criteria
ARTICLE 6-2 DEVELOPMENT CRITERIA
Part 6-2(J) Erosion Control
Part 6-2(I) Protection and Debris Barriers
Part 6-2(H) Earthen Channels to Storm Drain Structures
Part 6-2(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds
Part 6-2(F) Levees and Berms
Part 6-2(E) Means of Erosion Control
Part 6-2(D) Design Requirements for Maintenance and Access
Part 6-2(C) Grading in and Adjacent to Major Facilities
Part 6-2(B) Grading near the Property Line
Part 6-2(A) Slope Criteria
ARTICLE 6-1 GENERAL CRITERIA
Part 6-1(J) Erosion Control
Part 6-1(I) Protection and Debris Barriers
Part 6-1(H) Earthen Channels to Storm Drain Structures
Part 6-1(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds
Part 6-1(F) Levees and Berms
Part 6-1(E) Means of Erosion Control
Part 6-1(D) Design Requirements for Maintenance and Access
Part 6-1(C) Grading in and Adjacent to Major Facilities
Part 6-1(B) Grading near the Property Line
Part 6-1(A) Slope Criteria
LAST PRINTED: SEPTEMBER 4, 2020
ARTICLE 6-11 POND REQUIREMENTS ... 6-103

Part 6-11(A) Design Requirements ... 6-103
Part 6-11(B) Infiltration Rate ... 6-105
Part 6-11(C) Ponds in Parking Areas ... 6-105
Part 6-11(D) Fencing Around Ponds ... 6-105
Part 6-11(E) Private Ponds to be Built to Public Pond Specifications 6-106
Part 6-11(F) Rock Void Space for Pond Volume ... 6-106
Part 6-11(G) Privately Maintained Ponds with a Public Drainage Easement 6-106
Part 6-11(H) Ponds Maintained by the City ... 6-106
Part 6-11(I) Temporary Public Ponds ... 6-107
Part 6-11(J) Pond Evacuation Time ... 6-108
Part 6-11(K) Infiltration System Design .. 6-108

ARTICLE 6-12 STORMWATER QUALITY AND LOW-IMPACT DEVELOPMENT ..6-109

Part 6-12(A) Low Impact Development Strategies ... 6-110
Part 6-12(B) Effective Strategies for Stormwater Treatment 6-110
Part 6-12(C) Waiver from SWQV Management On-site 6-118
Part 6-12(D) Land Uses that Require Additional Stormwater Controls 6-120
Part 6-12(E) Post-Construction Maintenance and Responsibilities 6-120
Part 6-12(F) Construction Site Responsibility By Property Owner 6-121
Part 6-12(G) Construction Site Maintenance and Inspections 6-122

ARTICLE 6-13 DRAINAGE RIGHT-OF-WAY AND EASEMENTS 6-122

Part 6-13(A) Rights-of-Way .. 6-122
Part 6-13(B) Easements .. 6-122
Part 6-13(C) Configuration .. 6-123
Part 6-13(D) Drainage Right-of-Way and Public Drainage Easement Access 6-123
Part 6-13(E) Private Storm Drain Improvements within City Right-of-Way and/or Easements .. 6-123

ARTICLE 6-14 DRAINAGE AND STORMWATER QUALITY SUBMITTALS6-125

Part 6-14(A) Introduction.. 6-125
Part 6-14(B) Drainage Submittal Criteria .. 6-128
Part 6-14(C) Grading Plan Checklist ... 6-133
Part 6-14(D) Erosion and Sediment Control Plan Checklist 6-135
Part 6-14(E) Conceptual Grading and Drainage Plan Submittal Criteria 6-136
Part 6-14(F) Engineer's Certification for Non-Subdivisions 6-137
Part 6-14(G) Engineer's Certification for Subdivisions 6-138
Part 6-14(H) Required Certification Language ... 6-139

ARTICLE 6-15 MAINTENANCE AND POST-CONSTRUCTION RESPONSIBILITY ...6-140

Part 6-15(A) Fenced & Gated Public Facilities.. 6-140
Part 6-15(B) Drainage Maintenance Plan .. 6-140
Part 6-15(C) Drainage Maintenance Covenants ... 6-141

ARTICLE 6-16 COMMON EQUATIONS...6-143

Part 6-16(A) Weirs ... 6-143
Part 6-16(B) Orifices ... 6-143
Part 6-16(C) Manning's Equation ... 6-144

ARTICLE 6-17 HISTORY ... 6-145

ARTICLE 6-18 REFERENCE ... 6-149

Part 6-18(A) Hydraulics ... 6-149
CHAPTER 7 TRANSPORTATION DESIGN... 7-1
ARTICLE 7-1 INTRODUCTION... 7-9
ARTICLE 7-2 PURPOSE AND SCOPE ... 7-9
Part 7-2(A) Governing Policy & Regulations .. 7-10
Part 7-2(B) Design Manuals & Resources .. 7-12
Part 7-2(C) Using the DPM to Determine Roadway Specifications 7-13
Part 7-2(D) Street Elements .. 7-17
ARTICLE 7-3 ROADWAY DESIGN CONTEXT .. 7-22
Part 7-3(A) Transportation Planning and Policy ... 7-22
Part 7-3(B) Regional Transportation Planning ... 7-23
Part 7-3(C) Albuquerque/Bernalillo County Comprehensive Plan 7-31
Part 7-3(D) City of Albuquerque Complete Streets Ordinance 7-38
Part 7-3(E) Principles of Network Design and Roadway Connectivity 7-39
ARTICLE 7-4 DESIGN STANDARDS .. 7-44
Part 7-4(A) Network Connectivity ... 7-44
Part 7-4(B) Site Access Points ... 7-54
Part 7-4(C) Pavement Design .. 7-62
Part 7-4(D) Curb and Gutter .. 7-72
Part 7-4(E) Pedestrian Facilities ... 7-72
Part 7-4(F) Bikeways and Trails ... 7-84
Part 7-4(G) Public Transit ... 7-91
Part 7-4(H) On-street Parking ... 7-100
Part 7-4(I) Geometric Design Criteria ... 7-107
Part 7-4(J) Local Streets .. 7-130
Part 7-4(K) Off-street Parking and Site Design .. 7-137
Part 7-4(L) Traffic Calming .. 7-147
Part 7-4(M) Street Lighting .. 7-149
Part 7-4(N) Traffic Control and Development Requirements 7-154
Part 7-4(O) Naming Streets ... 7-155
ARTICLE 7-5 TRAFFIC STUDIES ... 7-158
Part 7-5(A) Background and Purpose ... 7-158
Part 7-5(B) Traffic Scoping Form and Traffic Impact Study 7-159
Part 7-5(C) Traffic Study Warranting Criteria ... 7-160
Part 7-5(D) Traffic Analysis Procedures ... 7-162
Part 7-5(E) TIS Report Elements ... 7-164
Part 7-5(F) Neighborhood Impact Assessment (NIA) 7-172
ARTICLE 7-6 DEFINITIONS .. 7-174

CHAPTER 8 SANITARY SEWER DESIGN CRITERIA 8-1
ARTICLE 8-1 GOVERNING REGULATIONS ... 8-2
ARTICLE 8-2 AVAILABILITY STATEMENTS ... 8-2
ARTICLE 8-3 DESIGN CAPACITY CRITERIA SECTION, DEVELOPMENT AND
DEVELOPMENT SERVICE .. 8-3
ARTICLE 8-4 MANHOLE CRITERIA ... 8-4
ARTICLE 8-5 LINE CRITERIA .. 8-6
ARTICLE 8-6 CURVILINEAR SEwers ... 8-14
ARTICLE 8-7 SERVICE CONNECTIONS CRITERIA 8-15

CHAPTER 9 WATER SYSTEM DESIGN CRITERIA 9-1
ARTICLE 9-1 GOVERNING REGULATIONS ... 9-2
ARTICLE 9-2 AVAILABILITY STATEMENTS ... 9-2
ARTICLE 9-3 WATER LINE DESIGN CRITERIA .. 9-2
Part 9-3(A) General Requirements ... 9-2
Part 9-3(B) Single-Family and Duplex Developments .. 9-3
Part 9-3(C) Industrial/Commercial and Multi-family Developments 9-3
Part 9-3(D) Material Requirements ... 9-3
Part 9-3(E) Waterline Designations ... 9-3
Part 9-3(F) Minimum Waterline Depths ... 9-4
Part 9-3(G) Thrust Restraints .. 9-4
Part 9-3(H) Water Valve Shut-off Plans .. 9-4
ARTICLE 9-4 ALIGNMENT AND EASEMENTS .. 9-5
ARTICLE 9-5 VALVING .. 9-7
ARTICLE 9-6 SERVICE LINES AND METERS .. 9-8
ARTICLE 9-7 PRIVATE DISTRIBUTION SYSTEMS ... 9-9
ARTICLE 9-8 FIRE HYDRANT CRITERIA ... 9-10
 Part 9-8(A) General Information.. 9-10
 Part 9-8(B) General Fire Hydrant Requirements for Fire Protection 9-10
 Part 9-8(C) New Buildings, Building Additions, or Building Reconstruction.. 9-11
 Part 9-8(D) Existing Development and Building Fire Hydrant Deficiencies... 9-12
 Part 9-8(E) Public Fire Hydrant Installation Procedure 9-12
ARTICLE 9-9 FIRE FLOW REQUIREMENTS ... 9-13

CHAPTER 10 SURVEYS AND MONUMENTATION ... 10-1
ARTICLE 10-1 GOVERNING REGULATIONS ... 10-2
 Part 10-1(A) Monumentation .. 10-2
 Part 10-1(B) Albuquerque Geodetic Reference .. 10-5
 Part 10-1(C) Records Requirements .. 10-5
ARTICLE 10-2 CONSTRUCTION SURVEYS .. 10-6

CHAPTER 11 LANDSCAPE AND IRRIGATION ... 11-1
ARTICLE 11-1 GOVERNING REGULATIONS .. 11-2
ARTICLE 11-2 GENERAL DESIGN CRITERIA IN MEDIANS 11-3
ARTICLE 11-3 IRRIGATION DESIGN CRITERIA IN MEDIANS 11-4
ARTICLE 11-4 PLANTING DESIGN CRITERIA ... 11-5
 Part 11-4(A) Trees and Shrubs .. 11-5
 Part 11-4(B) Medians ... 11-5
ARTICLE 11-5 REFERENCE ... 11-6
ARTICLE 11-6 GREENSPACE INITIATIVE .. 11-6
 Part 11-6(A) Intent .. 11-6
 Part 11-6(B) Criteria for City Maintenance ... 11-6
CONTENTS

ARTICLE 1-1 INTRODUCTION ...1-2

ARTICLE 1-2 PURPOSE OF THE DPM ..1-3

ARTICLE 1-3 RELATIONSHIP TO OTHER REGULATORY DOCUMENTS ...1-4

Part 1-3(A) Integrated Development Ordinance (IDO)1-4
Part 1-3(B) Standard Specifications ..1-4
Section 1-3(B)(1) New Mexico Standard Specifications for Public Works
Construction, Current Edition ...1-4
Section 1-3(B)(2) Contract Documents for City-wide Utilities and Cash Paving,
Current Edition ..1-4
Part 1-3(C) Standard Details ...1-5
Part 1-3(D) Reference Lists and Other Applicable Design Manuals and
Resources ..1-5
Part 1-3(E) Abbreviations ..1-5

ARTICLE 1-4 DPM UPDATE PROCEDURE ..1-8

Part 1-4(A) User Comments ...1-8
Part 1-4(B) Committees Responsible for Review of Administrative Changes
...1-8
Section 1-4(B)(1) DPM Executive Committee ...1-8
Section 1-4(B)(2) DPM Subcommittees ..1-9
Part 1-4(C) Procedure for Changing the Administrative Rules1-9
Part 1-4(D) Notification of Proposed Rule Changes1-10
Part 1-4(E) Emergency Effective Date ..1-10
Part 1-4(F) Appeals ..1-11
ARTICLE 1-1 INTRODUCTION

The Development Process Manual (DPM) responds to the mutual need of both the private and public sectors to coordinate and clarify the complexities of the development process in the City of Albuquerque. The *Albuquerque/Bernalillo County Comprehensive Plan (ABC Comp Plan)* and other adopted plans are the foundation of the development process guiding the procedures, design criteria, and standards presented in this document. More detailed regulations are contained in the *Integrated Development Ordinance (IDO)* (Article 14-16 ROA 1994), other ordinances related to specific issues of development, and City-adopted uniform building and technical codes. DPM content is informed by the following regulatory documents:

- Adopted City plans, particularly the *ABC Comp Plan* and the *IDO*, provide direction for City-initiated development and private development. Plans are available from the City Planning Department on this webpage: http://www.cabq.gov/planning. They are not part of the DPM.
- Legislation regulating development is published in the compilation of City ordinances, *Revised Ordinances of Albuquerque, 1994* (ROA 1994). It is also available for sale, copying of pages, or reading at the City Clerk’s office. A few key ordinances are published separately and sold at the City Treasurer’s office. The most important relevant legislative provisions are reflected in the DPM.
- When legislative policies are adopted, the legislative body may mandate or allow administrative staff to develop more detailed rules and guidelines for policy implementation. The development of detailed rules and guidelines by administrative staff is referred to as Administrative Rule making. These rules are the heart of the DPM. They are not always available elsewhere.

The effort to develop the DPM began in February, 1981, with the establishment of a special team of City staff and Albuquerque Urban Advisory Council members. The document has undergone several revisions, as the document isn’t intended to remain stagnant, but instead to evolve as the need for new or updated standards are identified. DPM users — City staff, property owners, developers and their agents, especially planners, architects, and engineers — are encouraged to submit suggestions, corrections, and proposed modifications in writing, at any time per the procedures outlined in *Article 1-4 DPM Update Procedure*.
ARTICLE 1-2 PURPOSE OF THE DPM

The general purpose of the DPM is to carry out the goals and policies of the ABC Comp Plan by encouraging high-quality, innovative design; variety in choice of neighborhoods and lifestyles; preservation of natural features and resources; and ensuring the health, safety, and welfare of the community.

The DPM delineates the development process from initial land use proposals, through infrastructure construction, to completion of a proposed development. It is intended for use by City staff, property owners, developers and their agents, especially planners, architects and engineers to:

• Coordinate and clarify the development process of the City of Albuquerque.
• Provide the basic criteria necessary to ensure acceptable levels of performance and safety for public facilities related to development and to assure adequate monumentation and documentation of land division.
• Give City staff a readily-accessible reference to uniform standards by which to evaluate development submittals, in a consistent and expeditious manner.

DPM Chapter 2 Development Procedures describes the basic procedures of the development process with an attempt to integrate specific procedures with other related requirements (e.g. infrastructure design procedures with recordable documents criteria), while Chapters 4-12 outline minimum design standards and criteria and presents examples of acceptable methodology for the design of infrastructure improvements required in developments.

Use of the DPM assumes compliance with all legal requirements and the exercise of sound professional judgment by design professionals familiar with development in all its aspects from land division through design and construction of infrastructure to completion. It also emphasizes the professional obligations and responsibilities of City staff and the development community. While the DPM highlights those development activities that occur most frequently, there is no way to adequately address all development proposals or all aspects within all proposals. Unique situations will continue to be handled on a case-by-case basis.
ARTICLE 1-3 RELATIONSHIP TO OTHER REGULATORY DOCUMENTS

The Development Process Manual contains engineering design criteria and standards for the infrastructure system necessary to development. Generally, an abbreviated style of presenting material has been used because this document is not intended to be a textbook or primer. Users are expected to have knowledge of or access to the fundamental concepts of the respective discipline by which the criteria are to be applied. The criteria presented in this document are to be used and applied in conjunction with the following additional documents to accomplish the complete design of facilities:

Part 1-3(A) Integrated Development Ordinance (IDO)

The Integrated Development Ordinance (IDO) includes the zoning and subdivision regulations that govern land use and development within the City of Albuquerque and establishes the City’s system of planning.

Part 1-3(B) Standard Specifications

The term “Standard Specifications” refers to both the NM Standard Specifications for Public Works Construction along with the Contract Documents for City-wide Utilities and Cash Paving (see Appendix B).

Section 1-3(B)(1) New Mexico Standard Specifications for Public Works Construction, Current Edition

New Mexico Standard Specifications for Public Works Construction, Current Edition (Standard Specifications) is the basic construction specification document adopted for use by the City of Albuquerque. It provides both general conditions for construction contracts and technical specifications for materials and installation of infrastructure. It, together with the modifications and supplements thereto published periodically within the Contract Documents for City-wide Utilities and Cash Paving, is referred to as the “Standard Specifications.” It is available from the American Public Works Association, Specifications Committee, c/o Wilson and Co., Engineers and Architects, P. O. Box 3305, Albuquerque, New Mexico, 87110.

Section 1-3(B)(2) Contract Documents for City-wide Utilities and Cash Paving, Current Edition

Contract Documents for City-wide Utilities and Cash Paving provides specifications for certain types of infrastructure construction performed within the City and under City auspices. It is important because it incorporates modifications and supplements to the New Mexico Standard Specifications for
Public Works Construction. It is commonly referred to as the “Block-to-Block” Contract. The document is revised and reissued approximately annually. The specification modifications and supplements therein govern development infrastructure as well as City-constructed facilities. This document is available from the City Engineer at 600 Second NW, Albuquerque, New Mexico, 87102.

Part 1-3(C) Standard Details

This document is a compilation of standard designs and details of infrastructure elements prepared by the City Engineer. The Standard Details are to be used normally in the design of infrastructure systems.

Standard Details are available as a separate document from the City Engineer or may also be obtained in reduced format bound within the Contract Documents for City-wide Utilities and Cash Paving. Standard Details are normally revised and reissued approximately annually.

Part 1-3(D) Reference Lists and Other Applicable Design Manuals and Resources

The standards and guidelines established by this document were drafted based on best practices from national design manuals and standards used by similar-sized municipalities, many of which are referenced in subsequent chapters in this document. Where external reference documents are in conflict with this DPM, the standards of this DPM shall govern.

Part 1-3(E) Abbreviations

The following abbreviations and symbols are used in this document:

<table>
<thead>
<tr>
<th>TABLE 1-3.E-1 ABBREVIATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference</td>
</tr>
<tr>
<td>Albuquerque Control Survey</td>
</tr>
<tr>
<td>Albuquerque Geodetic Reference System</td>
</tr>
<tr>
<td>Albuquerque Metropolitan Arroyo Flood Control Authority</td>
</tr>
<tr>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>American Institute of Architects</td>
</tr>
<tr>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>American Society of Landscape Architects</td>
</tr>
<tr>
<td>American Public Works Association</td>
</tr>
<tr>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>American Society for Testing and Materials</td>
</tr>
</tbody>
</table>
TABLE 1-3.E-1 ABBREVIATIONS

<table>
<thead>
<tr>
<th>Reference</th>
<th>Abbreviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Water Works Association</td>
<td>AWWA</td>
</tr>
<tr>
<td>Arid-lands Hydrologic Model</td>
<td>AHYMO</td>
</tr>
<tr>
<td>Auto Computer Aided Drafting</td>
<td>AutoCAD</td>
</tr>
<tr>
<td>Average Week Day Traffic</td>
<td>AWDT</td>
</tr>
<tr>
<td>Base Flood Elevation</td>
<td>BFE</td>
</tr>
<tr>
<td>Cast-iron Pipe</td>
<td>Cip</td>
</tr>
<tr>
<td>Component Capital Improvements Plan</td>
<td>CCIP</td>
</tr>
<tr>
<td>Concrete</td>
<td>Conc</td>
</tr>
<tr>
<td>Construction Services Division</td>
<td>CSD</td>
</tr>
<tr>
<td>Department of Municipal Development</td>
<td>DMD</td>
</tr>
<tr>
<td>Design Review & Construction</td>
<td>DRC</td>
</tr>
<tr>
<td>Development Process Manual</td>
<td>DPM</td>
</tr>
<tr>
<td>Development Review Board</td>
<td>DRB</td>
</tr>
<tr>
<td>Erosion and Sediment Control</td>
<td>ESC</td>
</tr>
<tr>
<td>Federal Emergency Management Agency</td>
<td>FEMA</td>
</tr>
<tr>
<td>Fire Hydrant</td>
<td>FH</td>
</tr>
<tr>
<td>Flood Insurance Rate Map</td>
<td>FIRM</td>
</tr>
<tr>
<td>Flowline</td>
<td>FL</td>
</tr>
<tr>
<td>Federal Highway Administration</td>
<td>FHWA</td>
</tr>
<tr>
<td>Highway Capacity Manual</td>
<td>HCM</td>
</tr>
<tr>
<td>Inside Diameter</td>
<td>id</td>
</tr>
<tr>
<td>Integrated Development Ordinance</td>
<td>IDO</td>
</tr>
<tr>
<td>Invert</td>
<td>Inv.</td>
</tr>
<tr>
<td>Institute of Traffic Engineers</td>
<td>ITE</td>
</tr>
<tr>
<td>Level of Service</td>
<td>LOS</td>
</tr>
<tr>
<td>Long Range Major Street Plan</td>
<td>LRMSP</td>
</tr>
<tr>
<td>Manual on Uniform Traffic Control Devices</td>
<td>MUTCD</td>
</tr>
<tr>
<td>Median Family Income</td>
<td>MFI</td>
</tr>
<tr>
<td>Mid Region Council of Governments</td>
<td>MRCOG</td>
</tr>
<tr>
<td>National Flood Insurance Program</td>
<td>NFIP</td>
</tr>
<tr>
<td>National Geodetic Survey</td>
<td>NGS</td>
</tr>
<tr>
<td>National Oceanic and Atmospheric Administration</td>
<td>NOAA</td>
</tr>
<tr>
<td>National Resources Conservation Service</td>
<td>NRCS</td>
</tr>
<tr>
<td>New Mexico Statutes Annotated – 1953 Compilation, as Amended</td>
<td>NMSA</td>
</tr>
<tr>
<td>New Mexico</td>
<td>NM</td>
</tr>
<tr>
<td>New Mexico Department of Transportation</td>
<td>NMDOT</td>
</tr>
<tr>
<td>North American Industry Classification System</td>
<td>NAICS</td>
</tr>
<tr>
<td>Reference</td>
<td>Abbreviations</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>North American Vertical Datum</td>
<td>NAVD</td>
</tr>
<tr>
<td>Point of Curvature</td>
<td>PC</td>
</tr>
<tr>
<td>Point of Tangency</td>
<td>PT</td>
</tr>
<tr>
<td>Portable Document Format</td>
<td>PDF</td>
</tr>
<tr>
<td>Pounds per Square Inch</td>
<td>psi</td>
</tr>
<tr>
<td>Property Line</td>
<td>PL</td>
</tr>
<tr>
<td>Public Services Company of New Mexico</td>
<td>PNM</td>
</tr>
<tr>
<td>Rate of Flow</td>
<td>Q</td>
</tr>
<tr>
<td>Radius</td>
<td>R</td>
</tr>
<tr>
<td>Reinforced Concrete Pipe</td>
<td>RCP</td>
</tr>
<tr>
<td>Revised Ordinances of Albuquerque, 1994</td>
<td>ROA 1994</td>
</tr>
<tr>
<td>Right-of-Way</td>
<td>R.O.W.</td>
</tr>
<tr>
<td>Soil Conservation Service</td>
<td>SCS</td>
</tr>
<tr>
<td>Storm Drain</td>
<td>SD</td>
</tr>
<tr>
<td>Specifications</td>
<td>Spec.</td>
</tr>
<tr>
<td>Special Flood Hazard Area</td>
<td>SFHA</td>
</tr>
<tr>
<td>Station</td>
<td>Sta.</td>
</tr>
<tr>
<td>Topographic Map</td>
<td>Topo</td>
</tr>
<tr>
<td>Traffic Impact Study</td>
<td>TIS</td>
</tr>
<tr>
<td>Urban Transportation Planning Policy Board</td>
<td>UTPPB</td>
</tr>
</tbody>
</table>
ARTICLE 1-4 DPM UPDATE
PROCEDURE

Establishing and monitoring legislative policy and administrative rules for development controls may result from two distinctly different enactment processes. These enactment processes are called legislative policy and administrative rulemaking. The State Legislature enacts statutes. The City Council and County Commission adopt ordinances and resolutions. These are legislative policies that cannot be legally changed by administrative action alone. Only the legislative body adopting the policy may subsequently amend it; however, often when legislative policies are adopted, the legislative body will mandate or allow staff involved in carrying out its policies to develop more detailed rules and guidelines for policy implementation. The development of detailed rules and guidelines by staff is referred to as administrative rulemaking.

This Development Process Manual (DPM) contains both legislative requirements and administrative rules and procedures affecting development activities in the Albuquerque area. The purpose of this section is to set forth the general procedures by which administrative rules and procedures within the DPM can be changed. Any administrative change that will require a legislative amendment must also follow the amendment procedures set forth in the respective legislation.

Part 1-4(A) User Comments

The content of the DPM material was prepared jointly by both the private sector and City staff members. The content of the DPM is not intended to remain static; it is expected that cooperative efforts will continue to update content through future revisions.

Users of the DPM are encouraged to note errors, omissions, and conflicts in the content and suggest modifications or topics to be included in future revisions. Any additions, corrections, or clarifications that require immediate action will be issued as addendum or errata sheets to purchasers of the DPM who automatically will be added to the publication list.

The user is encouraged to submit suggestions, corrections, or modifications, in writing, at any time. The procedure for DPM update, including the procedure for submitting comments, is outlined in Part 1-4(C) Procedure for Changing the Administrative Rules.

Part 1-4(B) Committees Responsible for Review of Administrative Changes

Section 1-4(B)(1) DPM Executive Committee

The DPM Executive Committee was established to review and direct changes in the DPM. The DPM Executive Committee consists of 11 individuals from the public and private sectors. Composition of the Executive Committee is as follows:
1. Co-Chairs, Planning Department Director; Department of Municipal Development Director.
2. Manager or designated representative of the Urban Design and Development Division of the City Planning Department.
3. City Engineer, Planning Department.
4. City Attorney or designated representative.
5. Albuquerque/Bernalillo County Water Utility Authority representative.
6. Five members from the private sector who are actively involved in land development either as developers, consultants, or planners or who represent organizations that are actively involved in land development activities.

Section 1-4(B)(2) DPM Subcommittees

Proposals to change the DPM may be reviewed by a subcommittee of the DPM Executive Committee composed of various public and private sector members from professions or companies closely related to various aspects of land development. The subcommittee is responsible for reviewing and advising the DPM Executive Committee on all significant changes to the DPM. The subcommittee is advisory only and has no authority to override any public agency responsible for the enforcement of public policy or charged with the responsibility of promulgation of new rules, policies, ordinances, or procedures.

Part 1-4(C) Procedure for Changing the Administrative Rules

Proposed changes are to be submitted in letter or memo form to the Administration Office of the Planning Director, 3rd Floor, Plaza Del Sol Building, Albuquerque, New Mexico 87102. A letter is to be accompanied by a brief statement outlining the reason for the proposed change and is to reference the name and address of the firm, organization, agency, or individual proposing the change. In addition, requests should include the DPM text to be changed noted as follows:

- material proposed to be deleted identified with single-line strike-through.
- all proposed new text identified as underlined and in legible writing.

Should the proposed change be related to provisions of a City ordinance or resolution, the pertinent section(s) of that ordinance or resolution as enacted shall be referenced in the proposed change.

The request then is reviewed by the DPM Executive Committee. Decisions are based on consent of all members. The Executive Committee determines the merits or validity of the change and whether further investigation, information, or research is needed. If the proposed change requires further study, the Executive Committee will appoint a subcommittee to undertake the work.

Upon completion of the review period, the subcommittee evaluates any comments received for possible rule modification. If the subcommittee determines that a modification to the proposed rule is appropriate or necessary as a result of comments received, the proposed rule as modified shall go back to the Executive Committee for consideration. Substantial modifications as
a result of public review shall go back to the Executive Committee for final approval.

If the Executive Committee approves the change, notice of the proposed change shall be advertised with all required information at least 30 days prior to its final acceptance date. The purpose of the 30-day notice is to allow for public input. If the Executive Committee rejects the change, written notification shall be given to the requester of the change. The notice shall include a statement outlining the reasons for the rejection.

Once accepted as originally proposed or modified as a result of comments received, the change is official when promulgated by the Mayor and distributed, posted, and filed with the City Clerk.

The final rule changes shall be filed with the City Clerk on or before the effective date. If related to the City’s Drainage Ordinance, proposed rule changes shall not take effect sooner than 30 days after final approval by the City Engineer and posting, of notice, or sooner than 90 days from the original distribution of the proposed rule change for comment.

Part 1-4(D) Notification of Proposed Rule Changes

Any proposed rule change to the DPM should be published in a newspaper of daily circulation within the City at least 30 days prior to the change becoming effective, unless an emergency effective date applies. In addition, all subscribers to the DPM shall be notified by mail or other method at the address last given to the City. Each such public notice shall contain all of the following:

- information identifying whom interested parties may contact regarding the proposed change.
- how comments can be submitted.
- the substance of the proposed change.

Copies of proposed changes shall be available for review in the Planning Department, Plaza Del Sol Building, 3rd Floor. Once the rule change has been promulgated and filed in with the City Clerk, DPM subscribers shall be notified of the official amendment. The amendments may be purchased, at the cost of reproduction, in the Planning Department. The Planning Department will mail amendments upon request, but the cost of reproduction and postage must be paid prior to mailing.

Part 1-4(E) Emergency Effective Date

In the case of emergencies, there are two ways that a rule may be changed: For rules not requiring public notice pursuant to adopted City policy, the DPM Executive Committee may require emergency implementation of a rule change. The rule can be placed temporarily into effect prior to general public notice by filing a copy of the change clearly marked “Interim Rule” with the City Clerk; however, the rule shall not be final until public notice is provided and update procedures are followed as set forth herein.
In addition, the Mayor may determine in writing that urgent and compelling reasons require emergency modifications of a rule and may adopt such modification and make it effective immediately upon posting and distribution. If such rule is to be in effect longer than 60 days, public notice shall be given and the opportunity for public comment provided.

Part 1-4(F) Appeals

Anyone may appeal a proposed rule change within 15 days of its posting and filing with the City Clerk, or within 15 days of sending notice of final rejection to the proponent of the change. If the proposed rule change is related to implementation of the City’s Drainage Ordinance, appeal is to the Technical Standards Committee provided for in Section 15 of the Drainage Ordinance. Appeals for matters other than those related to the City’s Drainage Ordinance are to be sent to the City Council.

Appeal forms may be obtained from the Planning Department, Development Review Services, Plaza del Sol Building.
This chapter outlines development procedures authorized by the City of Albuquerque and provides detailed requirements for those procedures.

CONTENTS

ARTICLE 2-1 DETERMINING THE APPROPRIATE PROCEDURE......2-5

ARTICLE 2-2 SUBDIVISION OF LAND..2-11
Part 2-2(A) Governing Regulations..2-11
Part 2-2(B) Standard Subdivision Procedure2-11
 Section 2-2(B)(1) Applicability...2-11
 Section 2-2(B)(2) Required Application Materials..........................2-11
Part 2-2(C) Non-compliant Parcel Procedure2-12
 Section 2-2(C)(1) Applicability...2-12
 Section 2-2(C)(2) Procedures...2-12
Part 2-2(D) Bulk Land Subdivision Criteria...2-13
 Section 2-2(D)(1) Applicability...2-13
 Section 2-2(D)(2) Bulk Land Subdivision Criteria..........................2-13
 Section 2-2(D)(3) Bulk Land Subdivision Procedure........................2-13

ARTICLE 2-3 PUBLIC INFRASTRUCTURE IMPROVEMENT PROCEDURES
2-14
Part 2-3(A) Governing Regulations..2-14
Part 2-3(B) Infrastructure Development Procedure............................2-15
 Section 2-3(B)(1) Applicability...2-15
 Section 2-3(B)(2) Procedure...2-15
Part 2-3(C) Construction Agreements..2-20
 Section 2-3(C)(1) "Procedure A"..2-20
 Section 2-3(C)(2) "Procedure B"..2-21
 Section 2-3(C)(3) "Procedure C"..2-24
Part 2-3(D) Work Order..2-26
 Section 2-3(D)(1) Applicability...2-26
 Section 2-3(D)(2) Procedures...2-26

ARTICLE 2-4 PRIVATE INFRASTRUCTURE IMPROVEMENTS........2-36
Part 2-4(A) Applicability ...2-36
Part 2-4(B) Governing Regulations...2-36
Part 2-4(C) Private Facilities in Public Right-of-Way............................2-37
Part 2-4(D) Procedural Differences...2-37
 Section 2-4(D)(1) Private Infrastructure Design Development...........2-37
 Section 2-4(D)(2) Construction of Private Infrastructure...................2-38
ARTICLE 2-5 COMMERCIAL, PUBLIC, AND MULTI-FAMILY BUILDING PERMITS ...2-39
Part 2-5(A) Applicability ..2-39
Part 2-5(B) Governing Regulations ..2-39
Part 2-5(C) Procedure ...2-39
Section 2-5(C)(1) Preliminary Plan Check Services ...2-39
Section 2-5(C)(2) Plan Preparation ..2-40
Section 2-5(C)(3) Application for Plan Check ...2-41
Section 2-5(C)(4) Plan Check ..2-41
Section 2-5(C)(5) Building Permit Issuance ..2-41
Section 2-5(C)(6) Construction Inspections ..2-42
Section 2-5(C)(7) Certificate of Occupancy ...2-42

ARTICLE 2-6 RELATED PERMITS ..2-45
Part 2-6(A) Demolition Permits ...2-47
Section 2-6(A)(1) Applicability ...2-47
Section 2-6(A)(2) Procedures ..2-47
Part 2-6(B) Floodplain Development Permit ..2-48
Section 2-6(B)(1) Applicability ...2-48
Section 2-6(B)(2) Procedures ..2-48
Part 2-6(C) Foundation Only Permits ...2-49
Section 2-6(C)(1) Applicability ...2-49
Section 2-6(C)(2) Procedures ..2-50
Part 2-6(D) Grading Permit and Paving Permit ...2-50
Section 2-6(D)(1) Applicability ...2-50
Section 2-6(D)(2) Procedure ...2-51
Part 2-6(E) Plumbing, Mechanical, and Electrical Permits ...2-51
Section 2-6(E)(1) Applicability ...2-51
Section 2-6(E)(2) Procedures ..2-51
Part 2-6(F) Relocation of Existing Buildings Permits ...2-52
Section 2-6(F)(1) Applicability ...2-52
Section 2-6(F)(2) Procedures ..2-52
Part 2-6(G) Sign Permits ..2-53
Section 2-6(G)(1) Applicability ...2-53
Section 2-6(G)(2) Procedures ..2-53
Part 2-6(H) Wall, Fence, and Retaining Wall Permits ...2-54
Section 2-6(H)(1) Applicability ...2-54
Section 2-6(H)(2) Procedures ..2-54

ARTICLE 2-7 OTHER CONSTRUCTION PERMITS ...2-55
Part 2-7(A) Air Contaminant Sources Registration ..2-58
Section 2-7(A)(1) Applicability ...2-58
Section 2-7(A)(2) Procedure ..2-58
Part 2-7(B) Authority-to-Construct Permit ...2-58
Section 2-7(B)(1) Applicability ...2-58
Section 2-7(B)(2) Procedure ..2-59
Part 2-7(C) Barricade Permit ..2-59
Section 2-7(C)(1) Applicability ...2-59
Section 2-7(C)(2) Procedure ..2-59
Part 2-7(D) Blasting Permit ..2-60
Section 2-7(D)(1) Applicability ...2-60
Section 2-7(D)(2) Procedure ..2-60
Part 2-7(E) Encroachment Agreement (Approval to Place Private Infrastructure in a Public Easement) ... 2-60
 Section 2-7(E)(1) Applicability.. 2-60
 Section 2-7(E)(2) Procedure ... 2-60
Part 2-7(F) Excavation Permit.. 2-60
 Section 2-7(F)(1) Applicability.. 2-60
 Section 2-7(F)(2) Procedure ... 2-61
Part 2-7(G) Integrated Development Ordinance (IDO) Approvals 2-61
 Section 2-7(G)(1) Applicability... 2-61
 Section 2-7(G)(2) Procedure ... 2-61
Part 2-7(H) Median Cuts and Left Turn Lane Approval................................. 2-62
 Section 2-7(H)(1) Applicability.. 2-62
 Section 2-7(H)(2) Procedure ... 2-62
 Section 2-7(H)(3) Additional Approvals.. 2-62
Part 2-7(I) Oversize, Overweight and/or Overlength Truckloads Permit...... 2-63
 Section 2-7(I)(1) Applicability.. 2-63
 Section 2-7(I)(2) Procedure ... 2-63
Part 2-7(J) Permit SO-19 (Private Storm Drain Facilities within a City Right-of-Way and/or Easement) ... 2-63
 Section 2-7(J)(1) Applicability.. 2-63
 Section 2-7(J)(2) Procedures ... 2-63
Part 2-7(K) Private Use of Fire Hydrants... 2-64
 Section 2-7(K)(1) Applicability.. 2-64
 Section 2-7(K)(2) Procedure ... 2-64
Part 2-7(L) Public Swimming Pool Operating Permit................................. 2-65
 Section 2-7(L)(1) Applicability... 2-65
 Section 2-7(L)(2) Procedure ... 2-65
Part 2-7(M) Revocable Permit (Approval to Place Private Infrastructure in the Public Right-Of-Way) ... 2-66
 Section 2-7(M)(1) Applicability.. 2-66
 Section 2-7(M)(2) Procedure ... 2-66
Part 2-7(N) Sewer Tapping Permit... 2-67
 Section 2-7(N)(1) Applicability.. 2-67
 Section 2-7(N)(2) Procedure ... 2-67
Part 2-7(O) Sidewalk, Drive Pad, and Curb and Gutter Permits................ 2-67
 Section 2-7(O)(1) Applicability.. 2-67
 Section 2-7(O)(2) Procedure ... 2-67
Part 2-7(P) Solar Rights Permit... 2-68
 Section 2-7(P)(1) Applicability.. 2-68
 Section 2-7(P)(2) Procedure ... 2-68
Part 2-7(Q) Stormwater Control Permit for Erosion and Sediment Control ... 2-69
 Section 2-7(Q)(1) Applicability.. 2-69
 Section 2-7(Q)(2) Procedure ... 2-69
Part 2-7(R) Fugitive Dust Permit... 2-69
 Section 2-7(R)(1) Applicability.. 2-69
 Section 2-7(R)(2) Procedure ... 2-69
Part 2-7(S) Water Meter and Fire Line Application....................................... 2-70
 Section 2-7(S)(1) Applicability.. 2-70
 Section 2-7(S)(2) Procedure ... 2-70
ARTICLE 2-8 DRAINAGE AND TRANSPORTATION SUBMITTALS...2-71
Part 2-8(A) Drainage and Transportation Submittal and Review Procedures
..2-71
Part 2-8(B) Drainage Facilities and Roadway Improvements Construction Agreement and Financial Guarantee ...2-72
Part 2-8(C) Forms and Certificates ..2-72

ARTICLE 2-9 DPM WAIVER ...2-73
Part 2-9(A) Waiver for DPM Standards ..2-73
Section 2-9(A)(1) Applicability ...2-73
Section 2-9(A)(2) Procedure ..2-73
Part 2-9(B) Sidewalk Waiver ...2-74
Section 2-9(B)(1) Applicability ...2-74
Section 2-9(B)(2) Governing Regulations ...2-74
Section 2-9(B)(3) Procedure ..2-75
Part 2-9(C) Temporary Sidewalk Deferral ..2-76
Section 2-9(C)(1) Applicability ...2-76
Section 2-9(C)(2) Governing Regulations ...2-76
Section 2-9(C)(3) Procedure ..2-76
Part 2-9(D) Stub Street/Cul-de-Sac Waiver ...2-77
Section 2-9(D)(1) Applicability ...2-77
Section 2-9(D)(2) Governing Regulations ...2-77
Section 2-9(D)(3) Procedure ..2-77
Part 2-9(E) Vacation Of Right-Of-Way Or Easement ..2-78
Section 2-9(E)(1) Applicability ...2-78
Section 2-9(E)(2) Governing Regulations ...2-78
Section 2-9(E)(3) Procedure ..2-79

TABLES
TABLE 2.1.1 Summary of Development Procedures ..2-5
TABLE 2.6.2 Summary of Related Building Permits ..2-45
TABLE 2.7.3 Summary Other Construction Permits ...2-56
ARTICLE 2-1 DETERMINING THE APPROPRIATE PROCEDURE

Many development projects require the completion of various separate but related procedures in order to secure final approval. These procedures are described within the City’s Integrated Development Ordinance (IDO) or in this Development Process Manual (DPM). Table 2.1.1, Summary of Development Procedures outlines the types of development applications authorized within the City of Albuquerque (the City). For each development action, the table indicates what applications/permits are applicable to which actions, in which regulatory document the procedures are located, any required pre-application prerequisites, the needed application materials, and the City review body that will make a decision on the action. This table is intended to guide the user toward the appropriate development processes and the appropriate steps needed to complete them. The most recent forms are available on the City’s Planning webpage: https://www.cabq.gov/planning/online-forms.

Table 2.1.1 Summary of Development Procedures

<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
<th>Prerequisites</th>
<th>Application Materials</th>
<th>Review / Decision Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annexation of Land</td>
<td></td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form Z</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td>Conditional Use</td>
<td>A special exception to the IDO is required for conditional uses (i.e. those uses specified as conditional in a zone district per the IDO), approved by the Zoning Hearing Officer (ZHO).</td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td>Declaratory Ruling or Zoning Certificate</td>
<td>Declaratory Ruling or Zoning Certificate is required to verify the zoning of a property and the allowable uses from the Zoning Enforcement Officer. Upon request, the Zoning Enforcement Officer can issue a declaratory ruling as to the applicability of the IDO to the proposed development or activity.</td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td>Expansions of Nonconforming Use or Structure</td>
<td>Nonconformity refers to a structure, use, lot, sign or site feature that does not conform to applicable zoning, but that did conform to applicable zoning in effect at the time it was created. A Nonconforming Status Determination is required to review the status of a use or structure that is deemed nonconforming to the regulations of the IDO.</td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td>Waiver from IDO Standards</td>
<td>The DRB generally has jurisdiction over IDO Sections 14-16-5-3, 14-16-5-4, and 14-16-5-5. Exceptions to standards in these IDO sections can be granted by the DRB through a waiver, subject to procedures in both the DPM and IDO.</td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE</td>
<td>D</td>
</tr>
<tr>
<td>Variance from IDO Standards</td>
<td>A variance from IDO standards is required to vary from the strict, literal application of the IDO for all sections other than 14-16-5-3, 14-16-5-4, and 14-16-5-5, which DRB generally has jurisdiction over. Variances to IDO standards in other sections that are requested as part of an application for Site Plan – EPC or to some standards in View Protection Overlay zones are decided by the EPC. All other IDO variances are decided by the ZHE.</td>
<td>Pre-Application Review Team</td>
<td>X</td>
<td>Development Review Application Form ZHE or Form P1 for EPC</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neighborhood Meeting</td>
<td>X</td>
<td>Development Review Application Form ZHE or Form P1 for EPC</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-Design Conference</td>
<td>Other</td>
<td>Development Review Application Form ZHE or Form P1 for EPC</td>
<td>D</td>
</tr>
</tbody>
</table>

NOTE: “R” = Review and Recommendation | “D” = Review and Decision | “AD” = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM or on the Planning webpage.

1. Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-4(B) of the IDO.
2. Neighborhood Meeting procedures are specified in Subsection 14-16-6-4(C) of the IDO.
<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
<th>Prerequisites</th>
<th>Application Materials</th>
<th>Review / Decision Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waiver from DPM Standards</td>
<td></td>
<td>DPM Part 2-3(A)</td>
<td>X</td>
<td>Development Review Application Form V</td>
<td>R</td>
</tr>
<tr>
<td>Zoning Map Amendment</td>
<td></td>
<td>IDO 14-16-6-7(D), 14-16-6-7(G)</td>
<td>X</td>
<td>Development Review Application Form 2</td>
<td>R</td>
</tr>
<tr>
<td>SITE DEVELOPMENT</td>
<td></td>
<td>DPM Part 2-3(B)</td>
<td>X</td>
<td>Work Order Checklist</td>
<td>R</td>
</tr>
<tr>
<td>Construction Agreements</td>
<td>Both public and private infrastructure improvements on the infrastructure list require a construction agreement between the City and the developer that outlines the process by which the construction of the infrastructure improvements will be financed and/or completed. This agreement can either be executed through an Infrastructure Improvements Agreement (IIA) Procedure A, B, or C.</td>
<td>IIA - Procedure A</td>
<td>IIA - Procedure B</td>
<td>IIA - Procedure C</td>
<td>D</td>
</tr>
<tr>
<td>Infrastructure List</td>
<td>Private and public infrastructure improvements projects must be approved by the Development Review Board (DRB) through an infrastructure list. The infrastructure list is financially guaranteed through an IIA or constructed via a work order.</td>
<td>DPM Part 2-3(B)</td>
<td>X</td>
<td>Work Order Checklist</td>
<td>R</td>
</tr>
<tr>
<td>Infrastructure Improvements Deferral</td>
<td>The DRB can extend the time period within which infrastructure shall be completed after a construction agreement has been executed. For example, such an extension is required if the construction of a sidewalk is delayed until building construction is finished. The extension of a construction agreement follows the same process as the original construction agreement. For example, if an IIA was attached to a site plan, then the IIA extension would follow the Site Plan review/decision process. If attached to a plat, then the IIA extension would follow the Subdivision review/decision process.</td>
<td>IDO 14-16-6-4(W)(4), DPM 2-3(C)(2)(ii)(c)</td>
<td>See original approval</td>
<td>Development Review Application Form 87</td>
<td>R</td>
</tr>
<tr>
<td>Impact Fee Assessment</td>
<td>Impact Fees are a charge of assessment imposed by the City on new development in order to generate revenue for funding or recouping the costs of capital improvements rationally related to new development in accordance with applicable law. Impact fees are assessed and collected during the building permit process.</td>
<td>DPM Part 2-3(B)</td>
<td>X</td>
<td>Impact Fee Schedule</td>
<td>D</td>
</tr>
<tr>
<td>Site Plans</td>
<td>A Site Plan that provides detail on how the property is proposed to be developed are required for certain development. Procedures and approval depend upon the type and location of the development as outlined below.</td>
<td>IDO 14-16-6-5(D)</td>
<td></td>
<td>Building Permit Application</td>
<td>D</td>
</tr>
<tr>
<td>Administrative</td>
<td>Any application for development on a site totaling less than 5 acres that meets or is under the threshold for staff decision pursuant to the IDO.</td>
<td>IDO 14-16-6-5(D)</td>
<td></td>
<td>Building Permit Application</td>
<td>D</td>
</tr>
<tr>
<td>DRB</td>
<td>Any application for development that does not qualify for consideration as a Site Plan – Administrative but that does not require EPC consideration pursuant to the IDO.</td>
<td>IDO 14-16-6-6(B)</td>
<td>X</td>
<td>Development Review Application Form P2</td>
<td>R</td>
</tr>
<tr>
<td>EPC</td>
<td>Any application for development within an NR-PO, NR-SU, PO, or PC zone district that does not qualify for consideration as a Site Plan – Administrative pursuant to the IDO.</td>
<td>IDO 14-16-6-6(B)</td>
<td>X</td>
<td>Development Review Application Form P1</td>
<td>R</td>
</tr>
<tr>
<td>NOTE: “R” = Review and Recommendation, “D” = Review and Decision “AD” = Appeal Decision Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM or on the Planning webpage. 1 Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-4(B) of the IDO. 2 Neighborhood Meeting procedures are specified in Subsection 14-16-6-4(B) of the IDO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2.1.1 Summary of Development Procedures

<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
<th>Prerequisites</th>
<th>Application Materials</th>
<th>Review / Decision Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE DEVELOPMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subdivision of Land</td>
<td>A request for subdivision is required for the act of subdividing, i.e. dividing a portion of land into lots for real estate development. Subdivisions are platting actions that involve reviewing/deciding a preliminary and then a final plat. Consolidation of lots also requires a platting action and follows subdivision procedures.</td>
<td>(IDO 14-16-6-60)</td>
<td>Development Review Application Form S2</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>Minor</td>
<td>Subdivision actions that divide a tract of land into ten or fewer parcels without significant infrastructure require a minor subdivision.</td>
<td>(IDO 14-16-6-60)</td>
<td>Development Review Application Form S1</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>Major</td>
<td>Subdivision actions that create more than ten lots and/or require significant infrastructure require a major subdivision.</td>
<td>(IDO 14-16-6-60)</td>
<td>Development Review Application Form S1</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>Vacation of Easement or Right-of-Way</td>
<td>A vacation of public easement or right-of-way is required for the partial or complete closure of the public's right to use a street or public service easement. DRB decides easements and smaller rights-of-way; City Council decides on larger rights-of-way pursuant to the IDO.</td>
<td>(IDO 14-16-6-60)</td>
<td>Development Review Application Form V</td>
<td>R</td>
<td>D/ AD</td>
</tr>
<tr>
<td>Work Order</td>
<td>A work order refers to the project documentation bearing the City Engineer's authorization to construct infrastructure improvements. The Design Review and Construction (DRC) Section of the City Planning Department Development Review Services Division issues work orders for public infrastructure and performs oversight inspections. No public infrastructure can be constructed without an approved work order.</td>
<td>DPM Part 2-301</td>
<td>Development Review Application Form L</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>BUILDING / CONSTRUCTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Historic Certificate of Appropriateness</td>
<td>A Historic Certificate of Appropriateness (minor or major) is required for all exterior alterations, building additions, new construction, demolition, erection of fences, and placement of manufactured or pre-built structures in all designated Historic Protection Overlay Zones before any work can begin. Minor certificates as defined by the IDO can be decided by staff; major certificates are decided by the City's Landmarks Commission.</td>
<td>(IDO 14-16-6-60), (IDO 14-16-6-60)</td>
<td>Development Review Application Form L</td>
<td>R/D</td>
<td>D</td>
</tr>
<tr>
<td>Air Contaminant Source Registration</td>
<td>Air contaminant source registration is required for the operation of a commercial or industrial stationary source with actual emissions of more than 2,000 pounds of any air contaminant per year or any amount of a hazardous air pollutant.</td>
<td>DPM Part 2-701</td>
<td>DPM Part 2-701</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Authority to Construct Permit</td>
<td>An authority to construct permit is required for the construction or modification of any commercial or industrial structure that, if it were uncontrolled, would result in an emission of air contaminants greater than ten pounds per hour or 25 tons per year (except 5 tons per year for lead or 10 tons per year for hazardous air pollutants).</td>
<td>DPM Part 2-701</td>
<td>DPM Part 2-701</td>
<td>X</td>
<td>D</td>
</tr>
<tr>
<td>Barricade Permit</td>
<td>A barricade permit is required prior to excavation of any City right-of-way including the setback area or when construction or demolition work interferes with vehicular or pedestrian traffic. Currently, barricade permits are not required for work in unimproved City streets or rights-of-way; however, the construction zone is required to be barricaded in accordance with the requirements of the Traffic Code.</td>
<td>DPM Part 2-701</td>
<td>DPM Part 2-701</td>
<td>X</td>
<td>D</td>
</tr>
<tr>
<td>Blasting Permit</td>
<td>A blasting permit issued by the Albuquerque Police Department (APD) is required for all blasting work within the City Limits. Applicants for a blasting permit must present a Certificate of Insurance for $500,000/$1,000,000/$500,000 combined incident liability, structure damage, bodily injury and property damage.</td>
<td>DPM Part 2-701</td>
<td>DPM Part 2-701</td>
<td>X</td>
<td>D</td>
</tr>
</tbody>
</table>

NOTE:
- "R" = Review and Recommendation
- "D" = Review and Decision
- "AD" = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM, or on the Planning webpage.

1. Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-6(B) of the IDO.
2. Neighborhood Meeting procedures are specified in Subsection 14-16-6-6(C) of the IDO.

NOTE:"R" = Review and Recommendation "D" = Review and Decision "AD" = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM, or on the Planning webpage.
TABLE 2.1.1 Summary of Development Procedures

<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Prerequisites</th>
<th>Procedures</th>
<th>Application Materials</th>
<th>Review / Decision Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building/Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition Permit</td>
<td></td>
<td>DPM Part 2-6(D)</td>
<td>Demolition Permit Application</td>
<td>D</td>
</tr>
<tr>
<td>Elevator Permit</td>
<td></td>
<td>DPM Article 1.5</td>
<td>Elevator Permit Application</td>
<td>D</td>
</tr>
<tr>
<td>Encroachment Permit</td>
<td></td>
<td>DPM Part 2-6(E)</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Excavation Permit</td>
<td></td>
<td>DPM Part 2-6(F)</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Fire Repair Permit</td>
<td></td>
<td>DPM Part 2-6(G)</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Foundation Only Permit</td>
<td></td>
<td>DPM Part 2-6(G)</td>
<td>Foundation Permit Application</td>
<td>D</td>
</tr>
<tr>
<td>Grading, Drainage, or Paving Permit</td>
<td></td>
<td>DPM Part 2-6(G)</td>
<td>Drainage and Transportation Information Sheet</td>
<td>D</td>
</tr>
<tr>
<td>Approval for Median Cuts and Left Turn Lanes</td>
<td></td>
<td>DPM Part 2-6(H)</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Oversize, Overweight and/or Overlength Truckloads Permit</td>
<td></td>
<td>DPM Part 2-6(H)</td>
<td></td>
<td>D</td>
</tr>
<tr>
<td>Plumbing and Electrical Permit</td>
<td></td>
<td>DPM Part 2-6(J)</td>
<td>Plumbing Permit Application</td>
<td>D</td>
</tr>
</tbody>
</table>

Building/Construction

Demolition Permit
A demolition permit is required for demolition work on any commercial building or residential building containing 5 or more dwelling units. The permit requires an Asbestos Demolition/Renovation Notification to be filed with the City Environmental Health Department a minimum of 10 working days prior to the start of the demolition. Note: Notification of Demolition or Renovation is also required for residential buildings that are demolished for the purposes of building non-residential structures.

Elevator Permit
An elevator permit is required for the installation of all elevators.

Encroachment Permit
The execution of an encroachment permit between the City and the property owner is required for the proposed construction of walls, fences and/or footings in the public right-of-way to allow private use of public right-of-way on a conditional, revocable basis.

Excavation Permit
An excavation permit issued by the City Engineer is required for excavation within the public right-of-way. Applicants for excavation permits should obtain a barricade permit from the Department of Municipal Development Construction Services Division (DMD/CSD) prior to application if the excavation work is within City right-of-way.

Fire Repair Permit
A fire repair permit is required for all restoration work following a fire.

Foundation Only Permit
A foundation only permit is required for the construction of footings, foundation walls and any other construction up to and including a first floor slab upon approval of required plans and application materials.

Grading, Drainage, or Paving Permit
A grading permit is required for all grading of 1.0 acre or more or 500 cubic yards and any grading to be done within or adjacent to a watercourse (defined as a major facility) during the months of July, August, or September. Paving an area larger than 1,000 square feet requires a Paving permit. Repaving of existing paved areas in which no grading is planned is excluded. Note: Grading and paving permits are not required when the proposed grading and paving are a part of a building permit.

Approval for Median Cuts and Left Turn Lanes
Proposed median cuts and left turn lanes require City approval to ensure that spacing requirements, the type of development, internal circulation and existing or projected traffic operating conditions are considered. In addition, the location and design of median cuts in streets that are a part of the State Highway System require approval of the New Mexico Department of Transportation (NMDOT).

Oversize, Overweight and/or Overlength Truckloads Permit
The movement or operation of oversize, overweight and/or overlength vehicles on City streets requires an oversize, overweight and/or overlength truckloads permit issued by the City's DMD/CSD. The dimensions and weight of vehicles that require this permit are as defined in 1978 NMSA, Sections 66-7-401 through 66-7-416.

Plumbing and Electrical Permit
Plumbing and electrical permits are required to install, replace, or repair electrical, mechanical, plumbing fixtures or systems.

NOTE:
R = Review and Recommendation
D = Review and Decision
AD = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM or on the Planning webpage.

1. Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-4(B) of the IDO.
2. Neighborhood Meeting procedures are specified in Subsection 14-16-6-4(B) of the IDO.
<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Applicability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE</td>
<td></td>
</tr>
<tr>
<td>Private Use of Fire Hydrant Permit</td>
<td>Connections to fire hydrants at any location are prohibited without a permit or written permit from the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) except for City of Albuquerque street sweepers and street rollers and AFR vehicles. All other private and governmental users – federal, state, county, city and military – must have a permit. A designated permit allows the permit holder to use any of approximately 29 designated hydrants located within the City and County limits. A Special Permit is required for private use of other fire hydrants.</td>
</tr>
<tr>
<td>Public Swimming Pool Operating Permit</td>
<td>The design, construction, maintenance, and operation of public swimming pools require a Swimming Pool permit.</td>
</tr>
<tr>
<td>Public, Commercial, & Multi-Family Building Permit</td>
<td>All new construction requires a building permit and may also require other permits for electrical wiring, plumbing, mechanical and so forth. For residential development, check with the Building Safety Division of the City Planning Department (Building Safety) for appropriate procedures.</td>
</tr>
<tr>
<td>Relocation of Existing Building Permit</td>
<td>The relocation of an existing building requires the determination of necessary modifications to meet technical codes, a foundation permit, remodeling permit, and electrical, plumbing and mechanical permits, as appropriate.</td>
</tr>
<tr>
<td>Sewer Tapping Permit</td>
<td>A sewer tapping permit is required to tap into existing sewer lines.</td>
</tr>
<tr>
<td>Sidewalk, Drive Pad, and Curb and Gutter Permit</td>
<td>Any work within the City’s right-of-way requires a permit and designates who can conduct the work.</td>
</tr>
<tr>
<td>Sign Permit</td>
<td>A sign permit is required to erect a sign, unless specified otherwise in the IDO.</td>
</tr>
<tr>
<td>Solar Rights Permit</td>
<td>A solar rights permit is required to define and regulate the spatial and temporal limits of a property’s solar rights.</td>
</tr>
<tr>
<td>Surface Disturbance Permit</td>
<td>A surface disturbance permit is required for all jobs that will disturb or remove soil from an area larger than three-quarters (¾) of 1 acre or placement of soil on an area larger than three-quarters (¾) of 1 acre.</td>
</tr>
<tr>
<td>Wall or Fence Permit</td>
<td>A wall or fence permit is required to build a wall or fence, unless the IDO specifies otherwise.</td>
</tr>
<tr>
<td>Water Meter and Fire Line Application</td>
<td>A Water Meter and Fire Line Application is required for the installation of the public portion of the water service line, including the meter and box.</td>
</tr>
</tbody>
</table>

NOTE:

- **R** = Review and Recommendation
- **D** = Review and Decision
- **AD** = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM or on the Planning webpage.

1. Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-4(B) of the IDO.
2. Neighborhood Meeting procedures are specified in Subsection 14-16-6-4(6) of the IDO.
TABLE 2.1.1 Summary of Development Procedures

<table>
<thead>
<tr>
<th>Application / Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
<th>Prerequisites</th>
<th>Application Materials</th>
<th>Review / Decision Authority</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND USE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wireless Telecommunication</td>
<td>Facility Permit</td>
<td>Permit</td>
<td>Applications</td>
<td>Development Review Application Form W1</td>
<td>City Staff / Zoning Enforcement Officer D AD</td>
</tr>
<tr>
<td></td>
<td>A Wireless Telecommunication Facility (WTF) permit or waiver is required to comply with regulations for freestanding and architecturally integrated WTFs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The erection of new freestanding or attached WTFs as primary or accessory uses of land, including collocations of new facilities on existing WTF structures, requires a Wireless Telecommunications Permit.</td>
<td>Permit</td>
<td>Applications</td>
<td>Development Review Application Form W1</td>
<td>City Staff / Zoning Enforcement Officer D AD</td>
</tr>
<tr>
<td></td>
<td>Deviations from the WTF regulations applicable to the erection or installation of a WTF under the IDO must obtain a Wireless Telecommunications Facility Waiver.</td>
<td>Waiver</td>
<td>Applications</td>
<td>Development Review Application Form W2</td>
<td>City Staff / Zoning Enforcement Officer D AD</td>
</tr>
</tbody>
</table>

NOTE: “R” = Review and Recommendation “D” = Review and Decision “AD” = Appeal Decision

Each application will be required to follow the specific procedures required by the City for that type of application, as set forth in the IDO, in this DPM or on the Planning webpage.

1. Pre-Application Review Team (PRT) procedures are specified in Subsection 14-16-6-4(B) of the IDO.
2. Neighborhood Meeting procedures are specified in Subsection 14-16-6-4(C) of the IDO.
ARTICLE 2-2 SUBDIVISION OF LAND

The subdivision of land within the platting and planning jurisdiction of Albuquerque is generally controlled by the Albuquerque/Bernalillo County Comprehensive Plan and specifically regulated by the Integrated Development Ordinance (IDO). Application materials for the various phases of subdividing and procedures for subdividing non-compliant parcels are found in this section of the DPM.

Part 2-2(A) Governing Regulations

Subdivision standards are regulated by IDO Section 14-16-5-4. The General Procedures in IDO Section 14-16-6-4 and the application specific procedures in IDO Section 14-16-6-6 apply to all subdivision requests. DPM Part 2-2(C) outlines the procedures for parcels that are deemed non-compliant, while Section 2-2(B)(2) outlines the required application materials for all subdivision activities.

Part 2-2(B) Standard Subdivision Procedure

Section 2-2(B)(1) Applicability

All subdivisions of land into 2 or more parcels, building sites, tracts, or lots and all consolidations of 2 or more platted lots into a larger lot for development or redevelopment are governed by IDO Section 14-16-5-4.

Section 2-2(B)(2) Required Application Materials

2-2(B)(2)(i) Sketch Plat

The applicant shall submit materials for the Sketch Plat review to the Development Review Services Division of the City Planning Department (Development Review Services). See the Planning webpage for more details: http://www.cabq.gov/planning/boards-commissions/development-review-board/sketch-plat.

2-2(B)(2)(ii) Preliminary Plat

1. The applicant submits the materials listed on Form S1 or Form S2 to Development Review Services.
2. If the parcel to be subdivided (subject parcel) is a non-compliant parcel as defined in Section 2-2(C)(1) Applicability, the proposed location of any easements on the subject parcel necessary for any overhead or underground utilities serving any adjacent parcel that is also non-compliant, and the proposed location of any easements on the subject parcel necessary for access to and from any adjacent non-compliant parcel should be shown on the Preliminary Plat. (See Section 2-2(C)(2) Procedures.)
2-2(B)(2)(iii) Final Plat

The applicant shall submit the materials listed on the Form S1 or Form S2 to Development Review Services.

Part 2-2(C) Non-compliant Parcel Procedure

Section 2-2(C)(1) Applicability

Part 2-2(C) applies to any parcel that is the subject of a subdivision request and that meets any of the following conditions and is therefore deemed a non-compliant parcel:

1. The parcel was created by metes and bounds description or by plat prior to the effective date of the City’s Subdivision Ordinance (June 1983) or created after the effective date of the City’s Subdivision Ordinance without complying with its requirements.
2. The parcel shares a boundary with a non-compliant parcel.
3. The parcel was part of a larger parcel of land that included a non-compliant parcel.

It is the policy of the City of Albuquerque that where a parcel proposed to be subdivided is a non-compliant parcel, any adjacent non-compliant parcel be included as a part of the proposed subdivision.

Section 2-2(C)(2) Procedures

1. If the parcel proposed for subdivision (subject parcel) is a non-compliant parcel, Planning staff should familiarize the subdivider with the Non-compliant Parcel Procedure at the Pre-Application discussion.
2. The subdivider of a non-compliant parcel shall demonstrate at or prior to the DRB meeting that the subdivider has notified the owner of the adjacent non-compliant parcel by certified mail, return receipt requested, of the subdivider’s intent to subdivide and requesting the participation of the adjacent owner in the subdivision process, and that the adjacent owner has failed or refused to participate (without compensation from the owner of the subject parcel).
3. In the event that the subdivider has demonstrated compliance with Section 2-2(C)(2) above, the DRB shall proceed with the subdivision without the participation of the owner of the adjacent non-compliant parcel without including the adjacent non-compliant parcel as part of the platting process and without requiring the signature of the adjacent owner on the plat.
4. The proposed location of any easements on the subject parcel necessary for any overhead or underground utilities serving any adjacent non-compliant parcel, and the proposed location of any easements on any adjacent non-compliant parcel necessary for access to and from the subject parcel should be shown on the Preliminary Plat. Any adjacent non-compliant parcel shall be labeled “Not a Part” on the plat.
Part 2-2(D) Bulk Land Subdivision Criteria

Section 2-2(D)(1) Applicability

Part 2-2(D) applies requests for a bulk land subdivision of property that is primarily intended to facilitate transfer to intermediate land holders, not to create parcels available for development without further subdivision approvals.

Section 2-2(D)(2) Bulk Land Subdivision Criteria

To approve a bulk land subdivision, the DRB must find that all of the following conditions apply:
1. Parcels zoned for single family and/or townhouse use must be larger than 5 acres.
2. Parcels zoned for multi-family development or non-residential use must be larger than 40 acres.

Section 2-2(D)(3) Bulk Land Subdivision Procedure

Bulk land subdivision procedures are located in IDO Subsection 14-16-6-6(L).
Article 2-3 outlines the procedures for design development, approval, and construction of Infrastructure Improvements and City Capital Improvement Projects. The process is generalized to accommodate both Capital Improvement Projects (CIP) and private developer projects.

In general, infrastructure required for a private development project within public right-of-way shall be shown in the Design Review and Construction (DRC) plans. If an infrastructure list was generated at DRB, DRC plans shall be generated to show construction of items on the approved infrastructure list. Various types of procedures involving an Agreement between the private developer and the City include:

“Procedure A”
A procedure by which a developer constructs public infrastructure improvements that require a work order for projects that did not require an approved infrastructure list using a City-approved contractor of the developer’s own choice, typically as part of a site plan or platting action.

“Procedure B”
A procedure by which a developer constructs required public and/or private infrastructure improvements shown on an approved infrastructure list using a City-approved contractor of the developer’s choice; improvements are required as a result of a site plan or platting action that requires either financial guarantee or construction agreement prior to platting or site plan approval.

“Procedure C”
A procedure by which the City constructs public infrastructure improvements; these improvements may be wholly funded by the developer(s). Contract administration is by the City. Private funds must be received prior to contracting the work.

“Procedure C” (Modified)
A procedure by which the City constructs public infrastructure improvements; these improvements may be only partially funded by developer(s). These include deferred items (e.g. contributions for sidewalks, traffic signals, intersection improvements, etc.) and 50/50 contributions. No adjustments are made after the construction. Contract administration is by the City. Private funds must be received prior to contracting the work.

Part 2-3(A) Governing Regulations
Plans for infrastructure improvements must be prepared according to the ordinances and policies listed in the Infrastructure Improvements Governing Regulations Summary, found on the City Planning webpage. Plans must also follow policies, where applicable, from other government agencies and organizations including, but not limited to, Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Administration (OSHA), the New Mexico...
Part 2-3(B) Infrastructure Design Development Procedure

Section 2-3(B)(1) Applicability

Part 2-3(B) outlines the procedures for developing the design of infrastructure improvements and City Capital Improvement Projects.

Section 2-3(B)(2) Procedure

Prior to making a submittal to the DRC, the applicant shall coordinate with the DRC Chair to determine whether infrastructure to be constructed in a public right-of-way or public easement requires a full work order (which requires an IIA construction agreement), a non-IIA work order (i.e. a work order that does not require an IIA, only available to public entities, not private developers), an excavation and barricading permit, or an ABCWUA mini work order. The threshold for the infrastructure that is to be constructed by the work order process is posted on the City website. See Memorandum on DRC Jurisdiction.

A project may be determined to only require a ABCWUA mini work order if there are no water main or sewer line extensions involved in the project, and all that is required are utility connections to existing facilities within a street classified as either a major local or residential roadway. A connection that would normally require a tapping permit can be included in the ABCWUA mini work order process. In this case, the applicant shall coordinate with ABCWUA directly, and no formal DRC submittal shall be required.

2-3(B)(2)(i) Pre-design Conference

1. In cases when an applicant is unsure of infrastructure requirements or DRC process, the applicant may choose to request a Pre-design Conference. A Pre-design Conference allows the developer, consulting engineer, DRC members, and other City staff to discuss detailed design requirements, the consulting engineer's approach to implementing DRB infrastructure requirements and the subsequent design and review procedures.

2. To schedule a Pre-design Conference, the applicant submits all application materials indicated on the relevant DRC Submittal Requirements list and the relevant Infrastructure Improvement Agreements (IIA) to the DRC Coordinator.

3. Upon receiving the application, the DRC Coordinator shall do all of the following:
 a. Review application material for completeness. If insufficient, notify the developer of additional requirements.
 b. Schedule the Pre-design Conference for DRC meeting.
 c. Assign the project number, unless previously assigned.
 d. Start a project file.

4. Place complete submittals on the agenda for a DRC meeting held within 3 to 10 working days, depending upon project complexity, DRC workload, and schedule availability.
2-3(B)(2)(ii) Design Development
1. The consulting engineer prepares plans incorporating any required materials into the infrastructure design.
2. Construction Plans and Specifications must be prepared in accordance with current City of Albuquerque Standard Specifications for Public Works Construction (City Standard Specifications) unless otherwise approved by the DRC.
3. The format and content of plan sets shall follow Chapter 4 Construction Plan Standards.

2-3(B)(2)(iii) Preliminary Design Review (30, 60, or 90% Complete Plans) by DRC and Other City Offices

1. The applicant shall determine plan completion percentage for preliminary submittal based on complexity of project.
2. The applicant submits all required material listed on the relevant DRC Submittal Requirements list to the DRC for a preliminary design review.
3. Upon receiving the application, the DRC Coordinator shall do all of the following:
 a. Check for the completeness of submittal and notify applicant of any missing items, holding until submittal is complete or rejecting submittal, if appropriate.
 b. Update project file.
 c. Schedule a comment review meeting with DRC to present combined comments to the consulting engineer.
 d. Distribute the plan sets, transmittal letter, and other required material to appropriate City departments for review.
 e. Notify the consulting engineer of scheduled comment review meeting.
4. The DRC Chair shall do all of the following:
 a. Review plans for quality and content. If the submittal is unacceptable, identify areas of major concern and return the submittal to the consulting engineer for correction.
 b. Identify items to be distributed with plans to the necessary City Departments and government review agencies, noting any special distribution (e.g. AMAFCA, Parks and Recreation, Traffic Operations, etc.).
 c. Specify review time based on complexity of project and current staff workload, a minimum of 3 and typically a maximum of 14 working days between submittal and scheduled meeting.
5. A DRC comment review meeting shall be conducted as a forum to discuss the concerns submitted by DRC members and the various review agencies. The DRC’s comments will be documented briefly on the meeting minutes, and remaining comments will be documented as markups on the plans. Meeting minutes shall then be distributed to all DRC members and the consulting engineer.

2-3(B)(2)(iv) Incorporation of Comments and Preparation of Final Plans

Following the Preliminary Design Review, the consulting engineer must either incorporate the City review comments into the proposed final plans or propose acceptable alternatives.
2-3(B)(2)(v) Final Plans (90 to 100% Complete Plans) and Estimate Sheet of Infrastructure Improvements Review

1. The consulting engineer submits the materials listed on the relevant DRC Submittal Requirements list to the DRC Coordinator. The complete package of required submittals must be received prior to being scheduled for a DRC meeting.
2. Upon receiving the submittal, the DRC Coordinator shall verify its completeness.
3. If complete, DRC Coordinator and DRC Chair review the submittal in order to schedule the DRC meeting.
4. The DRC Coordinator shall schedule the DRC meeting within 3 to 14 working days of receipt of the completed submittal, depending upon project complexity and DRC workload.
5. After the DRC meeting is scheduled, the DRC Coordinator shall do all of the following:
 a. Distribute the plans, estimate, construction plan comments and/or marked-up plans to the DRC members for review, with notice of scheduling for DRC.
 b. Notify the consulting engineer of scheduled DRC meeting with final plans.
 c. If applicable, complete the request for Determination of Outstanding Pro-Rata Charges for Water & Sanitary Sewer from the ABCWUA.
6. The DRC Chair shall do all of the following:
 a. Review final plans for compliance with review comments.
 b. Conduct the DRC meeting as a forum for discussion of final review comments.
 c. Take notes and collect comments made by committee members. Comments should be made in written form but are usually provided on marked up plans.
 d. Document any remaining concerns and distribute meeting minutes to all DRC members and consulting engineer.
7. The DRC Chair shall verify that any necessary easements are recorded.

2-3(B)(2)(vi) Establishment of Pro-Rata

If the project includes public water and/or sanitary sewer work, pro-rata may be available for water and sewer transmission lines. Contact the ABCWUA for details about the process.

2-3(B)(2)(vii) Preparation of Plans and Estimate for Approval Signatures

1. ABCWUA approval of construction plans is contingent upon the ABCWUA approved Development Agreement, payment of outstanding pro-rata, and executed availability statement and serviceability letter.
2. The consulting engineer shall make any necessary final corrections on document(s).
3. Revised plans bearing the consulting engineer’s seal, signature, and date are to be submitted to the DRC Coordinator. The submittal shall include sets of prints if requested by the minutes of the final DRC meeting.
4. The consulting engineer uses the Estimate Sheet for Infrastructure Improvements to prepare an estimate of the quantities of materials for
the project. The Estimate Sheet of Infrastructure Improvements shall incorporate all public infrastructure to be built as part of the plan set.

2-3(B)(2)(viii) Final Approval of Plans and Estimate

1. Upon receiving the sealed plans, the DRC Coordinator verifies the completeness of submittal.
2. If a Signature Session is required per the DRC’s meeting notes, the DRC Coordinator schedules a DRC Signature Session meeting. Signature session occurs 3 to 14 working days between submittal and scheduled meeting as the workload permits. If a Signature Meeting is not required, the original plans are routed for DRC members’ signatures.
3. The DRC Chair verifies that the corrections requested by DRC were incorporated, if applicable.
4. After all signatures are affixed, the DRC Chair shall review the design package for completeness and sign Estimate Sheet of Infrastructure Improvements and original plans. The signed plans and estimate sheet are forwarded to the DRC Coordinator.
5. The approval is valid for a period of 1 year, after which resubmittal and approval of any revisions is required prior to issuance of a work order.
INFRASTRUCTURE DESIGN DEVELOPMENT

PRE-DESIGN PHASE
During this phase, all arrangements required to complete the construction contract between the developer and the contractor, or City and contractor, are identified.

1. **Pre-design Conference (optional)** are available for applicants who are unsure of infrastructure requirements or the DRC process.

DESIGN AND REVIEW PHASE
2. **Design Development.** The consulting engineer prepares Construction Plans and Specifications of the infrastructure design.
3. **Preliminary Work Order Submittal.** The applicant submits all required material listed on the Full Work Order Checklist or Non-IIA Work Order Process Checklist to the DRC for a preliminary design review.
4. **Preliminary Design Review.** A DRC Comment Review Meeting is conducted as a forum to discuss the project concerns from the DRC members and the various review agencies.
5. **Markups are returned to applicant.** The DRC’s concerns will be documented as markups on the plans, which will be distributed to the consulting engineer.
6. **Preparation of Final Plans.** The consulting engineer either incorporates the City review comments into the final plans or proposes acceptable alternatives.
7. **Final Plan Submittal.** The DRC’s concerns will be documented as markups on the plans, which will be distributed to the consulting engineer. The consulting engineer either incorporates the City review comments into the final plans or proposes acceptable alternatives. The consulting engineer uses the Estimate Sheet for Infrastructure Improvements to prepare an estimate of the quantities of materials needed for the project. The consulting engineer submits the materials listed on the relevant DRC Submittal Requirements list to the DRC Coordinator.
8. **DRC Final Plan Review.** DRC Meeting is held to collect final review comments from all applicable review bodies.
9. **Establishment of Pro-Rata.** If the project included water and/or sanitary sewer work, and it has been determined that pro-rata will be generated, the developer completes the Pro-Rata Statement requesting establishment of pro-rata.

APPROVAL / SIGNATURE PHASE
10. **Final Plan Prep / Estimate of Infrastructure Improvements.** The consulting engineer makes any necessary final corrections on the plans and the estimate for infrastructure improvements. Revised plans bearing Engineer’s seal, signature, and date are submitted to the DRC Coordinator.
11. **Signature Session.** If a Signature Session was required per the DRC’s meeting notes, a DRC Signature Session meeting is held to affix all signatures onto the original plans. Otherwise, plans are routed to obtain necessary signatures. Then the DRC Chair reviews and signs the Estimate Sheet of Infrastructure Improvements.

SUMMARY OF INFRASTRUCTURE DESIGN DEVELOPMENT

- **Pre-design Conference (optional)**
- **Design Development**
- **Preliminary Work Order Submittal**
- **Preliminary Design Review**
- **Markups Returned to Applicant**
- **Preparation of Final Plans / Estimates**
- **DRC Final Plan Review**
- **Signature Session**

Approval valid for 1 year
Part 2-3(C) Construction Agreements

Part 2-3(C) covers the required agreement between the City and the developer relating to the process by which the construction of the infrastructure will be financed and completed. Procedures A, B, and C relate directly to standard City forms of construction agreements for accomplishing infrastructure improvements.

“Procedure B” is used to construct infrastructure required by the DRB through an approved infrastructure list. A developer using a “Procedure B” agreement for construction of improvements may also elect to have the City construct such improvements via a DMD contract (“Procedure C”). This approach may require completion of both a “Procedure C” and a “Procedure B” agreement; however, since the developer can usually negotiate lower contract prices than the City receives in the public bid process used in “Procedure C,” it is unlikely that many developers will find this alternative attractive.

Standard deferral forms (Sidewalk Deferral Agreement) are available on the City website. The Sidewalk Deferral Agreement allows the developer to delay construction of sidewalks within a subdivision until lot development. Construction of deferred sidewalks must be financially guaranteed as provided in IDO Subsection 14-16-6-4(Q). The process outlined for “Procedure B” in this section also applies to Sidewalk Deferral Agreements.

In accordance with City requirements, the owner of a residential development may elect upon the approval of the City Engineer to choose the Alternative Method for Construction of Sidewalks. In such an event, the owner shall be responsible for construction of the sidewalks and shall also submit a nonrefundable payment to the City for 10% of the estimated construction cost of the sidewalks. The funds received shall be placed in a separate Capital Implementation Program activity in the Street Maintenance Program. The form for the Alternative Sidewalk is provided on the City website.

Summaries of steps for processing the various Infrastructure Improvements Agreements follow.

Section 2-3(C)(I) “Procedure A”

2-3(C)(I)(I) Applicability

“Procedure A” applies to the construction of infrastructure that requires a work order on existing public right-of-way or public easements for projects that did not require an approved infrastructure list.

2-3(C)(I)(II) Procedures

This section specifies the document and requirements needed to complete an Agreement to Construct Public Improvements by a City Contract.

1. The developer completes the Infrastructure Improvements Agreement (“Procedure A”).
 a. The date is to be left blank, as it is filled in by the City on the date of final signature.
b. The agreement shall state who will inspect, survey, and test the construction.

c. The agreement is to be signed by the developer, and the signature is to be notarized. If the developer is not the owner of the real estate, the developer must submit satisfactory evidence of authority to execute the Infrastructure Agreement and other related documents.

2. The original agreement shall be submitted to DRC staff, along with work order documents. The work order document process is outlined in the procedures in Part 2-3(D).

3. Upon receiving the agreement, the DRC staff will review its format and content. If acceptable, the agreement shall be forwarded to each of the following:
 a. The City Legal Department (City Legal) for review and approval.
 b. The City Engineer for signature and notarization.

4. The DRC Staff records the document at the County Clerk’s Office and files the original with the City Clerk.

5. The DRC staff distributes copies of the agreement to the City project file, the consultant, and the developer as part of the work order documents. (See Part 2-3(D)).

6. The signed agreement shall become part of the work order document set.

Section 2-3(C)(2) “Procedure B”

2-3(C)(2)(i) Applicability

“Procedure B” applies to construction of infrastructure that requires a work order on existing public right-of-way or public easements for projects that required an approved infrastructure list.

2-3(C)(2)(ii) Procedures

This section specifies the necessary procedures to complete an Infrastructure Improvements Agreement (IIA) required by the DRB. Because of the number of details to be addressed, initial submittal of an unsigned draft package for City staff review and comment is recommended.

2-3(C)(2)(ii)(a) Agreement Package

1. The developer completes the Infrastructure Improvements Agreement (“Procedure B”). The agreement is to be signed, and the signature is to be notarized.

2. The original agreement, along with the DRB approved infrastructure list is to be submitted to the DRC staff.

3. If a financial guarantee is required, an Irrevocable Letter of Credit, Escrow Letter, Infrastructure Improvements Bond, Loan Reserve, cashier’s check, or Municipal Lien are to be submitted to the DRC staff.

4. The financial guarantee shall provide that the City may demand payment from the financial guarantee issuer, commencing on the date of the construction completion deadline, and extending for a period of not less than 60 days thereafter.

5. The financial guarantee must be issued by any of the following:
 a. A federally insured financial institution.
 b. A surety licensed to do business in New Mexico.
 c. A title company authorized to do business in New Mexico.
6. A financial guarantee amount is calculated as 125% of the City’s estimated cost of uncompleted required infrastructure plus 10% of the City’s estimated cost of the completed work, including N.M. Gross Receipts tax, survey and inspection fees, and testing.

7. Financial guarantee reductions will be allowed for construction projects in excess of $150,000. Upon the completion of both one-third and two-thirds of the entire infrastructure work associated with the original financial guarantee, an applicant may submit an engineer’s certification that attests to the completion of the required work and a request to reduce the financial guarantee. All financial guarantee reductions shall be at the sole discretion of the City Engineer. Each reduction will release up to 90% of the City’s estimated cost of the completed and certified work required by the financial guarantee.

8. Upon receipt, the agreement package shall be screened by the DRC staff to verify that comments and required submittals have been incorporated. If acceptable, DRC staff forwards the package to each of the following:
 a. City Legal for review and approval.
 b. After City Legal has reviewed and approved, the City Engineer for signature and notarization.

9. The original agreement and Claim of Lien, if applicable, shall be recorded with the County Clerk and filed with the City Clerk.

10. Executed copies of the agreement are distributed to the City project file, consultant, and the developer.

11. The site plan and/or final plat approval will be withheld until the “Procedure B” Agreement is completed AND either a suitable financial guarantee is received by the City OR the required improvements are completed and accepted by the City.

12. If final plat is approved and recorded prior to work order issuance, the developer submits a copy of the recorded plat sheet(s) to the DRC Chair to be substituted for the Preliminary Plat Sheet in the construction drawing set. If construction is to be completed before the recording of the Plat, a copy of the approved Preliminary Plat shall remain in the construction plan set during construction.

13. The signed agreement shall become a part of the work order document set.

2-3(C)(2)(ii)(b) Revisions to Plat, Plans, or Agreement

1. Any significant revision to the plat, plat status, or the DRB infrastructure list after approval of construction plans and estimates, and after filing a “Procedure B” Agreement, will require filing an amendment. The amendment form documents the desire by the developer and the City to have the provisions of the original agreement apply to the identified revisions and provides for any necessary adjustment to the financial guarantee.

2. Any such plat and/or plan revisions must be approved by the DRB and/or DRC as appropriate. Minor revisions to the approved infrastructure list may be made on the infrastructure list with the approval of the developer, the DRC Chair, and the appropriate DRB members.

3. Any proposed amendments to a filed “Procedure B” Agreement must be approved by the City Engineer and City Legal. Depending upon the nature and impact of the revision, either an amendment to the original agreement will be filed or a completely revised agreement may be filed to supersede the original agreement.
4. When the developer amends the agreement to request final plat approval, and a final plat approval was not previously requested, and a work order has been issued, the financial guarantee amount will be calculated as 125% of the City’s estimated cost of uncompleted required infrastructure, plus 10% of the City’s estimated cost of the completed work, including N.M. gross receipts tax, survey and inspection fees, and testing.

2-3(C)(2)(ii)(c) Extension of Time to Complete Required Infrastructure Improvements Agreement (IIA)

1. The IDO and the IIA provide that required improvements shall be completed within 2 years of the execution of the IIA. Such period may be extended by the DRB. An extension is appropriate under the following conditions:
 a. The required infrastructure cannot be constructed until necessary publicly-funded improvements are constructed first.
 b. The required infrastructure will not be usable initially, and existing interim improvements are adequate for short-term needs, as determined on a case-by-case basis.
 c. No other development is adversely affected by the continued deferral of public improvements.
 d. The street pattern and development are such that only minimal need exists for immediate construction of sidewalks. A sidewalk deferral may be granted by the DRB. This deferral may be granted for a period of up to 4 years without an extension.

2. The DRB shall not approve extensions unless it finds all of the following, based upon the evidence presented at a public meeting:
 a. The extension would not be injurious to the public safety, health or welfare, or to adjacent property, the neighborhood or the community.
 b. The extension will not conflict significantly with the goals and provisions of any City, County, or AMAFCA adopted plan or policy, the IDO, or any other City ordinances.
 c. The extension will not hinder future planning, public right-of-way acquisition, or the financing of construction of public infrastructure improvements.

3. An application for an extension beyond the original 2-year period must be filed at the Planning Department for review by the DRB.

4. For all infrastructure other than temporarily deferred sidewalks, the DRB shall decide whether to approve a request for extension at a public meeting held not later than 30 days after the City has received completed application materials.

5. For requests involving temporarily deferred sidewalks, the DRB shall decide whether to approve the application at the next regularly scheduled meeting of the DRB after the City has received completed application materials.

6. The DRB shall review the extension request and any submitted supplemental materials. The DRB may request comments from other City departments, governmental agencies, or franchised utilities, as appropriate.

7. After the public meeting, the DRB Chair shall issue an official notice of decision recording the action taken by the DRB.

8. If approved, the developer shall submit all of the following materials to the DRC staff:
 a. The Extension Agreement.
 b. The DRB notice of decision.
 c. The Extended Financial Guarantee.
d. The County Clerk Recording Fees.

9. Upon receipt of the extension packet, the DRC staff shall review the format and content of the Extension Agreement. If acceptable, the package is forwarded to all of the following:
 a. City Legal for review and approval as to form.
 b. The City Engineer for signature and notarization.

10. The Extension Agreement shall be recorded with the County Clerk, and the financial guarantee shall be filed with the City Clerk.

11. DRC staff shall distribute executed copies to the developer and the project file.

Section 2-3(C)(3) “Procedure C”

2-3(C)(3)(i) Applicability

“Procedure C” applies to City construction of public infrastructure, typically through a contract with DMD, wholly or partially funded by the developer. This infrastructure may or may not be associated with a work order.

2-3(C)(3)(ii) Procedures

This section specifies the requirements needed to complete an Infrastructure Improvement Agreement (IIA) - Procedure C. This procedure is in response to a developer’s request to have the City contract for construction of the desired improvements. This process is also required if any City funds are used.

1. The developer should discuss the IIA with the DRC staff prior to its completion.

2. The agreement shall be completed as discussed with the DRC staff. The completed agreement is to be signed by the developer, and the signature shall be notarized.

3. The developer submits the agreement and City-approved estimated amount of construction cost to DRC staff.

4. Upon receipt, DRC staff reviews the format and content of the agreement package. If acceptable, the package is forwarded to all of the following:
 a. City Legal for review and approval.
 b. After City Legal reviews and approves the agreement package, the City Engineer for signature and notarization.

5. The Extension Agreement shall be recorded with the County Clerk and the original filed with the City Clerk.

6. DRC staff distributes executed copies of the agreement are to the project file, the City user department, City Engineer, consultant, and developer.

7. The signed agreement shall become a part of the work order document set.
SUBMITTAL PHASE

During this phase, all arrangements required to complete the construction contract between the developer and the contractor, or City and contractor, are identified.

1. **Agreement Competition.** The developer completes the Construction Agreement pertaining to the proposed improvements: Agreement to Construct Public Improvements (A), Public and/or Private Infrastructure Improvements (B), or Public Improvements by City Contract (C). The specifics for completing Agreements A, B, or C are outlined in Article 2-4.

2. **Signature & Notarization.** The developer signs the agreement and gets the signature notarized.

3. **Agreement Package Submittal.** The developer submits the original copy of the agreement and all required supplemental materials to the project administrator.

REVIEW / APPROVAL PHASE

4. **Submittal Screening.** The project administrator reviews the format and content of the agreement.

5. **Agency Distribution.** Once the agreement has been reviewed, the project administrator forwards the agreement to City Legal for review and approval and then the City Engineer for review, approval, and signature.

6. **Agreement Recording.** Once all required signatures are obtained, the project administrator will record the agreement with the County Clerk and file the original with the City Clerk.

7. **Agreement Filing.** The DRC staff records the document with the County Clerk and files the original with the City Clerk.

8. **Distribution of Executed Copies.** The DRC staff distributes executed copies of Agreement to the City project file, the consultant, and the developer.

9. **Site Plan / Plat Approval.** Site plan and/or final plat approval will be withheld until the “Procedure A” agreement is completed AND either a suitable financial guarantee is received by the City OR the required improvements are completed and accepted by the City.

10. **Incorporated into Work Order Documents.** The signed agreement becomes part of the work order document set.
Part 2-3(D) Work Order

Part 2-3(D) covers the requirements for obtaining the City Engineer’s authorization to construct infrastructure improvements and are required for the construction of all public infrastructure that meets the threshold for a work order on the City website. (See Memorandum on DRC Jurisdiction.) Documentation bearing the City Engineer’s authorization is required to construct infrastructure improvements.

Section 2-3(D)(1) Applicability

Work orders bearing the City Engineer’s authorization are required for the construction of all public infrastructure.

Section 2-3(D)(2) Procedures

Section 2-3(D)(2) specifies the documentation and procedures required for the issuance of a work order.

2-3(D)(2)(i) Contract Documentation

1. The developer shall complete and submit all materials listed on the relevant DRC Submittal Requirements list to the DRC staff.
 a. Upon receiving the contract documentation, the DRC staff verifies that the scope of work on the contract is the same as shown on DRC approved Estimate Sheet of Infrastructure Improvements and plan set. If correct, the agreement package is forwarded to City Legal for review and approval.
 b. When documentation has been approved by City Legal, the DRC staff prepares the Work Order Close-out Checklist and calculates the amount of engineering fees due.

2-3(D)(2)(ii) Payment of Fees

1. Engineering fees will be calculated based on services provided by the City, per the approved agreement.
2. The DRC staff shall contact the developer and/or consultant to submit balance of engineering, recording, restoration, or excavation fees as applicable and to pay any outstanding ABCWUA pro-rata.
3. The developer pays all of the following:
 a. Any outstanding pro-rata charges to ABCWUA.
 b. The required amount for engineering and recording, restoration, or excavation fees as applicable to the City.

2-3(D)(2)(iii) Preparation of Work Order

1. The DRC Chair confirms that all required easements and permits have been obtained and included with work order documents.
2. If accurate, the DRC staff shall do all of the following:
 a. Sign the Estimate Sheet of Infrastructure Improvements indicating that fees have been received, contract documentation is complete, and the project is ready for issuance of the work order.
 b. Forward the original plans to City Engineer for review and approval.
c. Make the required number of full-size and half-size copies of plans and physical and PDF copies of the work order package for distribution.
d. Make any extra prints or copy plans that have been requested by developer or consulting engineer (to be billed directly to requester).

3. Upon receipt, the DRC shall do all of the following:
a. Assign a Construction Engineer, who assigns a Construction Inspector.
b. Notify the contractor to pick up the work order package.

2-3(D)(2)(iv) Permit(s) Attainment

1. The contractor obtains all required permits noted on the Work Order Close-out Checklist and the Estimate Sheet of Infrastructure Improvements. All required permits must be acquired before release of the work order.
2. Once the permits are obtained, the DRC Coordinator schedules a Pre-construction Conference and distributes the work order package.

2-3(D)(2)(v) Pre-construction Conference

A Pre-construction Conference is held to discuss the project schedule and any potential problems that may arise. The Pre-construction Conference and the arrangements to hire a contractor for surveying/staking described below may be undertaken in the order that the contractor chooses. Both must be accomplished prior to the construction phase.
1. The consulting engineer, the contractor, the surveyor, the Testing Lab, the assigned Construction Engineer, the Construction Inspector, and an Albuquerque Bernalillo County Water Utility Authority (ABCWUA) representative are required to participate in the Pre-construction Conference.
2. Other City departments, the City Engineer, the ABCWUA, any other applicable government agencies, and private utilities may participate as appropriate.

2-3(D)(2)(vi) Surveying/Staking

1. Survey/staking arrangements may be arranged prior to or after the Pre-construction Conference.
2. The Contractor has the survey/staking work done by the party specified in the agreement.
3. After surveying/staking is complete, the surveyor submits the construction staking notes/cut sheets to the party responsible for inspection of the project, as identified in the agreement.
4. The Inspection Agency specified in the agreement shall review the construction staking notes/cut sheets for apparent compliance with the approved construction plans. This review is not intended to relieve the surveyor of the responsibility to properly lay out and stake the work shown on the plans.
5. Once the review is completed, the Inspection Agency notifies the contractor that the survey notes/cut sheets have been reviewed.
 a. If errors or deficiencies are found in the surveyor’s submittal, the surveyor is notified by the Inspection Agency to make necessary corrections and the contractor is advised not to begin construction until necessary corrections are made.
b. If found acceptable, the contractor is notified that construction operations may proceed. If the inspection agency has not responded within 24 hours, the contractor may proceed at his/her own risk.

6. The contractor shall commence work on any portion of the project only after the surveyor’s submittal for that portion is received and approved by the Inspection Agency.

2-3(D)(2)(vii) Construction Activities

1. The following are examples of construction activities, but they are not necessarily all inclusive. Technical construction and contract items and more detailed responsibilities are contained in the City Standard Specifications and any other applicable governmental agency standards.
 a. Scheduling (by the contractor) trial water shut-offs through the ABCWUA.
 b. Scheduling (by the contractor) the various inspections of completed work with the Inspector, and/or submitting shop drawings and material samples to Construction Engineer for review and approval.
 i On projects inspected by the City, the City Inspector verifies the materials, workmanship and conformance to plans and specifications throughout the construction phase.
 ii On projects inspected by a consulting engineer, the consulting engineer will submit to the DRC all test results and daily inspection reports on a weekly basis.

2. Once a set of plans have been approved for construction, anyone desiring additional prints may obtain a PDF of the plans from the DRC. Drawings may only be checked out for printing by reproduction firms or others who are authorized by the City Engineer.

3. Plan revisions made by the consulting engineer require review/approval by City staff prior to their construction. (See Section 2-3(D)(2)(viii).)

4. Field changes must be approved, either by the City Engineer, DRC, DMD/CSD, and/or the ABCWUA (as applicable) prior to their construction. The approving entities, in consultation with the developer and/or consulting engineer who prepared the plans, determine whether the change shall require the completion of Section 2-3(D)(2)(viii). If the change does not follow the original design intent, the original design engineer (or his/her designee) shall be the one to propose the field change and submit any necessary paperwork.

2-3(D)(2)(viii) Change Order(s) – Plan Revisions During Construction

Due to the impact on construction cost and final product, plan revisions made after work order issuance must be reviewed and approved by City staff, the developer, the contractor, and representatives of other government agencies, as applicable.

1. For private development projects, the change order process is summarized below:
 a. The consulting engineer (or party proposing to make revisions) shall make a request to DRC for permission to check out and revise the original drawings and state the scope and purpose for changes.
 b. Upon completion of revision, the consulting engineer shall submit the revised drawings along with an electronic copy to the DRC Coordinator, along with a revised Estimate Sheet of Infrastructure Improvements.
c. Upon receipt, the DRC Coordinator shall process the revisions for review and approval. All revisions will be distributed to DRC reviewers for acceptance.

d. If accepted, the DRC Coordinator notifies the consulting engineer that the revised design is approved.

e. After revised design is approved, the developer shall do all of the following:
 i. Submit a copy of Change Order Form, signed by contractor, to the DRC Coordinator.
 ii. Submit the Consent of Surety (warranty bond) to any increase in contract amount to the DRC.
 iii. Pay any additional engineering fees or defers until project close-out with concurrence of the DRC Chair.

f. The DRC Coordinator secures the approval of the DRC Chair on revised Estimate Sheet of Infrastructure Improvements, including revised permit fees, Change Order Form, and plans. If applicable, any additional fees are collected, and the consent of surety is routed to City Legal for review and approval.

g. All necessary prints are made, and revisions are distributed, similar to the Work Order Distribution.

h. To follow-up, the contractor obtains any additional required permits and picks up work order revisions from the DRC.

2. For Capital Improvement Projects (CIPs), greater detail is provided in the Department of Municipal Development’s (DMD’s) document Change Order Request (COR) Pre-Approval Process, summarized below:

 a. If project includes federal funding, the normal pre-approval process through the NMDOT Construction Oversight Engineer should take place prior to submitting COR to DMD.

 b. Request change order pre-approval by submitting a written request to DMD’s Construction Services Division (DMD/CSD), including the City project number, project name, the current project estimated cost, reason for the COR, proposed cost for the COR, and the proposed funding information (e.g. activity number). If the project is federally funded, include its approval or disapproval. Include any e-mail correspondence or the future custom pre-approval report with the request.

 c. Pre-approval may be accomplished initially via e-mail correspondence. This is an interim measure until a custom web-based interface is built to handle the pre-approval requests.

 d. Once pre-approval is obtained, the City project manager will provide written approval to the contractor to proceed with the change order.

2-3(D)(2)(ix) Pre-Final Inspection

1. The Inspector, consulting engineer, and the contractor conduct a pre-final inspection to determine if the work is ready for final inspection.

 a. If the project is ready for final inspection for a capital improvements project, the DMD/CSD Construction Engineer notifies all involved parties. For private development projects, the consulting engineer notifies all involved parties.

 b. Otherwise, if the project is not ready for final inspection, the contractor must complete necessary work prior to scheduling final inspection.
2-3(D)(2)(x) ABCWUA Final Inspection

1. The Inspector completes pre-final inspection and recommends final inspection to the Construction Engineer. (See Section 2-3(D)(2)(ix).)

2. A final inspection is scheduled with the contractor, consulting engineer, the developer, all City staff concerned with the project, and other government agencies, as applicable.

3. At final inspection, a list of discrepancies (i.e. punch list) is prepared by the consulting engineer (for private development projects) or DMD/CSD (for CIPs), which is given to the contractor for correction. A copy is sent to the developer, the consulting engineer, and City staff concerned with the project.

4. A markup of As-built plans are required by the final inspection meeting for private development projects.

5. The contractor shall correct all discrepancies (i.e. punch list items). When the work is complete, the contractor notifies the Inspector(s) that the work is ready for verification.

6. The Inspector verifies that discrepancies are corrected.

7. The contractor sends the Inspector final quantities sheet and invoices.

2-3(D)(2)(xi) Completion of As-built Plans

1. The Engineer of Record is responsible for checking out and correcting original drawings to as-built conditions.

2. As-built drawings and data must be furnished to the Construction Engineer (for private development), or DMD/CSD (for Capital Improvement Projects) prior to the final project close-out. Criteria for As-built drawings and Engineer Certification are covered in Chapter 4 Construction Plan Standards.

3. Any approved change orders and/or design revisions shall be reflected on As-built drawings.

4. As-builts must be certified by an engineer or surveyor licensed by the State of N.M. This certification shall state that the project is in substantial compliance with the approved Grading and Drainage Plan.

5. The engineer or surveyor shall also declare the change in grade at the property line. Substantial changes in grade may require additional review by the DRB and/or the original approving bodies.

6. As-built drawings must also bear the Surveyor’s Certificate, signed by a surveyor licensed by the State of N.M.

7. Upon approval, the Construction Engineer or DMD/CSD signs As-built drawings to indicate concurrence with information shown.
 a. The As-built drawings are indexed into DMD Maps and Records Image Repository. Then, the process is initiated to update facility maps.
 b. If water and/or sanitary sewer improvements were constructed, a copy of the As-built drawings are sent to ABCWUA by the Construction Engineer. (See Section 2-3(D)(2)(xii) below.)

2-3(D)(2)(xii) Acceptance by the ABCWUA

1. ABCWUA shall receive a Certification of Substantial Compliance from the engineer of record and a ABCWUA closeout package for the water and/or sanitary sewer infrastructure.

2. If acceptable to the ABCWUA, the ABCWUA will issue a Letter of Conditional Project Acceptance and will accept and assume ownership and maintenance responsibilities for the facilities and can then provide
service to the subject development. It is to be noted that once the ABCWUA accepts the infrastructure, it will be booked as an ABCWUA asset.

3. The ABCWUA’s acceptance of the facilities herein is expressly conditioned upon final acceptance of the project by the City. The ABCWUA’s conditional acceptance does not relieve the developer of any obligation or cost that may be required by the City Engineer as a final condition of project approval, including, but not limited to, any additional obligation or cost related to sanitary sewer and/or water infrastructure. The contractor’s 1-year warranty period will begin from the date of the City Engineer’s final acceptance of the project.

4. Once the ABCWUA has accepted the infrastructure, the developer may apply to the ABCWUA’s New Services Section for installation of water meters.

5. The New Services Section will schedule an installation of the meters after payment of required fees.

2-3(D)(2)(xiii) Certificate of Completion and Acceptance

1. For Capital Improvement Projects, refer to Section 10.7 Post Construction of DMD’s Project Manager Handbook.

2. For private development projects, all of the following steps are required:
 a. The completed package shall be forwarded to the Construction Engineer. For requirements, refer to Work Order Close-out Checklist on the City website.

 b. After receiving the final quantities sheet and invoices from the contractor, the Inspecting Agency prepares a Final Acceptance Recommendation. If an Infrastructure Improvements Agreement – Public and/or Private (Procedure B) was completed for the project, the documentation shall be accepted by the City Surveyor, and the Hydrology Section of the City Planning Department Development Review Services Division shall review and decide whether to approve the Drainage Certification and Letter of Map Revision (LOMR).

 c. The DRC shall determine, based upon actual construction cost, if additional engineering fees are required and verify with the Construction Engineer that the project can be accepted.

 d. The developer pays any required additional engineering fees.

 e. When all fees are paid, the DRC Coordinator forwards the original work order package to the Construction Engineer for recommendation of final acceptance.

 f. The DRC staff processes the Certification of Completion letter, the release of any applicable Agreements, and any remaining financial guarantee or liens and forwards them to the City Engineer. The original financial guarantee is returned to the issuing financial institution or agency.

 i. If any of the improvements are to be included in a Public Improvement District (PID) or a Tax Increment Development District (TIDD), the City first issues a Letter of Work Order Completion that confirms that the improvements are complete and that the City is willing to accept the improvements after acceptance from the PID or TIDD board.

 ii. Then the developer conveys the improvements to the PID or TIDD board, which reviews the proposed improvements. If the board accepts the improvements, the board shall notify the City.

 iii. The City then issues a Certification of Completion and Acceptance to the developer.
9. After all signatures are obtained, the DRC staff records releases with the County Clerk, files all originals with the City Clerk, sends copies of the documents to the developer and consulting engineer, and sends the Certificate of Completion all applicable parties.

2-3(D)(2)(xiv) Warranty for Construction

1. Prior to the expiration of the 1-year warranty period, a notification of the expiration of the warranty shall be forwarded to all applicable parties.
2. A City inspection of the construction shall take place before the expiration of the warranty period.
3. A punch list of any deficiencies shall be sent to the contractor for correction prior to the warranty expiration date. If the contractor fails to correct deficiencies, the City reserves the right to call on the Performance and Warranty Bond, the Labor and Material Bond, or other legal recourse as necessary.
SUMMARY OF WORK ORDERS

WORK ORDERS

PRE-CONSTRUCTION PHASE

In this phase, the number and type of specific permits required for the project will be identified by the Building Official. Separate, appropriate permits must be obtained from the Building Official for each building, structure, or building service.

1. **Contract Document.** The developer shall complete and submit all materials listed on the Work Order Checklist to the DRC staff.

2. **Submittal Screening.** The DRC staff verifies that the scope of work on the contract is same as shown on DRC approved Estimate Sheet of Infrastructure Improvements and plan set.

3. **Payment of Fees.** The developer pays any outstanding pro-rata charges to ABCWUA and the required amount for engineering and recording, restoration, or excavation fees to the City, as applicable.

4. **Preparation of Work Order.** The DRC confirms that all required easements and permits have been obtained, signs the Estimate Sheet of Infrastructure Improvements indicating that the contract documentation is complete and the project is ready for issuance of work order, and forwards the packet to the City Engineer for review and approval. Then a Construction Engineer and Construction Inspector are assigned.

5. **Permit Attainment.** The contractor obtains all required permits noted on the Work Order Close-out Checklist and the Estimate Sheet of Infrastructure Improvements.

6. **Surveying/Staking Requested.** The contractor requests the survey/staking work to be done by the party specified in the agreement.

7. **Pre-construction Conference** is held to discuss the project schedule and any potential problems that may arise. Once the Pre-construction Conference has occurred, the construction phase may begin.

CONSTRUCTION PHASE

8. **Surveying / Staking Activities.** Surveying/staking conducted by party specified in agreement. Once complete, the surveyor submits the construction staking notes/cut sheets to the party responsible for inspection of the project, as identified in the agreement.

9. **Surveying / Staking Inspection.** The Inspection Agency specified in the agreement reviews the construction staking notes/cut sheets for compliance with the approved construction plans. If acceptable, the contractor is notified that construction operations may proceed.

10. **Construction Activities.** Construction occurs per the approved plans. Field changes must be approved by the City Engineer, DRC, DMD/CSD, and/or the ABCWUA prior to their construction.

11. **Change Orders.** Plan revisions made after issuance of the work order must be reviewed and approved by City staff, the developer, the contractor, and representatives of other government agencies, as applicable.
SUMMARY OF WORK ORDERS CONTINUED

1. Change Order(s). The consulting engineer submits the revised drawings indicating the proposed field changes to the DRC or DMD, as applicable.

2. Change Order(s) Review. The City Engineer, DRC, DMD/CSD, and ABCWUA, or the DMD, will review change order requests and provide written approval to the applicant.

3. Pre-Final Inspection. The Inspector, consulting engineer, and the contractor conduct a pre-final inspection to determine if the work is ready for final inspection. If project is ready for final inspection, all involved parties are notified.

4. Punch List. If the project is not ready for final inspection, the contractor will receive a list of discrepancies that must completed prior to scheduling final inspection.

5. Final Inspection. A final inspection occurs with the contractor, consulting engineer, the developer, all City staff concerned with the project, and other government agencies, as applicable to ensure that the project was constructed as approved.

6. Punch List. At final inspection, a list of discrepancies (i.e. punch list) is prepared by the consulting engineer or DMD/CSD and given to the contractor for correction. The contractor must correct all discrepancies and notify the Inspector(s) that the work is ready for verification.

7. Completion of As-built Plans. As-built drawings and data must be furnished to the Construction Engineer (private development), or DMD/CSD (Capital Improvement Projects) prior to the final project close-out. Criteria for As-built drawings and Engineer Certification are covered in Chapter 4 Construction Plan Standards.

POST-CONSTRUCTION PHASE

8. ABCWUAAcceptance. The ABCWUA receives a Certification of Substantial Compliance from the engineer of record and a ABCWUA closeout package for the water and/or sanitary sewer infrastructure. If acceptable to the ABCWUA, the ABCWUA will issue a Letter of Conditional Project Acceptance and will accept and assume ownership and maintenance responsibilities for the facilities.

9. Meter Installation Request. Once the ABCWUA has accepted the infrastructure, the developer may apply to the ABCWUA's New Services Section for installation of water meters.

10. Meter Installation. The New Services Section will schedule an installation of the meters after payment of required fees.

11. Completion Package Distributed. For Capital Improvement Projects, refer to Section 10.7 Post Construction of DMD’s Project Manager Handbook. For private development, the completed package shall be forwarded to the Construction Engineer and the Inspection Agency.

12. Change Order(s) requested for plan revisions

13. Change Order Review by the DRC or DMD

14. Pre-Final Inspection to determine if the work is ready for final inspection

15. Punch List forwarded to Contractor

16. Final Inspection

17. Punch List forwarded to Contractor

18. Final Inspection

19. Punch List

20. Completion of As-Built Plans

21. Completion Package Distributed

continued from previous page

continued on following page
Final Acceptance Recommendation Prepared. After receiving the final quantities sheet and invoices from the contractor, the Inspecting Agency prepares a Final Acceptance Recommendation.

Payment of Fees. The DRC shall determine, based on actual construction cost, if additional engineering fees are required. The developer pays any required additional engineering fees.

Completion Package Review/Approval. When all fees are paid, the DRC Coordinator forwards the original work order package to the Construction Engineer for Recommendation of Final Acceptance. The DRC staff processes the Certification of Completion letter, the release of any applicable agreements, and any remaining financial guarantee or liens and forwards them to the City Engineer. The original financial guarantee is returned to the issuing financial institution or agency. The applicable signatures needed to close out the package are obtained.

Release Recorded/Filed. After all signatures are obtained, the DRC staff records releases with the County Clerk and files all originals with the City Clerk.

Certificate of Completion Issued. A copy of the Certificate of Completion is sent to all applicable parties.

Construction Warranty Card Issued. Prior to the expiration of the 1-year warranty period, a notification of the expiration of the warranty shall be forwarded to all applicable parties. A City inspection of the construction takes place before the expiration of the warranty period, and a punch list of any deficiencies shall be sent to the contractor for correction prior to the warranty expiration date.
ARTICLE 2-4 PRIVATE INFRASTRUCTURE IMPROVEMENTS

Article 2-4 outlines the procedures for design development, approval, and construction of private infrastructure improvements. Since many of the procedures are the same as those in *Article 2-3*, those procedures are referenced here for brevity, rather than being duplicated.

Part 2-4(A) Applicability

This section applies to private infrastructure improvements (e.g., a series of private roads within a subdivision) located in private ways or in easements and maintained by private entities, such as homeowners associations. If public infrastructure improvements are to be located in a private way, an easement must be provided. Public infrastructure improvements in private ways must be designed and constructed according to procedures described in *Article 2-3*.

Approval to design and construct private infrastructure improvements depends on the determination of the DRB that private ways can adequately serve all identified transportation, utility, and storm drainage requirements. The City requires that the City Traffic Engineer approve the creation of private ways before final approval by the Planning Director. The Traffic Engineer’s approval is based on the reasonable likelihood that the street will always function as a local street. The DRB may require easements in private ways for public utilities before granting approval. Prior to plat approval, the DRB will also require the developer to either construct private infrastructure or post a financial guarantee to ensure that all required infrastructure is constructed.

The City generally will not accept private infrastructure improvements for ownership or maintenance. In the event that the owners/maintainers of private facilities decide at a later date that they would like to dedicate those facilities to the City for ownership and maintenance, the terms and conditions of that dedication and the affected facilities will be subject to City staff review and approval. Due to the unusual nature and their varying circumstances, a standardized procedure does not exist. Items that may be required include: dedication of right-of-way, compliance with appropriate City standards, a 1-year warranty from date of acceptance, reproducible As-built drawings certified by an engineer registered in the State of New Mexico. Contact the DRC Chair for further advice.

Part 2-4(B) Governing Regulations

Governing regulations are those listed on the [Infrastructure Improvements Governing Regulations Summary](#), plus the most recent edition of the [Uniform Plumbing Code](#).
Part 2-4(C) Private Facilities in Public Right-of-Way

Privately owned and maintained facilities proposed to be built within public rights-of-way or easements are not covered by this section. An overview of potential occurrences and appropriate procedures defined elsewhere in the DPM follows.

1. PRIVATE DRAINAGE FACILITIES IN PUBLIC RIGHT-OF-WAY (See DPM Chapter 6 Drainage, Flood Control, and Erosion Control)
 This process applies to privately owned and maintained drainage outfall facilities.

2. REAL PROPERTY ENCROACHMENT AGREEMENT AND COVENANTS UPON REAL ESTATE (See Part 2-7(E) Encroachment Agreement (Approval to Place Private Infrastructure in a Public Easement)
 This process is designed primarily for installation of private facilities or structures such as walls, fences, or carports on public right-of-way or easements for public infrastructure. Note that similar requirements exist with private utility companies for construction on their easements or right-of-way.

3. AGREEMENT AND COVENANT (Contact Development Review Services)
 Such improvements are to be constructed and maintained by the licensee. This license is binding upon the land of the licensee for which the improvements are constructed. The Agreement and Covenant may be amended to suit other improvements or conditions as approved by the City Engineer.

Part 2-4(D) Procedural Differences

Section 2-4(D)(1) Private Infrastructure Design Development

1. The developer must engage a professional engineer registered in the State of New Mexico to design private infrastructure improvements to ensure that minimum requirements will be met and subsequently constructed. The consulting engineer must adhere to minimum standards for paving, water, sanitary sewer, and storm drainage, as described in the DPM. All of the following items must meet requirements:
 a. Adequate street width and turnaround capacity to accommodate emergency and refuse vehicles.
 b. Adequate number and type of water valves, sewer manholes, and water loop lines.
 c. Developer’s proposal for management of external storm flows coming onto the property and internal flows discharged from the property.
 d. Adequate size of water lines to serve an adequate number of fire hydrants for the subdivision or development.

2. Procedures and plan formats for design of private infrastructure improvements are the same as defined in Article 2-3 for public infrastructure improvements, except as follows:
a. The Application for Design and Construction of Infrastructure Improvements must be accompanied by a Private Infrastructure Supplement to Application.
b. Letter of Instruction for “Procedure A” is replaced by Letter of Instruction for Private Infrastructure.

Section 2-4(D)(2) Construction of Private Infrastructure

All private infrastructure improvements must be inspected under the direction of a professional engineer registered in the State of New Mexico and certified complete in accordance with approved plans and specifications. Such certification shall also include verification of inspection and approval by the Building Safety Division of the City Planning Department (Building Safety) for compliance with applicable building codes. (See Article 14-1 Uniform Administrative Code of ROA 1994 for details.)

2-4(D)(2)(i) Consulting Engineer Inspection

1. Construction permits for the work on private property must be obtained from the Planning Department.
2. The consulting engineer must verify that the contractor requests and obtains necessary inspections and approvals during the course of the construction.
3. Upon satisfactory completion of the private infrastructure improvements the consulting engineer shall submit to the City Engineer all of the following:
 a. A statement that he/she is currently a Professional Engineer Registered in the State of New Mexico.
 b. Certification that the described improvements were inspected under his/her direction and constructed in accordance with the approved plans and specs.
 c. Final tabulation of quantities with explanation of overruns and underruns (See Article 2-1 Determining the Appropriate Procedure).
 d. Material test data.
 e. Reproducible As-built drawings (may amend approved originals retained by Engineering Design Section).
 f. Certification that the finished grade is in substantial compliance with the approved grading and drainage plans.
4. Upon review and approval of constructed improvements and certification by consulting engineer, the City Engineer will issue a Certificate of Completion to the developer. The format is similar to Certificate of Completion and Acceptance (Subsection 2-3(D)(2)(xiii) Certificate of Completion and Acceptance).
5. Ownership and maintenance of private infrastructure remains the responsibility of the developer, Homeowners’ Association, or individual lot owner(s) as indicated on the plat.
ARTICLE 2-5 COMMERCIAL, PUBLIC, AND MULTI-FAMILY BUILDING PERMITS

The material in this section applies to the construction process regulated by local ordinances and policies for new commercial, public, and multi-family buildings or alterations to those structures.

Building permits relating to single-family, homeowner construction projects can be found through the Homeowners How-to guide on the Planning Department webpage.

Part 2-5(A) Applicability

Article 2-5 applies to the proper permitting (e.g. Building Permits) for the construction process of new public, commercial and multi-family buildings. A building permit authorizes a property owner or their designated representative to retain a licensed contractor for construction or alteration of a specific building. The permit implies that plans have been reviewed and approved to ensure that the necessary requirements for the protection of public safety and the proper use of land have been met to the best knowledge of the reviewers. Specific permits and additional steps are required depending on the nature and complexity of the project.

Specific permits and additional steps are required depending on the nature and complexity of the project. The property owner or designated representative must engage the services of a registered architect and/or registered professional engineer licensed to practice in the State of New Mexico to prepare and seal all plans and specifications. The information included in this section is directed to the design professional. The term “applicant” as used in this chapter refers to the owner, the design professional and/or licensed contractor.

Part 2-5(B) Governing Regulations

Plans and specifications must be prepared according to the ordinances and policies listed in the Public, Commercial and Multi-Family Building Permit Governing Regulations Summary.

Part 2-5(C) Procedure

Section 2-5(C)(1) Preliminary Plan Check Services

1. Preliminary plan check services are available to the design professional for the purpose of reviewing the requirements of the Albuquerque codes and ordinances. Specifically, the consultation will resolve any questions concerning the interpretation and coordination of basic design criteria prior to final plan submittal for plan check.

2. Preliminary plan checks are not mandatory. Applicants who choose to schedule additional plan check services will be charged a minimal service fee.

PRE-DESIGN PHASE

During this phase the architect/engineer must know state and local regulations, design criteria, and standards relevant to the specific project. In addition, water and sanitary sewer service availability should be verified, and a pre-design meeting should be held with the Hydrology Section. Separate, appropriate permits must be obtained from Building Safety for each building, structure or building service. In this phase, the number and type of specific permits required for the project will be identified by the Building Official.
All projects require a general building permit and separate electrical, plumbing and mechanical permits. Other permits may include but are not limited to:
- Alteration (Remodel)
- Barricade
- Curb Cut
- Demolition (Removal)
- Flood Hazard Certificate
- Foundation Only
- Repair
- Sign
- Swimming Pool
- Topsoil Disturbance
- Walls, Fences, Retaining Walls

3. The applicant must be prepared with basic information about City codes and ordinances and not be dependent on the Building Official for this information.

Section 2-5(C)(2) Plan Preparation

Once the anticipated use and size of any commercial or multi-family building is determined but prior to preparing final drawings, the applicant should contact the following agencies to resolve any unclear matters:

1. **Code Enforcement Division** to verify that the intended use is allowable in that zone. Discuss the particular applicable requirements for any of the following:
 a. Height (including solar access information).
 b. Setback.
 c. Landscaping.
 d. Required parking - number of spaces.
 e. Stationary railroad cars.
 f. Airport Protection Overlay zone (height regulation).
 g. Conformance with applicable site plans or any conditional use/variance approvals.
 h. Special exceptions.
 i. Overlay zones.
 j. Plat.

2. **City Solid Waste Department** to identify the necessary requirements for analysis of refuse needs.
 a. Determine necessary number, type, and location of refuse enclosures.
 b. Determine access needs for collection.

3. **ABCWUA** to verify water and sanitary sewer services availability.
 a. Obtain availability statement prior to issuance of building permit.
 b. Determine industrial pre-treatment requirement.

4. **Transportation Development Section** to determine applicable requirements for the preparation of a traffic site plan (see Chapter 7, Transportation Design), including all of the following:
 a. The location and number of curb cuts.
 b. The location of sidewalks.
 c. Bus stops, turn bays, and median cuts.
 d. Parking layout and circulation.
 e. ADA and PROWAG requirements.

5. **Hydrology Section** to ascertain the location of the proposed project relevant to flood hazard areas and obtain the necessary requirements for the preparation of a Drainage Report and/or Drainage Plan and grading plan. (See Chapter 2 and Chapter 4) The hydrology review process should begin independently of the building permit application and should generally start prior to submittal of building construction plans.

 a. Identify access needs for equipment.
 b. Determine required fire flow and number of hydrants and required coordination for pressure flow with DMD and ABCWUA.

7. **City Environmental Health** to determine applicable requirements for all of the following:
 a. Food sanitation.
 b. Air quality registration and permitting of all stationary sources of air pollution.
Section 2-5(C)(3) Application for Plan Check

Permit application submittals are submitted to Building Safety via the permit counter or electronically via the POSSE system. Required application materials include both of the following:
1. A completed application form, including the information indicated in the UAC Section 110.
2. The Plan Check fee, which must be paid at time of application.

Section 2-5(C)(4) Plan Check

Upon receiving the application, Building Safety processes the plans, including all of the following steps.
1. A plan location log is established to track the plan check process. An applicant may call for information about the status of the application.
2. The plans are forwarded to specialists in all of the following review agencies:
 a. City Planning
 i. Code Enforcement Division
 ii. Building Safety Division
 (1) Building
 (2) Plumbing
 (3) Electrical
 iii. Development Review Services
 (1) Hydrology
 (2) Transportation Development
 b. City Solid Waste
 c. City Environmental Health
 d. City AFR, Fire Marshal
3. When the plan check process is completed, Building Safety notifies the applicant’s architect or engineer by phone.
4. The applicant is then free to pick up plans at the Building Safety permit counter.
 a. If plans are correct as submitted, the applicant may apply for a building permit, following requirements outlined in the Building Permit Issuance Phase.
 b. If plans are incorrect, the applicant must coordinate correction of rejections with the responsible reviewing agency. Satisfactory corrections will be certified for approval by the responsible reviewing agency.
 c. Any rejection, conflicts, or questions of interpretation that cannot be resolved between the applicant and the reviewing agency are first brought to the attention of the Building Official. If the conflicts still cannot be resolved, they may be referred to the appropriate appeal body.

Section 2-5(C)(5) Building Permit Issuance

1. Approved plans are processed by the Permit Clerk at the Building Safety permit counter.
2. Upon receipt of the approved plans, the Permit Clerk begins to issue the building permit, following all of these steps:

 A permit authorizes a property owner or designated representative to retain a licensed contractor for construction or alteration of a specific building. The permit implies that plans have been reviewed and approved to ensure that the necessary requirements for the protection of public safety and the proper use of land have been met to the best knowledge of the reviewers.

 See the appropriate agency for checklists.
Section 2-5(C)(6) Construction Inspections

1. The following types of inspections are generally required:
 a. Building
 b. Plumbing and Mechanical
 c. Electrical

2. Specific inspections, which may be required, are detailed in Article 14-1, Uniform Administrative Code of ROA 1994, Section 305 and include the following:
 a. Zoning.
 b. Transportation.
 c. Environmental Health.
 d. Hydrology.
 e. Fire Prevention.

3. The contractor is responsible for scheduling interim inspections. For inspections to be completed, each of the following items must be located at the project site:
 a. The Inspection Notice Card.
 b. The approved set of plans.

4. Depending on the results of the inspection, the Inspector posts one of the following:
 a. An approval tag indicating work passes inspection.
 b. A correction notice indicating code deficiencies that must be corrected before violations are concealed.
 c. A stop work notice indicating that work in that particular category must be stopped and corrections made and approved before work can continue.

5. The outcome of the inspections is recorded in the permit file at Building Safety.

6. If corrections are necessary, the contractor is responsible for making the corrections and scheduling a re-inspection.

Section 2-5(C)(7) Certificate of Occupancy

1. After all inspections are passed showing compliance with approved plans, the contractor requests a Certificate of Occupancy from Building Safety. To obtain the certificate, the contractor must bring the signed permit card to the certification of occupancy issuance desk.

2. The permit clerk verifies that all inspections have been passed against the records in the permit file.

3. Verification of the required approval allows the Certificate of Occupancy to be issued.
PRE-DESIGN PHASE

In this phase, the number and type of specific permits required for the project will be identified by the Building Official. Separate, appropriate permits must be obtained from the Building Official for each building, structure or building service.

1. **Preliminary Plan Check Services.** are available to the design professional for the purpose of reviewing the requirements of the Albuquerque codes and ordinances.

APPLICATION FOR PLAN CHECK PHASE

During this phase, final plans are reviewed by appropriate agencies for compliance with regulations governing the construction process.

2. **Application for Plan Check.** Required application form, plans, and specifications are submitted to Building Safety, and the Plan Check fee is paid.

3. **Plan Check Review.** Final plans are reviewed by appropriate agencies for compliance with regulations governing the construction process. Plans must conform to adopted construction codes as well as zoning regulations, energy conservation measures, transportation considerations, drainage policy, and others.

PERMIT APPROVAL

Building Safety Staff will inform applicant of the procedures for applying for the various required specific permits.

4. **Application for Building Permit.** If plans are correct as submitted, the applicant may apply for a Building Permit by submitting required materials to the Permit Clerk at the Building Safety permit counter.

INSPECTION PHASE

During the construction process, after permits are issued, inspections are required to ensure compliance with approved plans and ordinances.

5. **Interim Inspections.** The contractor is responsible for calling for interim inspections. Generally, Building, Plumbing, and Electrical Inspections are always required, but other types of inspections may be required for Zoning, Environmental Health, Hydrology, or Fire Prevention.

CERTIFICATE OF OCCUPANCY PHASE

All new public, commercial, and multi-family structures must be issued a Certificate of Occupancy before they can be occupied.

6. **Application for Certificate of Occupancy.** After all inspections are passed showing compliance with approved plans, the contractor requests a Certificate of Occupancy from Building Safety.

7. **If all inspections have passed, a Certificate of Occupancy is issued.**
8. **The certificate shall be posted in a conspicuous place on the building premises.**
4. The certificate must be posted in a conspicuous place on the building premises.
ARTICLE 2-6 RELATED PERMITS

Article 2-6 covers permits related to construction on private property other than building permits, which are covered by Article 2-5. These related permits are often required in addition to a building permit. For example, walls, fences, and retaining walls that are included on the construction plans for a larger project require a separate permit. TABLE 2.6.2 summarizes related permits that may be required in addition to a building permit.

Generally, the application information, plans/specifications, and procedural requirements for related permits are similar to those described in Article 2-5 with some exceptions, which are indicated in the procedural deviation column of TABLE 2.6.2. The sections following the table explain these procedural exceptions in further detail.

Article 2-7 covers other construction permits in public right-of-way, summarized in TABLE 2.7.3.

<table>
<thead>
<tr>
<th>TABLE 2.6.2 Summary of Related Building Permits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permit Type</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Demolition</td>
</tr>
<tr>
<td>Elevator</td>
</tr>
<tr>
<td>Fire Repair</td>
</tr>
<tr>
<td>Floodplain Development Permit</td>
</tr>
<tr>
<td>Flood Hazard Certification</td>
</tr>
</tbody>
</table>
TABLE 2.6.2 Summary of Related Building Permits

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Applicability</th>
<th>Procedural Deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Only</td>
<td>A foundation only permit allows construction of footings, foundation walls and any other construction up to and including a first floor slab upon approval of required plans and application material. A Building Permit is required before progressing with work beyond the foundation stage. The issuance of a Foundation Permit does not preclude the possibility that changes might be necessary to meet building code requirements or requirements of any other City ordinance or laws relating to construction.</td>
<td>PART 2-6(C)</td>
</tr>
<tr>
<td>Grading Permit & Paving Permit</td>
<td>A grading permit is required for all grading of 1.0 acre or more or 500 cubic yards and any grading to be done within or adjacent to a watercourse (defined as a major facility) during the months of July, August, or September. Paving an area larger than 10,000 square feet requires a Paving Permit. Repaving of existing paved areas in which no grading is planned is excluded. Note: Grading and paving permits are not required when the proposed grading and paving are a part of a building permit.</td>
<td>PART 2-6(D)</td>
</tr>
<tr>
<td>Notification of Demolition or Renovation</td>
<td>Demolition work on any commercial building or residential building containing 5 or more dwelling units requires an Asbestos Demolition/Renovation Notification to be filed with the Environmental Health Air Quality staff a minimum of 10 working days prior to the start of the demolition. This notification is also required for residential buildings that are demolished for the purposes of building non-residential structures. This notification is separate from the "Surface Disturbance/Demolition" form and is required regardless of whether or not asbestos is present.</td>
<td></td>
</tr>
<tr>
<td>Plumbing & Electrical</td>
<td>All electrical, plumbing, and mechanical work requires a permit.</td>
<td>PART 2-6(D)</td>
</tr>
<tr>
<td>Relocation of Existing Buildings</td>
<td>Relocation of existing buildings requires the determination of necessary modifications to meet technical codes, a foundation permit, remodeling permit, and electrical, plumbing, and mechanical permits, as appropriate. In addition, Chapter 8 Traffic Code (ROA 1994) requires a permit for oversize, overweight and/or overlength truckloads to be issued prior to actual moving of the building.</td>
<td></td>
</tr>
<tr>
<td>Sign</td>
<td>Most new signs erected in the city require a sign permit and a building permit. The IDO specifies standards applicable to signs in all zones and defines the types of signs that require a permit.</td>
<td>PART 2-6(G)</td>
</tr>
<tr>
<td>Swimming Pool</td>
<td>All below-ground public or private swimming pools require a permit and separate electrical, plumbing, and mechanical permits. Swimming pool plans will be reviewed by NM Gas Company, PNM, and Qwest to ensure that utility lines are not interfered with and by the Environmental Health Department to ensure that the plans for public swimming pools meet the requirements of Article 10-3 Swimming Pool Ordinance (ROA 1994). In addition, the Swimming Pool Ordinance requires a permit for the operation of public swimming pools. The procedure for obtaining this permit is found in Part 2-7(L)</td>
<td></td>
</tr>
<tr>
<td>Wall, Fence, and Retaining Walls</td>
<td>A permit is required for retaining walls 2 feet high or higher and for walls and fences higher than 6 feet. Walls or fences or their footings proposed to be located in the public right-of-way require the execution of a revocable permit or Encroachment Agreement. (See Part 2-7(M))</td>
<td>PART 2-6(H)</td>
</tr>
</tbody>
</table>
Part 2-6(A) Demolition Permits

Section 2-6(A)(1) Applicability

Part 2-6(A) applies to all demolition work, which requires a permit from the Building Safety Division of the City Planning Department. Under the Air Pollution Control Regulations, demolition of structures 75,000 cubic feet or larger requires an additional permit from the City Environmental Health Department, Air Quality Program to ensure that adequate measures are taken to control or prevent airborne particulate matter.

Structures 10,000 sq. ft or larger built or renovated prior to January 1, 1980, require an approved Erosion and Sediment Control Plan and an approved Stormwater Control Permit for Erosion and Sediment Control from Stormwater Quality.

Demolition permits require the approval of all of the following:
1. ABCWUA
2. City Albuquerque Fire Rescue
3. City DMD/CSD
4. City Environmental Health, Air Quality Program
5. City Planning
 a. Building Safety Division
 b. Development Review Services Division
 i. Stormwater Quality
 ii. Hydrology
 c. Code Enforcement Division
 d. Urban Design & Development Division, Current Planning Section, Historic Preservation

Section 2-6(A)(2) Procedures

1. The Demolition Permit Application is obtained at the Building Safety permit counter.
2. The applicant will need to obtain approval from the agencies indicated on the permit form.
 a. Building Safety Division and Fire Marshal’s Office approvals are obtained at Building Safety Division.
 b. Review by the Transportation Development Section in the Development Review Services Division is required for canopies, fences, or rails if pedestrian traffic is to be rerouted. The Transportation Development Section requires a site plan showing the locations of canopies, fences or rails, and the method of rerouting pedestrian traffic in order to obtain approval.
 c. City Environmental Health Department, Air Quality Program should be approached to discuss the demolition and determine what approvals are needed. If the structure is 75,000 cubic feet or larger, apply for Demolition Permit issued by the Environmental Health Department. The procedure is the same as for a fugitive dust permit, which is described in Part 2-7(R) Fugitive Dust Permit.
 d. ABCWUA approval is needed to use a fire hydrant use during demolition. Customer Services Division to arrange for meter for fire hydrant.
3. Once agency approvals are obtained, the applicant returns the completed permit form to Development Review Services to pay the fee and receive the permit, once issued.

4. The demolition permit issued by Building Safety is effective for 180 days. An extension of 180 days may be granted upon written request.

5. Before beginning any demolition work, the applicant shall ensure all gas and electrical supply systems are disconnected by the NM Gas Company and PNM.

Part 2-6(B) Floodplain Development Permit

Section 2-6(B)(1) Applicability

Part 2-6(B) applies to all earthmoving, grading, paving, building additions, and new building construction in a Special Flood Hazard Area (SFHA). Compliance with the requirements of the Article 14-5 Flood Hazard and Drainage Control (ROA 1994) is required of every applicant for subdivision, site plan, and/or building permit approval. Compliance is achieved by either demonstrating that the proposed project does not lie within a designated flood hazard area or by demonstrating adequate flood-proofing as required by the ordinance or by removing the site from a flood hazard area through the FEMA map revisions process.

Section 2-6(B)(2) Procedures

2-6(B)(2)(i) Development within Flood Hazard Areas for Building Permits with “No Adverse Impact” and No Storm Drainage Improvements

1. If any part of the development lies within the SFHA, then the applicant must submit all of the following to the Hydrology Section of the City Planning Department Development Review Services Division (Hydrology Section) prior to approval of the Floodplain Development Permit:
 a. A Floodplain Development Permit Application.
 b. A Grading and Drainage Plan, including calculations that demonstrate “No Adverse Impact” to the Base Flood Elevation (BFE). The applicant’s engineer must establish a BFE if one has not already been established by FEMA.
 c. A Drainage and Transportation Information Sheet (DTIS).
 d. A draft “Elevation Certificate” is required for any portion of a new building within the SFHA.
 e. If any portion of a new building is within the SFHA, then prior to final approval of building occupancy, a final Elevation Certificate must be submitted to the Hydrology Section with a DTIS.
Development within Flood Hazard Areas Involving Storm Drainage Improvements and/or Changes to Either BFEs or Floodplain Limits

1. If any improvements are proposed within the existing Floodway boundary, the applicant must request a Conditional Letter of Map Revision (CLOMR) from FEMA prior to beginning any construction in the Floodway. Construction permits will not be issued for any project that includes work in the Floodway until the CLOMR is issued by FEMA.

2. If any improvements are proposed that modify the existing floodplain limits or base flood elevations, the applicant must provide a Grading and Drainage Plan, including calculations that demonstrate no adverse impact to adjacent properties or provide written agreement from adversely impacted adjacent property owners accepting the specific adverse impacts being proposed. The applicant’s engineer must establish a BFE if one has not already been established by FEMA. The Floodplain Development Permit and other construction permits will not be issued for any land disturbing activities within the current effective floodplain until the Grading and Drainage Plan has been approved by the City. The applicant has the option of requesting a CLOMR before beginning construction in order to better assure that FEMA will issue a LOMR after the improvements are constructed. The applicant is responsible for obtaining a LOMR removing the floodplain. The City will not issue Building Permits for buildings when any portion of the building is in an effective floodplain, so the LOMR must become effective before Building Permits will be issued.

3. A Letter of Map Revision (LOMR) must be obtained from FEMA after construction is complete. When a CLOMR has been issued by FEMA, a portion or all of the IIA and financial guarantees for the improvements may be released prior to the LOMR being issued by FEMA, but the financial guarantee for the LOMR will not be released prior to the effective date of the LOMR. Submittal of a copy of the LOMR from FEMA is required for release of the balance of the financial guarantees and SIA’s when issuance is a condition of release.

4. The following floodplain note must be placed on the plat if a LOMR has not been issued by FEMA: “Portions of the subject property lie within a designated area of special Flood Hazard as shown on the National Flood Insurance Program’s Flood Insurance Rate Map. Until such time that a LOMR is issued by FEMA, flood insurance may be required.” The floodplains must be shown on the plat, and the note should include the Flood Insurance Rate Map (FIRM) number and date.

Part 2-6(C) Foundation Only Permits

Section 2-6(C)(1) Applicability

Part 2-6(C) applies to the construction of footings, foundation walls and any other construction up to and including a first floor slab, which require a Foundation Only Permit. A building permit is required before progressing with work beyond the foundation stage. The issuance of a foundation permit does not preclude the possibility that changes might be necessary to meet Building Code requirements or requirements of any other City ordinance or laws relating to construction.
Section 2-6(C)(2) Procedures

1. The applicant completes an application form at the Building Safety permit counter. Required application materials include all of the following:
 a. Two (2) sets of foundation plans drawn according to the structural requirements of the New Mexico Building Code and indicating type of construction. (Additional plans must be submitted for approval before plumbing or electrical work is started on building slab.)
 b. A site plan that clearly identifies all of the following:
 i. The legal description and address, including any recent replats or lot line eliminations not yet recorded on existing zoning maps.
 ii. Parking and landscaping areas and setbacks. Actual parking spaces, access and circulation of vehicles and pedestrian, and types of landscaping need not be shown.
 iii. The proposed use of building (use must conform to zone district) and total floor area to be occupied upon completion of building.
 iv. Height of building; if over 26 feet high, an elevation plan is required.
 c. A Flood Hazard Area Site Plan that indicates all of the following:
 i. Whether the building is located in a flood hazard area, and if so, the flood-proofing measures to be used.
 ii. The elevation of lowest finished floor above mean sea level.
 iii. Temporary benchmark(s) on site.
 iv. An approved drainage scheme or submittal. (See Article 2-3.)

2. Foundation plans are reviewed by staff from all of the following:
 a. Code Enforcement Division.
 b. Building Safety Division, Plans Review Section.
 c. Development Review Services Division.
 i. Hydrology Section.
 ii. Transportation Development Section.

3. If plans are approved, the applicant signs and has notarized the Foundation Form B-27, which should be obtained from Building Safety.

Part 2-6(D) Grading Permit and Paving Permit

Section 2-6(D)(1) Applicability

1. Part 2-6(D) applies to all grading that requires a Grading Permit, including any of the following:
 a. 1 acre or more.
 b. 500 cubic yards.
 c. any grading to be done within or adjacent to a watercourse (defined as a major facility) during the months of July, August, or September.

2. Paving an area larger than 10,000 square feet shall require a Paving Permit. Repaving of existing paved areas in which no grading is planned is excluded.

Grading and Paving Permits are not required when the proposed grading and paving are a part of a Building Permit, but an approved Grading and Drainage plan is also required for a Building Permit.
Section 2-6(D)(2) Procedure

2-6(D)(2)(i) Pre-design Conference

A pre-design conference should be scheduled with one of the Engineers from the Hydrology Section in order to evaluate the specific drainage requirements for the proposed grading and paving.

2-6(D)(2)(ii) Permit Application

1. Grading and Paving Permit applications are submitted to Development Review Services. Required application materials include all of the following:
 a. The completed Drainage and Transportation Information Sheet (DTIS).
 b. Two (2) copies of the required plans for review, including a Drainage Report and/or a Grading and Drainage Plan. See applicable checklist in Chapter 6 Drainage, Flood Control, and Erosion Control.
 c. If parking or pedestrian paths will be striped with a paving permit, a dimensioned striping plan shall be submitted to the Transportation Development Section for review and approval. See Chapter 7 Transportation Design for parking dimension requirements.

2. A permit application fee must be paid.

2-6(D)(2)(iii) Inspection and Certification

When grading or paving is associated with a Building Permit or work order, the authorized construction must be inspected for compliance with the approved plan, and an Engineer’s Certification must be submitted to the Hydrology Section with a DTIS in order to receive either a Certificate of Occupancy or a release of Financial Guarantee.

Part 2-6(E) Plumbing, Mechanical, and Electrical Permits

Section 2-6(E)(1) Applicability

Part 2-6(D) applies to all electrical, plumbing and mechanical work that requires a Plumbing, Mechanical, or Electrical Permit.

Section 2-6(E)(2) Procedures

1. Plumbing, mechanical, and electrical plans may be submitted for approval along with building plans.
2. The contractor or sub-contractor responsible for the specific work in question obtains the permit prior to beginning construction.
3. Electrical, plumbing, and mechanical permits are obtained through 1 of the following 2 methods, following Building Safety Division approval of plans for the specific project:
 a. Prior to beginning the work, the contractor completes and submits an online permit form to the Building Safety POSSE system. If approved, the permit is issued electronically.
 b. The contractor or sub-contractor applies in person at the Building Safety permit counter. If approved, permit is issued at the permit counter.
4. If approved, the permit is issued at fee payment.
5. Electrical, plumbing, and mechanical permits for work not on approved plans are issued following plan approval by Building Safety. The procedure for obtaining these permits is essentially the same as that required for the building permit.

Part 2-6(F) Relocation of Existing Buildings Permits

Section 2-6(F)(1) Applicability

Part 2-6(F) applies to the relocation of an existing building that requires the determination of necessary modifications to meet technical codes, a foundation permit, remodeling permit, and electrical, plumbing, and mechanical permits, as appropriate. In addition, the Traffic Code requires a permit for oversize, overweight, and/or overlength truckloads to be issued prior to actual moving of the building. (See *Part 2-7(I) Oversize, Overweight and/or Overlength Truckloads Permit*.)

Section 2-6(F)(2) Procedures

2-6(F)(2)(i) Inspections

1. Any appropriate building inspections must occur prior to the relocation of an existing building to determine. The purpose of these inspections is to determine any modifications that may be necessary to meet current mechanical, electrical, and structural codes. The applicant contacts Building Safety to schedule inspections.

2. Any required modifications found through the inspection shall be documented in an inspection report.

2-6(F)(2)(ii) Foundation Permit

1. The applicant is to submit 2 sets of drawings and 2 copies of any inspection report(s) to Building Safety for a foundation permit. The submittal will be composed of a foundation plan drawn to scale with pertinent foundation wall sections and details at a scale large enough to explain clearly the connection of the existing building to the new foundation.

2. Plans are to clearly show all existing structural items that will bear on the new foundation and their anchorage.

3. Information provided in the team inspection report will determine whether or not a remodeling permit is necessary.

2-6(F)(2)(iii) Remodeling Permit

1. To receive a remodeling permit, the applicant will need to submit 2 sets of floor plans and 2 copies of the team inspection report to Building Safety.

2. Plans are to clearly show the modifications required by the team inspection report. All required modifications should be indicated by key notes on the floor plan that relate to a corresponding note in the title block that identifies and explains each numbered modification.
2-6(F)(2)(iv) Oversize, Overweight, and/or Overlength Truckloads Permit

The applicant must obtain an oversize, overweight, and/or overlength truckload permit from the DMD Traffic Engineering Division. The procedure for obtaining this permit is found in Part 2-7(I) Oversize, Overweight and/or Overlength Truckloads Permit.

Part 2-6(G) Sign Permits

Section 2-6(G)(1) Applicability

Part 2-6(G) applies to most new signs erected in the city, which require a sign permit and a Building Permit. The zoning regulations detail the standards applicable to signs in all zone districts and define the types of signs that require a sign permit. All signs are required to comply with current zoning regulations in the IDO.

Section 2-6(G)(2) Procedures

1. A permit is required for all of the following types of signs:
 a. Signs with sign faces greater than 40 square feet.
 b. Signs taller than 8 feet.
 c. Illuminated signs.
 d. Signs with moving elements.
 e. Freestanding and projecting on-premises signs.
 f. Portable signs.
 g. Electronic signs, including changes to an existing sign that makes it become an electronic sign or changes to an existing electronic sign from an electronic message reader board sign to an electronic display panel sign.
 h. Subdivision identification signs.

2. A building permit is required to erect all new signs except all of the following:
 a. Signs less than 6 feet above grade.
 b. Non-electric signs with an area of 2 square feet or less.
 c. Electric signs, which require separate electrical permits.

3. Sign permits can be obtained from the Code Enforcement Division. Applications materials include all of the following:
 a. A completed application for sign permit.
 b. Plans that describe the location, design and dimensions of the proposed sign.
 c. A sign permit fee, paid at the Building Safety permit counter.

4. Plans for signs must conform to current zoning regulations, and the sign, when finished, must conform to the approved plans.

5. A field inspection could be required prior to plan approval to investigate the proposed sign location and the number of signs existing on a site. Once the sign permit fee is paid, Building Safety inspects the size and location of the sign against the submitted plans.

6. If the inspection determines the sign is in compliance with the plans, Building Safety approves the sign. The permit goes into effect after the approval.

7. If required, Building Permit approval must then be obtained. To apply for a building permit, structure plans for the sign need to be submitted to
the Plan Review Section. If the sign is electric, electrical plans should also be submitted to the Code Enforcement Division for approval. A separate electrical permit is required.

8. The permit will be issued when the structural plans are approved.
9. The sign will be inspected by Building Safety.
10. After final inspection by Building Safety related to the building permit, the applicant will notify the Code Enforcement Division that the sign is ready for final inspection related to the sign permit.

Part 2-6(H) Wall, Fence, and Retaining Wall Permits

Section 2-6(H)(1) Applicability

Part 2-6(H) applies to retaining walls 2 feet high or higher and for walls and fences higher than 6 feet, which require a Wall and Fence Permit. Walls or fences, or their footings proposed to be located in the public right-of-way, require the execution of a revocable permit (Part 2-7(M)) or encroachment agreement (Part 2-7(E)). The zoning regulations specify standards applicable to walls and fences in all zone districts. All walls and fences are required to comply with current regulations.

Section 2-6(H)(2) Procedures

1. Permit applications are submitted to Building Safety. Required application materials include all of the following:
 a. Site plan.
 b. Two (2) sets of plans showing all of the following:
 i. Height and location of walls or fences.
 ii. Existing and proposed walls or fences.

2. Raised walls require certification by an architect or engineer registered in the State of New Mexico for the existing wall and a certified design for the raised portion.

3. New walls over 6 feet in height must be certified by an architect or engineer registered in the State of New Mexico.

4. Structural drawings are required for block walls.

5. Retaining wall drawings require an architect’s or engineer’s seal and structural calculation.

6. If the wall, fence, or retaining wall permits are related to a new or existing swimming pool, the barrier is regulated by Article 10-3 Swimming Pool Ordinance (ROA 1994) and the Environmental Health Department.
ARTICLE 2-7 OTHER CONSTRUCTION PERMITS

Article 2-7 describes additional permits for construction within the public right-of-way or integral to the development process that may be required in addition to the permits for construction on private property in Article 2-5 and Article 2-6.

These other construction permits are established by legislation other than the Article 14-1 Uniform Administrative and Technical Codes (ROA 1994) and administered by agencies other than the Development Review Services Division of the City Planning Department. The other construction permits included in Article 2-7 are outlined in TABLE 2.7.3.
TABLE 2.7.3 Summary Other Construction Permits

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Contaminant Sources Registration</td>
<td>Air Contaminant Source Registration is required for the operation of a commercial or industrial stationary source with actual emissions of more than 2,000 pounds of any air contaminant per year or any amount of a hazardous air pollutant.</td>
<td>PART 2-7(A)</td>
</tr>
<tr>
<td>Authority to Construct Permit</td>
<td>An Authority to Construct permit is required for the construction or modification of any commercial or industrial structure that, if it were uncontrolled, would result in an emission of 5 tons per year for lead, 10 tons per year for hazardous air pollutants, or greater than 10 pounds per hour or 25 tons per year for other air contaminants.</td>
<td>PART 2-7(B)</td>
</tr>
<tr>
<td>Barricade Permit</td>
<td>A barricade permit is required prior to excavation of any City right-of-way including the setback area or when construction or demolition work interferes with vehicular or pedestrian traffic. Currently, barricade permits are not required for work in unimproved City streets or rights-of-way; however, the construction zone is required to be barricaded in accordance with the requirements of the Traffic Code.</td>
<td>PART 2-7(C)</td>
</tr>
<tr>
<td>Blasting Permit</td>
<td>A blasting permit issued by the Albuquerque Police Department is required for all blasting work within the City limits. Applicants for a Blasting Permit must present a Certificate of Insurance for $500,000/$1,000,000/$500,000 combined incident liability, structure damage, bodily injury, and property damage.</td>
<td>PART 2-7(D)</td>
</tr>
<tr>
<td>Encroachment Agreement</td>
<td>The execution of an Encroachment Agreement between the City and the property owner is required for proposed construction of private walls, footings, fences, or other privately owned infrastructure within a public easement on a conditional, revocable basis.</td>
<td>PART 2-7(E)</td>
</tr>
<tr>
<td>Excavation Permit</td>
<td>Any excavation activity within the public right-of-way requires an Excavation Permit.</td>
<td>PART 2-7(F)</td>
</tr>
<tr>
<td>Fugitive Dust Permit</td>
<td>A fugitive dust permit is required for all activities that will have a surface disturbance of ¾-acre or more.</td>
<td>PART 2-7(R)</td>
</tr>
<tr>
<td>Integrated Development Ordinance Approvals</td>
<td>Development activities that are authorized by the IDO require approvals pursuant to the relevant procedures in the IDO.</td>
<td>PART 2-7(G)</td>
</tr>
<tr>
<td>Median Cut & Left Turn Lane Approval</td>
<td>Proposed median cuts and left turn lanes require City approval to ensure that spacing requirements, the type of development, internal circulation, and existing or projected traffic operating conditions are considered. In addition, the location and design of median cuts in streets that are a part of the State Highway System require approval of the NMDOT.</td>
<td>PART 2-7(H)</td>
</tr>
<tr>
<td>Oversize, Overweight and/or Overlength Truckload Permit</td>
<td>The movement or operation of oversize, overweight and/or overlength vehicles on City streets requires an oversize, overweight and/or overlength truckloads permit issued by the City’s DMD/CSD. The dimensions and weight of vehicles that require this permit are as defined in 1978 NMSA 66-7-401 through 66-7-416.</td>
<td>PART 2-7(I)</td>
</tr>
<tr>
<td>Permit SO-19</td>
<td>Construction of a private storm drain facility in a public right-of-way may be accomplished with an SO-19 permit when a work order is not otherwise required.</td>
<td>PART 2-7(J)</td>
</tr>
</tbody>
</table>
TABLE 2.7.3 Summary Other Construction Permits

<table>
<thead>
<tr>
<th>Permit Type</th>
<th>Applicability</th>
<th>Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Use of Fire Hydrants</td>
<td>Connections to fire hydrants at any location require a permit from the ABCWUA, except for City street sweepers, street rollers, and Fire Rescue vehicles. All other private and governmental users – federal, state, county, city and military – must have a permit. A permit allows the permit holder to use any of approximately 29 designated hydrants located within the City and County limits. A Special Permit is required for private use of fire hydrants other than designated hydrants.</td>
<td>PART 2-7(K)</td>
</tr>
<tr>
<td>Public Swimming Pool Operating Permit</td>
<td>The operation and maintenance of public swimming pools requires a Public Swimming Pool Operating Permit. A pre-opening inspection and permission to operate are required on all seasonally operated facilities before the expected opening date.</td>
<td>PART 2-7(L)</td>
</tr>
<tr>
<td>Revocable Permit</td>
<td>The execution of a revocable permit between the City and the property owner is required for proposed construction of private walls, footings, fences, signage, or any other privately owned infrastructure within public right-of-way on a conditional basis.</td>
<td>PART 2-7(M)</td>
</tr>
<tr>
<td>Sewer Tapping Permit</td>
<td>A sewer tapping permit is required to tap into existing sewer lines.</td>
<td>PART 2-7(N)</td>
</tr>
<tr>
<td>Sidewalk, Drivepad & Curb & Gutter Permit</td>
<td>Any work within the City’s right-of-way requires a permit that designates who can conduct the work.</td>
<td>PART 2-7(O)</td>
</tr>
<tr>
<td>Stormwater Control Permit for Erosion and Sediment Control</td>
<td>Projects that disturb 1 acre or greater or are smaller than 1 acre but meet other criteria (e.g. part of a larger common plan of development or on land with steep slopes, contaminated soils, etc.) are required to obtain a Stormwater Control Permit for Erosion and Sediment Control.</td>
<td>PART 2-7(Q)</td>
</tr>
<tr>
<td>Solar Rights Permit</td>
<td>A solar right permit is required to define and regulate the spatial and temporal limits of a property’s solar right.</td>
<td>PART 2-7(P)</td>
</tr>
<tr>
<td>Water Meter & Fire Line Application</td>
<td>A Water Meter and Fire Line Application is required for the installation of the public portion of the water service line, including the meter and box.</td>
<td>PART 2-7(S)</td>
</tr>
</tbody>
</table>
Part 2-7(A) Air Contaminant Sources Registration

Section 2-7(A)(1) Applicability

Part 2-7(A) applies to any commercial or industrial stationary source with actual emissions of more than 2,000 pounds of any air contaminant per year or any amount of a hazardous air pollutant must be registered with the Environmental Health Department, Air Pollution Division, Air Quality Service Section, 11850 Sunset Gardens Rd. SW, within 180 days after initial start up. The purpose of registration is to provide the department information on sources of air contaminants for internal use and monitoring.

Section 2-7(A)(2) Procedure

1. Before registering, the applicant should discuss the project with staff of Environmental Health Department, Air Pollution Control Division to determine if registration is required.
2. If registration is required, the applicant will need to complete the registration form and pay the registration fee.

Part 2-7(B) Authority-to-Construct Permit

Section 2-7(B)(1) Applicability

Part 2-7(B) applies to the construction or modification of any commercial or industrial structure that would result, if it were uncontrolled, in an emission of greater than 5 tons per year for lead, 10 tons per year for hazardous air pollutants, or 10 pounds per hour or 25 tons per year for other air contaminants. Such structures require an Authority-to-Construct permit to be approved by the Environmental Health Department, Air Pollution Control Division, Air Quality Service Section, 11850 Sunset Gardens Rd. SW.
Section 2-7(B)(2) Procedure

2-7(B)(2)(i) Pre-permit Application Review

1. A Pre-permit Application Review with staff of the Environmental Health Department, Air Pollution Control Division is required to determine if the permit is needed and, if so, to obtain permit forms and allow adequate time for the applicant to obtain the permit prior to beginning construction.
2. The Pre-permit review shall occur prior to completing permit application.
3. To schedule a Pre-permit review, the applicant needs to complete the Pre-permit Meeting Request Form and submit it to the Environmental Health Department.

2-7(B)(2)(ii) Permit Application

1. After the Pre-permit application review has been completed, the applicant can complete the permit application.
 a. The information required by the permit application is highly technical and in most cases will require the assistance of a consultant.
 b. A $500 Permit fee must accompany application.
2. The Environmental Health Department requires a 30-day review period for applications in order to determine completeness.
3. Once an application is deemed complete and therefore accepted as a submittal for review and decision, there is a 60-day comment period.
4. Permit shall be issued or denied within 120 days (or 180 days if a public hearing is required) from the date that the application is accepted as complete.

Part 2-7(C) Barricade Permit

Section 2-7(C)(1) Applicability

Part 2-7(C) applies to the required barricading of excavation sites in any City right-of-way, including the setback area, or when construction or demolition work interferes with vehicular or pedestrian traffic. Barricade permits are required prior to excavation of any City right-of-way, but are not required for work in unimproved City streets or rights-of-way; however, the construction zone is required to be barricaded in accordance with the requirements of the Traffic Code. The barricade permit should be obtained from the DMD/CSD prior to application for any required excavation permits or sidewalk, drivepad, and curb and gutter permits.

Section 2-7(C)(2) Procedure

1. The applicant is to complete the Barricade/Excavation Permit Application and submit it along with a traffic control plan that indicates detailed methods of handling traffic during construction to the DMD/CSD.
2. Once the traffic handling plan is approved, the permit is issued.
3. Inspection, as required, happens automatically.
Part 2-7(D) Blasting Permit

Section 2-7(D)(1) Applicability

Part 2-7(D) applies to all blasting work within the City Limits, which requires a blasting permit issued by the Albuquerque Police Department (APD). Applicants for a blasting permit must present a Certificate of Insurance for $500,000/1,000,000,/$500,000 combined incident liability, structure damage, bodily injury and property damage.

Section 2-7(D)(2) Procedure

1. Blasting permit forms can be obtained from the APD Bomb Squad.
2. The applicant must obtain approval and sign off from Albuquerque Fire Rescue (AFR) and the City Engineer.
3. “One Call Service System” locates utility lines in the area. The applicant must call and wait 48 hours from line spotting before conducting blasting work.
4. The completed blasting permit form is returned to APD for final approval and sign off. No fee is charged.

Part 2-7(E) Encroachment Agreement (Approval to Place Private Infrastructure in a Public Easement)

Section 2-7(E)(1) Applicability

Part 2-7(E) applies to the agreement required to place private infrastructure in a City easement. The agreement is similar to a revocable permit.

Section 2-7(E)(2) Procedure

1. The applicant shall follow the same procedures as for the revocable permit in Part 2-7(M) with the following 2 exceptions:
 a. Replace the Revocable Permit Form with the Encroachment Agreement Form, which is located on the City website.
 b. There are no annual fees or a certificate of liability insurance required for an encroachment agreement.

Part 2-7(F) Excavation Permit

Section 2-7(F)(1) Applicability

Part 2-7(F) applies to any excavation activity within the public right-of-way, which requires a permit from the City DMD Traffic Engineering Division. Applicants for excavation permits should obtain a barricade permit from DMD/CSD prior to application if the excavation work is within City right-of-way.
Section 2-7(F)(2) Procedure

1. In order to perform excavation work, the contractor must meet all of the following prerequisites:
 a. Appropriate State license for excavation work.
 b. Field Engineer approval.
 c. $10,000 Excavation Bond.
 d. $10,000 Sidewalk, Drive-Pad, Curb & Gutter Bond.
 e. $15,000 Bond Securing Payment of Permit Fees for the DMD.
 f. Evidence of $2,000,000 liability insurance.
2. Applicants can apply for an Excavation Permit at DMD/CSD.
3. The Permit Clerk determines if the contractor is qualified and if his/her insurance and bonding are up to date before issuing permit.
4. If the street has been constructed, reconstructed, or overlaid within the last 5 years, the Permit Clerk will calculate the restoration fee as required by Part 6-5-2 Excavation Ordinance (ROA 1994).
5. If the contractor meets the prerequisites, the permit is issued. The applicant pays charges prior to any activity within the public right-of-way.
6. When the excavation is backfilled, the inspector and/or contractor notifies the DMD/CSD and/or laboratory that the project is ready for compaction testing.
7. If compaction meets specifications, the DMD/CSD and/or laboratory advises the applicant that the street is ready for resurfacing if the City is forecasting paving or notifies the responsible contractor if repaving is to be done by a private contractor.
8. The DMD/CSD is notified when the resurfacing is complete; the permit is then filed for future warranty inspection.
9. All excavation work must be warranted for 1 year. (Any excavation permit related to a work order needs to be coordinated with DRC and DMD/CSD).

Part 2-7(G) Integrated Development Ordinance (IDO) Approvals

Section 2-7(G)(1) Applicability

Part 2-7(G) applies to all development activities that are authorized by the IDO, in Table 6-1-1.

Section 2-7(G)(2) Procedure

1. Administrative Decision
 The General Procedures in IDO Section 14-16-6-4 and the specific procedures in IDO Section 14-16-6-5 apply to all administrative decisions. The Procedures Summary Table 6-1-1 in the IDO indicates what type of notice is required and which City body reviews and decides each type of application.
2. Decisions Requiring a Public Meeting and/or Hearing
 The General Procedures in IDO Section 14-16-6-4 and the specific procedures in IDO Section 14-16-6-5 apply to decisions requiring a public meeting or hearing. The Procedures Summary Table 6-1-1 in the IDO indicates what type of notice is required, which City body reviews and decides each type of application, and which cases require a public meeting or a public hearing.
3. Policy Decisions
The General Procedures in IDO Section 14-16-6-4 and the specific procedures in IDO Section 14-16-6-7 apply to policy decisions. The Procedures Summary Table 6-1-1 in the IDO indicates what type of notice is required and which City body reviews and decides each type of application. Policy decisions are made at public hearings.

Part 2-7(H) Median Cuts and Left Turn Lane Approval

Section 2-7(H)(1) Applicability

Part 2-7(H) applies to any proposed median cuts and left turn lanes that require City approval to ensure that spacing requirements, the type of development, internal circulation, and existing or projected traffic operating conditions are considered. See Chapter 7 Transportation Design for median and turn lane design requirements.

Section 2-7(H)(2) Procedure

1. To obtain median cut and left turn lane approval, the applicant submits a written request to the City Engineer. The request shall include all of the following:
 a. The name and address of applicant.
 b. The proposed use of property.
 c. A Traffic Scoping Report. (See Chapter 7 Transportation Design)
 d. A Site plan showing the proposed buildings, parking and driveways.
2. If the City Engineer approves the request, a work order must be obtained for construction. Work orders require engineered plans and may be obtained from DRC.
3. Depending on the size of the development, a traffic impact study may be required for a median opening to be created. See Article 7-5 Traffic Studies for additional information.
4. The applicant pays the cost of new median cuts and left turn lanes.
5. Application and approval of median cut and/or left lane may be included with a Site Plan – DRB submittal.

Section 2-7(H)(3) Additional Approvals

1. NMDOT approval is required for all median openings along state-owned and state-maintained roadways. Median openings on NMDOT facilities must follow NMDOT design criteria.
2. Limited access roadways are shown on the MRMPO Inventory of Roadway Access Limitations and carry restrictions related to intersection spacing and driveway access. Limited Access Roadways are typically located on principal arterials or on the interstate/frontage road system. This restriction may apply to the entire roadway length or individual segments. To learn the precise boundaries for Limited Access Roadways, contact the Transportation Development Section of the Development Review Services Division or visit the MRCOG website: https://www.mrcog-nm.gov/transportation.
Part 2-7(I) Oversize, Overweight and/or Overlength Truckloads Permit

Section 2-7(I)(1) Applicability

Part 2-7(I) applies to the movement or operation of oversize, overweight, and/or overlength vehicles on City streets pursuant to Chapter 8 Traffic Code (ROA 1994). The dimensions and weight of vehicles that require this permit are as defined in 1978 NMSA, Sections 66-7-401 through 66-7-416.

Section 2-7(I)(2) Procedure

1. The applicant completes the Oversize, Overweight, and/or Overlength Truckloads Permit Application.
2. The applicant takes the permit form to the APD Watch Commander to determine if licensed escort service is required pursuant to state law. The Watch Commander must provide approval for a permit to be issued.
3. Once the Watch Commander’s signature has been obtained, the applicant returns the permit form to the DMD Traffic Engineering Division for signature by the Traffic Engineer.

Part 2-7(J) Permit SO-19 (Private Storm Drain Facilities within a City Right-of-Way and/or Easement)

Section 2-7(J)(1) Applicability

Part 2-7(J) applies to circumstances in which a drainage plan developed for a particular property involves discharge either directly into a public facility or across a portion of a public right-of-way to a public facility. Examples include connections to the back of an existing storm inlet or construction of sidewalk culverts. When such solutions are employed, the construction within the public right-of-way must meet City standards and the owner of the property is responsible for maintenance of the facility. An SO-19 Permit is required for construction in the public right-of-way in these situations.

An SO-19 Permit should not be used for a project that also requires a work order. The private storm drain facilities should be shown on the work order plans instead.

Section 2-7(J)(2) Procedures

1. A Grading and Drainage Plan showing the proposed improvement and including the standard SO-19 notes must be submitted to the Hydrology Section with a DTIS. The Grading and Drainage Plan must be approved for SO-19 Permit by a letter from the Hydrology Section. Then the contractor must obtain an Excavation and/or Barricading Permit prior to construction. Instructions for coordinating the work with a City Inspector are included in the SO-19 notes. For properties that employ drainage solutions involving the public right-of-way, the required documentation must be accomplished prior to issuance of a building permit.
2. After construction is complete and prior to issuance of a Certificate of Occupancy, an Engineer’s Certification must be submitted to the Hydrology Section with a DTIS.

Part 2-7(K) Private Use of Fire Hydrants

Section 2-7(K)(1) Applicability

Part 2-7(K) applies to the private use of fire hydrants. Connections to fire hydrants at any location require a permit from the ABCWUA Customer Services Division, except for City street sweepers, street rollers, and AFR vehicles. All other private and governmental users – federal, state, county, city, and military – must have a permit. See the ABCWUA website for detailed information: http://www.abcwua.org/Fire_Hydrant_Meter_Program.aspx

Two (2) types of permits are issued:
1. A Designated Permit allows the permit holder to use any designated hydrants located within the City and County limits. A special use meter is attached to these hydrants, and they are painted red.
2. A Special Use Permit is required for private use of other fire hydrants not noted above. Fire hydrants within 300 feet of any apartment house, school or hospital cannot be used.

Section 2-7(K)(2) Procedure

2-7(K)(2)(i) Designated Permit

1. To obtain a Designated Permit, the applicant completes the Application for Water Service Form and submits it to the Customer Services Division.
2. The application must be approved by the Customer Services Division before any water can be withdrawn by the applicant.
3. Upon approval of the application form, the applicant shall pay a deposit fee and is then issued a Designated Permit, Monthly Usage Forms, special key, and permit wrench. The deposit is refundable when the key and hydrant wrench are returned. The Monthly Usage Form is used by the permit holder to record the readings of the meter each time water is withdrawn from the designated hydrant.
4. The designated permit is to be located on the vehicle or on the premises. The permit shows permit number, date, company name, company address, and vehicle license number.
5. The applicant is to report the previous month’s use of hydrant on the Monthly Usage Form. The form is to be mailed to the Customer Services Division before the 25th day of the succeeding month.
6. All water withdrawn from a designated fire hydrant is charged at the current commodity rate. In addition, permit holders are charged a maintenance fee per month or portion thereof.

2-7(K)(2)(ii) Fire Hydrant Special Use Permit

Note: Refer to the ABCWUA’s Water and Sewer Rate Ordinance

1. To obtain a Fire Hydrant Special Use Permit, the applicant completes the Application for Water Service Form and the Special Use Request Form. The
applicant must state reasons for use of a hydrant meter, the location of the meter, and the length of time that the meter is to be used.

2. Upon approval of the application, the applicant must pay applicable fees including all of the following:
 a. A Special Use Connection Fee for each permit issued.
 b. A meter deposit. The deposit is refundable when the meter is returned to the Water Operations Field Office in excellent condition. Damages will be assessed and deducted from the meter deposit.

3. Once all applicable fees are paid, the permit holder is issued rules and procedures for hydrant use and a wrench for opening the fire hydrant. The meter(s) are to be obtained from the Customer Services Division Meter Shop.

4. The Special Use Permit(s) shall be located in the permit holder’s vehicle or on the premises at all times.

5. The permit holder must record on the Monthly Usage Form the readings of the meter each time water is withdrawn. The form shall be mailed to the Customer Services Division before the 25th day of the succeeding month.
 a. Permit holders should check to see that water meters register properly by asking to see the record showing meter reading before and after drawing water.
 b. Meters not registering properly should be reported to the Customer Services.

6. All water withdrawn from a fire hydrant under a special permit is charged at the current commodity rate.

7. In addition to usage fees, the permit holder(s) is charged a monthly maintenance fee of $32.00 per month or portion thereof.

8. The Customer Services Division may revoke a fire hydrant permit in the event of improper permit identification or failure to furnish specified equipment, permits, or Monthly Usage Forms.

Part 2-7(L) Public Swimming Pool Operating Permit

Section 2-7(L)(1) Applicability

Part 2-7(L) applies to the operation of public swimming pools. Public Swimming Pool Operating Permits must be renewed annually after inspection of the swimming pool.

Article 10-3 Swimming Pool Ordinance (ROA 1994) establishes the permit and sets design, construction, operation, and maintenance requirements. Construction plans are reviewed by the City Environmental Health Department representative during the review process for the building permit for swimming pools. Information for obtaining a building permit for a public swimming pool is found in **TABLE 2.6.2**.

Section 2-7(L)(2) Procedure

1. Prior to opening a swimming pool for public use, the applicant must call the Environmental Health Department to request an inspection.

2. If the swimming pool meets the construction, operation, and maintenance requirements established by the Swimming Pool Ordinance, an operating permit will be issued.
3. The City assesses an inspection fee for the initial swimming pool permit and an annual inspection fee for renewal of the operating permit, due April 15 of each year.

Part 2-7(M) Revocable Permit (Approval to Place Private Infrastructure in the Public Right-Of-Way)

Section 2-7(M)(1) Applicability

Part 2-7(M) applies to the construction of private walls, footings, fences, signage, or any other privately owned infrastructure in the public right-of-way, which requires City approval and the execution of a revocable permit constituting a contract between the City and the property owner to allow private use of public right-of-way on a conditional basis. The permit ensures the continued public use of the right-of-way by requiring the applicant to remove the encroaching structure within a specific time (normally 72 hours) upon notification by the City. The applicant is also responsible for indemnifying the City from any negligent actions by the applicant. The revocable permit must be executed prior to issuance of the building permit for walls, fences, or retaining walls to be placed in the public right-of-way.

Walls and fences 3 feet high and higher and retaining walls 18 inches high and higher require a wall permit from Building Safety. (See *Part 2-6(H) Wall, Fence, and Retaining Wall Permits*.) Requests for walls and fences to vary in height from *IDO* regulations require Zoning Hearing Examiner approval per the variance procedure in *IDO* Subsection 14-16-6-6(N).

Section 2-7(M)(2) Procedure

1. The applicant shall complete the *Revocable Permit Form* and submit all required application materials to the City Engineer for approval. The following application materials shall become part of the agreement.
 a. Exhibit by licensed surveyor indicating all of the following:
 i. The property address and legal description.
 ii. The location of existing curbs.
 iii. Property line locations.
 iv. The location and width of sidewalks.
 v. The location, height, and width of encroachment.
 vi. The location of water meters.
 vii. Square footage of encroachment within public right-of-way.
 viii. Certificate of Liability Insurance for $1,000,000 with City of Certificate Holder.
 b. The sketch.

2. The applicant must obtain approval from all of the following:
 a. City Planning Department
 i. The City Engineer.
 ii. Zoning Enforcement Officer.
 iii. Building Safety Division.
 b. City DMD, Traffic Engineer.
3. Upon approval, the applicant returns the permit and sketch to the City Engineer for processing and pays a fee to cover the cost of recording the permit with the County Clerk and City Clerk.
4. The City Engineer advises the applicant by phone when processing is complete.
5. The City Engineer records the permit and sketch with the County Clerk and files the completed agreement with the City Clerk.
6. The applicant pays an annual permit fee based on square footage of encroachment.
7. Revocable permit must be renewed every 10 years.

Part 2-7(N) Sewer Tapping Permit

Section 2-7(N)(1) Applicability

Part 2-7(N) applies to the required permits for tapping into existing sewer lines. Sewer line construction from the main line connection to the structure are generally authorized under the plumbing permit issued by the Building Safety Division of the City Planning Department.

Section 2-7(N)(2) Procedure

1. Sewer tapping permits are issued only to licensed and bonded contractors.
2. To apply, the applicant completes the Sewer Tapping Permit Form at the ABCWUA, located in the Plaza Del Sol building, 600 2nd St. NW, Suite 201.
3. Applicants for sewer tapping permits must also obtain a barricade permit (see Part 2-7(C)) and an Excavation Permit (see Part 2-7(F)) prior to tapping.
4. The engineer issuing the permit will provide instructions related to the tapping.
5. The applicant is required to pay a permit fee.
6. A copy of the sewer tapping permits must be presented to Building Safety plumbing inspector located at the Plaza Del Sol Building, 600 2nd St., NW at the time of line inspection.

Part 2-7(O) Sidewalk, Drive Pad, and Curb and Gutter Permits

Section 2-7(O)(1) Applicability

Part 2-7(O) applies to the construction of sidewalks, drive pads, or curb and gutter. All curb and gutter work must be performed by a properly licensed contractor. All other work must be performed either by a properly licensed contractor or the homeowner following the procedures outlined. Sidewalks, drive pads, and curb and gutter shall be designed and constructed per Chapter 7 Transportation Design.

Section 2-7(O)(2) Procedure

1. To construct sidewalks, drive pads, or curb and gutter the contractor must meet all of the following prerequisites:
 a. Appropriate State license for concrete work.
 b. City Engineer approval.
 c. $5,000 maintenance bond.
d. $1,000 fee bond, if applicant wishes to establish a charge account with the City to be billed for fees on a monthly basis.
e. Evidence of $5,000,000 liability insurance bond.

2. Homeowners constructing sidewalks must meet all of the following prerequisites:
 a. City Engineer approval.
 b. $500 maintenance bond.
 c. Evidence of $10,000 liability insurance. (Homeowner's policy is sufficient.)

3. City Engineer approval is granted through the DRC work order process as described in Article 2-3 Public Infrastructure Improvement Procedures for Major Infrastructure improvements and as follows for minor work:
 a. Applicant provides a dimensioned Site Plan showing property lines; existing curb and gutter, sidewalk, and drive pad; and proposed sidewalk, curb and gutter, and drive pads.
 b. City Engineer will review and decide whether to issue an approval.

4. Qualified applicants can apply for a permit at the DMD/CSD. The permit clerk determines if the contractor is qualified and if insurance and bonding are up to date before issuing permit.
 a. Applicants for these permits should obtain a barricade permit (Part 2-7(C)) from DMD/CSD prior to application.
 b. An excavation permit (see Part 2-7(F)) is also required and is issued simultaneously with the sidewalk, drive pad, and curb and gutter permit.

5. If the contractor meets the prerequisites, the permit is issued. The applicant must pay the permit fee.

Part 2-7(P) Solar Rights Permit

Section 2-7(P)(1) Applicability

Part 2-7(P) applies to the permitting process that grants a property owner's right to install solar hot water heating panels or photovoltaic solar panels and the protections that ensure abutting property owners do not construct improvements or install landscaping that would materially reduce the effectiveness of those solar panels.

Section 2-7(P)(2) Procedure

1. Application for a solar rights permit is made to the Zoning Hearing Examiner (ZHE). Solar rights permit procedures are established pursuant to Article 14-11 Solar Permit Ordinance (ROA 1994). This DPM outlines the required submittal materials.

2. To apply, the applicant submits the Development Review Application and 2 copies of the following application materials to Development Review Services 22 days prior to the scheduled ZHE public hearing. An application fee is required.
 a. Plans of the proposed solar energy system, including all of the following:
 i. The type of solar collector and any heat storage and distribution facilities.
 ii. Calculations and sum total as to collection and beneficial use of heat, expressed in British Thermal Units (BTUs) and solar fraction.
 b. Site Plans showing all of the following:
i. Boundaries of all relevant parcels of land that either contain or are proposed to contain solar collectors or are proposed to be burdened by the solar right.

ii. The owners and the possessors of the real property for which parcel boundaries are shown.

iii. Where relevant to the solar right requested, the topography of the land; the location of structures, fixtures, and vegetation existing or known by the applicant to be planned; and the horizontal and vertical dimensions of the existing or planned structures, fixtures, and vegetation.

iv. A spatial and temporal definition of the solar rights requested.

3. Approval of the solar rights permit is determined by the ZHE. See IDO Subsection 14-16-5-10(D) (Permits for Solar Rights) and Section 14-11-7 of ROA 1994.

4. Upon ZHE approval, solar rights permits are recorded with the County Clerk no sooner than 15 days after the ZHE’s decision. The document filed is called a “Solar Right Declaration” and contains the following information:
 a. Legal description of the site of the solar collector including vertical and horizontal location of the solar collector on the site.
 b. Statement that a solar right is established and defining the 3-dimensional space or the place and time of day in which obstruction is prohibited or limited.
 c. Legal description of all land parcels burdened with servient tenements by the solar right.
 d. Reference to any special limitations imposed.

5. A copy of the recorded solar right declaration will be mailed to all owners of real property burdened with servient tenements by the solar right.

Part 2-7(Q) Stormwater Control Permit for Erosion and Sediment Control

Section 2-7(Q)(1) Applicability

Part 2-7(Q) refers to stormwater control permit for erosion and sediment control. See Chapter 6 Drainage, Flood Control, and Erosion Control for the applicability of this permit.

Section 2-7(Q)(2) Procedure

Submit the permit application to the Stormwater Quality Section of the Development Services Division for review.

Part 2-7(R) Fugitive Dust Permit

Section 2-7(R)(1) Applicability

Part 2-7(R) applies to all activities that will have a surface disturbance of ¾-acre or more. A fugitive dust permit, construction or programmatic, as applicable, is required prior to beginning any surface disturbance activities.

Section 2-7(R)(2) Procedure

1. The applicant is to discuss the project with a representative of the City Environmental Health Department, Air Quality Program to determine need
and type of fugitive dust permit and appropriate site-specific dust control measures for controlling airborne particulate matter.

2. If a fugitive dust permit is required, the applicant shall complete the appropriate Fugitive Dust Application, provide a copy of the site map, and pay applicable fees.

3. The applicant must obtain signatures from the project owner/operator, permittee and/or responsible person as indicated on the application form. Allow up to 10 business days for application review for surface disturbance of 25 acres or less and 20 business days for surface disturbance of greater than 25 acres.

4. Permission is granted for surface disturbance upon issuance of the fugitive dust permit.

Part 2-7(S) Water Meter and Fire Line Application

Section 2-7(S)(1) Applicability

Part 2-7(S) applies to the new construction of water service and fire lines. Methods of installing the public portion of the water service line, including the meter and box, are discussed in Chapter 9 Water System Design Criteria.

Section 2-7(S)(2) Procedure

1. The applicant completes Application for Water Service Form obtained at the ABCWUA in the City/County Building, 1st floor.

2. A water tap is required for all water service connections that are less than 3 inches.

3. Installation of fire hydrants and/or fire lines shall be installed with an ABCWUA mini work order.

4. The applicant pays the fees required by the ABCWUA. A work order is issued for installation of water meter. Regular billing begins when water meter is installed.
ARTICLE 2-8 DRAINAGE AND TRANSPORTATION SUBMITTALS

This section presents procedures for making Drainage and Transportation submittals and general criteria established by the City for their review.

Guidelines for preparation of Drainage and Traffic Circulation Layout Transportation submittals are presented in DPM Part 2-8(A). The material and information required for a complete submittal can be determined by referring to the Chapter 6 Drainage, Flood Control, and Erosion Control or Chapter 7 Transportation Design, as relevant.

Part 2-8(A) Drainage and Transportation Submittal and Review Procedures

The following are procedures and guidelines established by Development Review Services for reviewing Drainage and Transportation submittals.

1. All submittals and follow-up correspondence should be submitted to Development Review Services. For record keeping purposes, a Drainage & Transportation Information Sheet (DTIS) must be provided with the subject transmittal. The latest version can be obtained from the Planning Department webpage. All submittals required for building permits, preliminary plats, and site plans must be processed through Development Review Services. Submittals included with EPC, DRB, and building permit plans will not be reviewed by Development Review Services. Specific actions that are related to or part of one of these other processes that may need review by Development Review Services must be submitted separately to Development Review Services.

2. Correspondence related to Drainage and Transportation submittals must reference the file number assigned by Development Review Services upon submittal (for example, E17D025). This file number shall also be referenced on all resubmittals. The use of the file number facilitates the processing and tracking of submittals and related correspondence.

3. Upon receipt of a Drainage or Transportation submittal, a file number will be assigned, and the submittal will be logged in for review. The submittal will be added to a list that identifies its status in the review process.

4. Drainage and Transportation Submittals must include all of the following information to be accepted as complete:
 a. DTIS.
 b. Vicinity map.
 c. Legal description.
 d. Engineer’s seal for Drainage and engineer’s or architect’s seal for Transportation.
 e. Date.
 f. Any other items required by the DPM.

If submittal information is incomplete, Development Review Services will notify the applicant about what information is missing. Only after the information is deemed complete will a submittal be accepted for review.

5. If a submittal is required for a DRB approval, the DRB number (if available) must be included on the DTIS as well as on copies of the required infrastructure list (proposed, draft, or final), plat, and/or site plan. If a
submittal is for Certificate of Occupancy, the building permit number must be included on the DTIS form, and a copy of the permit must be attached.

6. Requests for approvals of site plans and/or subdivision plats shall be accompanied by a Drainage submittal. The particular nature, location, and scope of the proposed development defines the degree of drainage detail. One or more of the following submittals may be required based on any of the following:
 a. Conceptual Grading and Drainage Plan: Required for approval of site plans greater than 5 acres.
 b. Drainage Plans: Required for building permits, grading permits, paving permits, and site plans less than 5 acres.
 c. Drainage Report: Required for subdivisions of more than 10 lots or constituting 5 acres or more.

7. It is the policy of Development Review Services to make responses to new submittals, resubmittals, and follow-up correspondence as soon as possible but not more than 10 working days after a complete submittal has been received.

8. All revisions made to a particular submittal must be signed, sealed, and dated by the Architect of Record, with revisions clearly noted.

9. Approved Drainage and Transportation submittals are in effect for a period of 1 year from the date of approval. After 1 year, if no significant development has taken place, a resubmittal will be required and must reflect all changes in conditions and/or City requirements since the date of the last approval.

10. Questions concerning the preceding items should be directed in writing to Development Review Services.

Part 2-8(B) Drainage Facilities and Roadway Improvements Construction Agreement and Financial Guarantee

Subsection 14-5-2-9(I) of the Drainage Ordinance (ROA 1994) states that "if the construction of such (drainage) facilities is a condition of plat approval or building permit issuance, then financial guarantees of such construction satisfactory to the City Engineer shall also be provided as a prerequisite." In those instances where financial guarantees are required, the developer enters into an agreement with the City assuring the construction of such facilities. The form of agreement and the nature of acceptable financial guarantee is dependent on the circumstances involved. (See DPM Chapter 5 Recordable and Development Documents for sample documentation used for such guarantees.)

Part 2-8(C) Forms and Certificates

Copies of forms and certificates, such as the Drainage and Transportation Information Sheet, conference recap sheet, Floodplain Development Permit, Elevation Certificate, and other pertinent documents can be obtained from Development Review Services or the Planning Department webpage.
ARTICLE 2-9 DPM WAIVER

Part 2-9(A) Waiver for DPM Standards

Section 2-9(A)(1) Applicability

A waiver for design standards may be sought in order to cover unusual circumstances or alternative design concepts. Any exception from a standard in the DPM other than those in DPM Chapter 7 Transportation Design is reviewed by the DRB per IDO Subsection 14-16-6-6(L).

Section 2-9(A)(2) Procedure

See IDO Subsection 14-16-6-6(L)(2) for more detailed procedure requirements.

2-9(A)(2)(i) Neighborhood Meeting

At the neighborhood meeting, the applicant shall provide information about the proposed project, including, but not limited to:
1. the scope of uses.
2. approximate square footages for different uses.
3. general site layout.
4. design guidelines.
5. architectural style.
6. conceptual elevations.
7. conceptual landscaping plans.

2-9(A)(2)(ii) Application

1. An application form and the appropriate fees can be found on the City website as well as at the Development Review Services counter. The submittal shall include both of the following:
 a. A scale drawing showing the location of the proposed waiver with appropriate dimensions.
 b. Letter describing, explaining, and justifying the request per the criteria in IDO Subsection 14-16-6-6(L)(3) and the DPM.
2. Submit a completed application form and fee. A public meeting by the DRB will be scheduled within 7 days after the date of acceptance of the application and proper public notification per IDO requirements.

2-9(A)(2)(iii) Public Meeting

1. The public meeting gives the general public and area residents an opportunity to speak for or against the request and to elicit additional information that may have a bearing on the request. The applicant or agent must be present at the meeting to speak on behalf of the request and respond to questions.
2. Decision by the DRB may be deferred or continued if additional information or additional public notice is deemed necessary.
3. The DRB’s decision on the request may be to approve, approve with conditions, or deny the request.
4. The decision is final unless appealed to the Land Use Hearing Officer (LUHO). See IDO Subsection 14-16-6-4(U) for appeal procedures.

Part 2-9(B) Sidewalk Waiver

Section 2-9(B)(1) Applicability

While the City encourages compliance with sidewalk design standards, there are certain circumstances in which varying from the standards and design criteria is appropriate. The sidewalk waiver procedure was established to provide for possible departure from normal standards under specific circumstances and to protect unique characteristics of certain neighborhoods.

Any property owner who wants to install a sidewalk that does not conform to the standards in Part 6-5-5 Sidewalk, Drive Pad, and Curb and Gutter Ordinance (ROA 1994) and the design standards in DPM Chapter 7 Transportation Design must apply for a sidewalk waiver.

Exceptions:

A waiver to use material other than standard material described in Chapter 7 Transportation Design requires the approval of the City Engineer.

Section 2-9(B)(2) Governing Regulations

Section 6-5-5-3 of Part 6-5-5 Sidewalk, Drive Pad, and Curb and Gutter Ordinance (ROA 1994) states that “all properties properties within the city shall have sidewalk, drive pad, curb ramps, and curb and gutter in accordance with the standards set forth by §§ 6-5-5-1 et seq., unless a variance from these standards is allowed.”

Additionally, sidewalk design shall comply with IDO Subsection 14-16-5-3(D) and DPM Chapter 7 Transportation Design. Sidewalk design standards promote mobility, safety, and comfort of the pedestrian and allow adequate pedestrian access to abutting property.

2-9(B)(2)(i) Criteria for Waiver from IDO Sidewalk Standards

Requests for a waiver to not provide sidewalks as required pursuant to IDO. Subsection 14-16-5-3(D) are approved if all of the criteria in IDO Subsection 14-16-6-6(L)(3) and all of the following criteria are met:

1. The area is of low-intensity land use to an extent that the normal installation of sidewalks will not contribute to the public welfare, and the absence of a sidewalk will not create a gap in an existing sidewalk system extended to one or more sides of the subject property or area.
2. The City’s right-of-way is insufficient in width to allow the construction of a sidewalk of standard dimension and placement, but there is sufficient right-of-way to meet minimum ADA or PROWAG guidance.
3. The adjoining sidewalks are non-standard as to width and/or location, and the Waiver would enable the new and existing sidewalks to match in width and/or location, or could create a smooth transition between areas of different width and/or character.
2-9(B)(2)(ii) Criteria for Waiver from DPM or Sidewalk, Drive Pad, and Curb and Gutter Ordinance Sidewalk Standards

Requests for a waiver for standards in the DPM Chapter 7 Transportation Design or Part 6-5-5 Sidewalk, Drive Pad, and Curb and Gutter Ordinance (ROA 1994) are approved if all of the criteria in IDO Subsection 14-16-6-6(L)(3) are met and any of the following criteria is met:

1. The area or site has been recognized as having historical, archeological, and/or architectural significance by the City of Albuquerque, the State of New Mexico, or the United States of America, and a waiver is appropriate to maintain such historical, archeological, and/or architectural significance.
2. There are pre-existing obstructions that cannot be easily or economically relocated or should not be altered, such as mature trees, grades, fills, water courses, natural topographic features, or manmade obstructions.
3. The established neighborhood character or mature landscaping on the site would be damaged to a degree that outweighs the public utility of the normal sidewalk requirement.
4. The waiver is requested for a short stub street, cul-de-sac, or local access street with Average Daily Traffic (ADT) of no more than 50.

Section 2-9(B)(3) Procedure

2-9(B)(3)(i) Neighborhood Meeting

At the neighborhood meeting, the applicant shall provide information about the proposed project, including, but not limited to:

1. the scope of uses.
2. approximate square footages for different uses.
3. general site layout.
4. design guidelines.
5. architectural style.
6. conceptual elevations.
7. conceptual landscaping plans.

2-9(B)(3)(ii) Application

1. An application form and the appropriate fees can be found on the City website as well as the Development Review Services counter.
2. The submittal shall include all of the following:
 a. A scale drawing showing the location of the proposed waiver with appropriate dimensions.
 b. Letter describing, explaining, and justifying the request per the criteria in IDO Section 14-16-6-6(L)(3) and the DPM.
3. A public meeting by the DRB will be scheduled within 7 days after a complete application was accepted and required public notice per the IDO is complete.

2-9(B)(3)(iii) Public Meeting

1. The public meeting gives the general public and area residents an opportunity to speak for or against the request and to elicit additional information that may have a bearing on the request. The applicant or
agent must be present at the meeting to speak on behalf of the request and respond to questions.
2. Decision by the DRB may be deferred or continued if additional information or additional public notice is deemed necessary.
3. The DRB's decision on the request may be to approve, approve with conditions, or deny the request.
4. The decision is final unless appealed to the LUHO. See IDO Subsection 14-16-6-4(U) for appeal procedures.

2-9(B)(3)(iv) Sidewalk Permit

Approval of a sidewalk waiver does not constitute approval of plans for a sidewalk permit. The Letter of Advice must accompany the traffic site plan and/or sidewalk permit application.

Part 2-9(C) Temporary Sidewalk Deferral

Section 2-9(C)(1) Applicability

A developer has the option to defer the construction of sidewalks until the end of lot construction within a subdivision. The eventual construction of sidewalks shall be financially assured through the use of an Infrastructure Improvements Agreement (IIA) per DPM Article 2-3 Public Infrastructure Improvement Procedures.

Section 2-9(C)(2) Governing Regulations

Sidewalks shall be designed and constructed be in accordance with the criteria presented in IDO Subsection 14-16-5-3(D) and DPM Chapter 7 Transportation Design.

Section 2-9(C)(3) Procedure

2-9(C)(3)(i) Neighborhood Meeting

At the neighborhood meeting, the applicant shall provide information about the proposed project, including, but not limited to:
1. the scope of uses.
2. approximate square footages for different uses.
3. general site layout.
4. design guidelines.
5. architectural style.
6. conceptual elevations.
7. conceptual landscaping plans.

2-9(C)(3)(ii) Application

1. An application form and the appropriate fees can be found on the Planning Department webpage as well as the Development Review Services counter.
2. The submittal shall include a scale drawing showing the location of the deferred sidewalk with appropriate dimensions.
3. A public meeting by the DRB will be scheduled within 7 days after the complete application is accepted and required public notice per the IDO is complete.

2-9(C)(3)(iii) Public Meeting

1. The public meeting gives the general public and area residents an opportunity to speak for or against the request and to elicit additional information that may have a bearing on the request. The applicant or agent must be present at the meeting to speak on behalf of the request and respond to questions.
2. Decision by the DRB may be deferred or continued if additional information or additional public notice is deemed necessary.
3. The DRB's decision on the request may be to approve, approve with conditions, or deny the request.
4. The decision is final unless appealed to the LUHO. See IDO for appeal procedures.

Part 2-9(D) Stub Street/Cul-de-Sac Waiver

Section 2-9(D)(1) Applicability

The street network in new subdivisions shall be created through block standards in IDO Subsection 14-16-5-4(E) and DPM Chapter 7 Transportation Design. Stub streets and cul-de-sacs that terminate the road are prohibited, except as allowed pursuant to IDO Subsection 14-16-5-3(E)(1)(d).

Section 2-9(D)(2) Governing Regulations

Although stub street and cul-de-sac street configurations should be avoided in layout of new streets, if they are necessary and meet the exceptions in IDO Subsection 14-16-5-3(E)(1)(d), they shall be designed per DPM Section 7-4(J)(3) after a waiver is granted by DRB.

Section 2-9(D)(3) Procedure

2-9(D)(3)(i) Neighborhood Meeting

At the neighborhood meeting, the applicant shall provide information about the proposed project, including, but not limited to:
1. the scope of uses.
2. approximate square footages for different uses.
3. general site layout.
4. design guidelines.
5. architectural style.
6. conceptual elevations.
7. conceptual landscaping plans.
2-9(D)(3)(ii) Application

1. An application form and the appropriate fees can be found on the Planning Department webpage as well as the Development Review Services counter.

2. The submittal shall include all of the following:
 a. A scale drawing showing the location of the proposed waiver with appropriate dimensions.
 b. Letter describing, explaining, and justifying the request per the criteria in IDO Section 14-16-6-6(L)(3) and compliance with the DPM.

3. A public meeting by the DRB will be scheduled within 7 days after the complete application is accepted and required public notice per the IDO is complete.

2-9(D)(3)(iii) Public Meeting

1. The public meeting gives the general public and area residents an opportunity to speak for or against the request and to elicit additional information that may have a bearing on the request. The applicant or agent must be present at the meeting to speak on behalf of the request and respond to questions.

2. Decision by the DRB may be deferred or continued if additional information or additional public notice is deemed necessary.

3. The DRB’s decision on the request may be to approve, approve with conditions, or deny the request.

4. The decision is final unless appealed to the LUHO. See IDO for appeal procedures.

Part 2-9(E) Vacation Of Right-Of-Way Or Easement

Section 2-9(E)(1) Applicability

This section corresponds to the procedure outlined in the IDO Subsection 14-16-6-6(K). It applies to all applications to vacate a public right-of-way or easement, including but not limited to streets, alleys, and easements that are owned by or under the control of the City, as well as applications to vacate a private way or easements shown on a recorded plat.

Section 2-9(E)(2) Governing Regulations

Rights-of-way and easements may be vacated if all of the following criteria are met:

1. The public welfare is in no way served by retaining the right-of-way or easement.

2. There is a net benefit to the public welfare because the development made possible by the vacation is clearly more beneficial to the public welfare than the minor detriment resulting from the vacation.

3. There is no convincing evidence that any substantial property right is being abridged against the will of the owner of the property right.
Section 2-9(E)(3) Procedure

2-9(E)(3)(i) Neighborhood Meeting

At the neighborhood meeting, the applicant shall provide information about the proposed project, including, but not limited to:
1. the scope of uses.
2. approximate square footages for different uses.
3. general site layout.
4. design guidelines.
5. architectural style.
6. conceptual elevations.
7. conceptual landscaping plans.

2-9(E)(3)(ii) Application

1. An application form and the appropriate fees can be found on the Planning Department webpage as well as the Development Review Services counter.
2. The submittal shall include all of the following:
 a. A scale drawing showing the location of the easement or right-of-way to be vacated.
 b. A cross section of the right-of-way (if applicable) showing the existing and proposed right-of-way lines, pavement, curb, gutter, sidewalk, and landscape buffer.
 c. Letter describing, explaining, and justifying the request per the criteria in IDO Section 14-16-6-6(K)(3) and the DPM.
3. A public meeting by the DRB will be scheduled within 7 days after the complete application is accepted and required public notice per the IDO is complete.

2-9(E)(3)(iii) Public Meeting

1. The public meeting gives the general public and area residents an opportunity to speak for or against the request and to elicit additional information that may have a bearing on the request. The applicant or agent must be present at the meeting to speak on behalf of the request and respond to questions.
2. Decision by the DRB may be deferred or continued if additional information or additional public notice is deemed necessary.
3. The DRB’s decision on the request may be to approve, approve with conditions, or deny the request.
4. Right-of-way and easements over thresholds listed in IDO Subsection 14-16-6-6(K) shall be referred to City Council for approval.
5. The decision is final unless appealed to the LUHO. See IDO for appeal procedures.

2-9(E)(3)(iv) Compliance with Conditions

1. A normal condition of approval requires the City’s Real Property Division to dispose of all public right-of-way declared surplus through the vacation process. Generally, all utility and drainage easements are retained unless otherwise specified in the DRB’s action.
2. The applicant must prepare and record a plat that incorporates the vacated right-of-way with adjacent property.
3. All conditions must be met within 1 year from the date of the original decision.
4. The applicant must notify Development Review Services in writing that all the conditions have been satisfied.
5. Development Review Services will verify that conditions have been satisfied and, if so, prepare a Certification of Vacation.

2-9(E)(3)(v) Certification of Vacation

Vacations are not in effect until a Certificate of Vacation is recorded. Development Review Services records the Certification of Vacation with the County Clerk and sends a copy of the certification to the applicant.
/ DEVELOPMENT PROCEDURES /
CHAPTER 3
IMPACT FEES REGULATIONS

This chapter presents the regulations and required information for establishing, implementing, and administering impact fees for each land development activity in the City of Albuquerque.

CONTENTS

ARTICLE 3-1 ADMINISTRATIVE ORGANIZATION AND RESPONSIBILITY
..3-4
Part 3-1(A) Impact Fees Administrator..3-4
Part 3-1(B) Other Departments...3-5

ARTICLE 3-2 IMPOSITION OF IMPACT FEE3-5
Part 3-2(A) Fee Payer ...3-5
Part 3-2(B) Determination and Assessment of the Impact Fee3-6
 Section 3-2(B)(1) General ...3-6
 Section 3-2(B)(2) Assessment of Fee..3-6
Part 3-2(C) Collection of Impact Fee ..3-6
 Section 3-2(C)(1) General ...3-6
 Section 3-2(C)(2) Invalid Payment ..3-6
 Section 3-2(C)(3) Credits Prior to Completion..3-7
Part 3-2(D) Expiration of Building Permits..3-7
Part 3-2(E) Private Security...3-8
Part 3-2(F) Private Fire Protection or Rescue...3-8

ARTICLE 3-3 DETERMINATION OF AN IMPACT FEE BASED ON FEE
SCHEDULES ...3-8
Part 3-3(A) Payment from Schedule ...3-8
Part 3-3(B) Residential Heated Area...3-9
Part 3-3(C) Gross Floor Area ..3-9
Part 3-3(D) Mixed-use Development ...3-9
Part 3-3(E) Mixed-use Structures ...3-9
Part 3-3(F) Shell Permit ..3-9
Part 3-3(G) Change of Use ..3-10
Part 3-3(H) Accessory or Auxiliary Uses ...3-10
Part 3-3(I) House Moves and Mobile Home Moves3-11
Part 3-3(J) Mobile Home/Recreational Vehicles (RVs) Parks3-11
Part 3-3(K) Model Homes ...3-11
Part 3-3(L) Remodeling and Redevelopment ...3-11
Part 3-3(M) Miscellaneous Land Use Types ..3-11

ARTICLE 3-4 INDEPENDENT FEE DETERMINATION3-12
Part 3-4(A) Option of the Fee payer ..3-12
Part 3-4(B) Notice of Intent by Fee Payer ...3-12
Part 3-4(C) Pre-Application Meeting ...3-12
Part 3-4(D) Guidelines ...3-12
Part 3-4(E) Sufficiency Determination ..3-13
Part 3-4(F) Determination of Impact Fee ..3-14
Part 3-4(G) Effective Date ...3-14
Part 3-4(H) Application for Permit ...3-14

ARTICLE 3-5 COLLECTION AND DEPOSIT OF THE IMPACT FEE3-15
Part 3-5(A) Road (Transportation) Impact Fee ...3-15
Section 3-5(A)(1) Service Areas ..3-15
Section 3-5(A)(2) Deposit of the Impact Fee ..3-15
Part 3-5(B) Drainage (Stormwater) Impact Fees ...3-15
Section 3-5(B)(1) Service Areas ..3-15
Section 3-5(B)(2) Deposit of the Impact Fee ..3-15
Part 3-5(C) Park, Open Space and/or Trails Impact Fees ..3-15
Section 3-5(C)(1) Service Areas ..3-15
Section 3-5(C)(2) Deposit of the Impact Fee ..3-15
Part 3-5(D) Fire and Police Impact Fees ..3-15
Section 3-5(D)(1) Service Areas ..3-15
Section 3-5(D)(2) Deposit of the Impact Fee ..3-15

ARTICLE 3-6 USE OF IMPACT FEE FUNDS ...3-17
Part 3-6(A) Purpose ..3-17
Part 3-6(B) System Improvements ...3-17

ARTICLE 3-7 REFUNDS ...3-18
Part 3-7(A) Refund for Failure to Construct or Provide Service3-18
Part 3-7(B) Overpayment ...3-18
Part 3-7(C) Underpayment ...3-18

ARTICLE 3-8 EXEMPTIONS ...3-19
Part 3-8(A) Exemptions Claimed by Fee Payers ...3-19
Part 3-8(B) Total Exemptions ..3-19

ARTICLE 3-9 CREDITS ..3-20
Part 3-9(A) General Conditions ...3-20
Part 3-9(B) General Documentation and Procedures ..3-20
Section 3-9(B)(1) Amount of Credit Requested ...3-21
Section 3-9(B)(2) Documentation ..3-21
Section 3-9(B)(3) Submittals for Construction Credits ...3-21
Section 3-9(B)(4) City Approved Work Order ...3-21
Section 3-9(B)(5) Change Orders ..3-22
Section 3-9(B)(6) Acceptance of Construction for Credit3-22
Section 3-9(B)(7) Acceptance of Land Dedication for Credit3-23
Section 3-9(B)(8) Transferability of Credits ..3-23
Section 3-9(B)(9) Withdrawal of Offer by Applicant ..3-24
Section 3-9(B)(10) Value of Credits ..3-24
Part 3-9(C) Excess Credits ..3-24

ARTICLE 3-10 EXEMPTIONS ...3-25
Part 3-10(A) Affordable Housing ...3-25
Section 3-10(A)(1) Ownership Housing ..3-25
Section 3-10(A)(2) Rental Housing ...3-26
Part 3-10(B) Development in Metropolitan Redevelopment Areas3-27
The following administrative rules and procedures shall guide the Impact Fees Administrator in the administration of the City Impact Fee Ordinance (Article 14-19, ROA 1994), which became effective on December 5, 2012 (effective date). These administrative rules elaborate upon the administrative directions contained in the Impact Fee Ordinance and are intended to be used in conjunction with the Impact Fee Ordinance.

The fee schedule in Part 14-19-13 (ROA 1994) and applicable service area maps are provided to determine the amount of the impact fee for each land development activity. In construing these rules, all words, phrases, and terms contained here shall have the same meaning as defined in the Impact Fee Ordinance, in the New Mexico Development Fee Act (§ 5-8-1 et seq., NMSA 1978), and the Integrated Development Ordinance (IDO) (Article 14-16, ROA 1994).

ARTICLE 3-1 ADMINISTRATIVE ORGANIZATION AND RESPONSIBILITY

Part 3-1(A) Impact Fees Administrator

The Impact Fees Administrator is hereby authorized to interpret and enforce all provisions of these rules and the Impact Fee Ordinance and to carry out the general administration of all impact fees enacted by the City of Albuquerque. The Impact Fees Administrator shall have the responsibility to carry out all of the following:

1. When no equivalent type of land use is present in either the fee schedule or the IDO, or is a previously determined to be miscellaneous land use, the Impact Fees Administrator shall establish a fee applicable to the most nearly equivalent type of land use on the fee schedule.

2. When requested by the fee payer, the Impact Fees Administrator shall assess and certify the impact fee applicable to a particular development using the procedures described in the applicable Impact Fee Ordinance and in these administrative rules. The impact fee assessment certification shall be valid for a period of 4 years.

 a. The Impact Fees Administrator, or his/her designee, shall calculate and assess the impact fee based on all of the following steps:

 i. Determine the applicable service area.

 ii. Determine the applicable land use type.

 iii. Verify the number of units or the amount of gross floor area (whichever is applicable) in the development.

 iv. For the applicable land use type, multiply the unit by the fee per unit from the fee schedule in the Service Area Maps and Impact Fee Schedules.

 b. If the assessment occurs at the time of subdivision plat or site plan approval, the assessment may be estimated based on the applicable fee schedule and be finalized no later than building permit.

3. With respect to an independent fee determination (Article 3-4), the Impact Fees Administrator shall do all of the following:
a. Conduct a pre-application meeting with the applicant and representatives of appropriate City departments.
b. Review the independent fee determination study for sufficiency, methodology, technical accuracy, and findings.
c. Establish the amount of the impact fee as a result of the independent study based on the procedures described in the applicable Impact Fee Ordinance and in these administrative rules.

4. The Impact Fees Administrator has sole authority to determine exemptions from a requirement to pay an impact fee or reduction in the amount of the fee.

5. The Impact Fees Administrator shall determine the availability of and the amount of any refund of an impact fee.

6. The Impact Fees Administrator shall calculate the additional impact fee due in the event of change of use, redevelopment, or modifications of an existing use.

7. The Impact Fees Administrator shall calculate and grant credits for contributions, dedications, or improvements that may be used to offset any impact fee otherwise due.

8. The Impact Fees Administrator shall maintain separate interest bearing accounts clearly identifying the payer and category of capital improvements within the service area in which the fee was collected.

9. A notice of impact fee assessment for the site shall be included on the final plat.

Part 3-1(B) Other Departments

Other City departments and offices shall provide advice, information, and other services upon the request of the Impact Fees Administrator.

ARTICLE 3-2 IMPOSITION OF IMPACT FEE

Part 3-2(A) Fee Payer

Any person who, after the effective date of the Impact Fee Ordinance, seeks to engage in a new development by applying to the City of Albuquerque for any of the following permits shall be required to pay an impact fee in the manner and amount set forth in the relevant ordinance and in these administrative rules:

1. The issuance or extension of a building permit, or certificate of occupancy in the case of a mobile home.
2. The issuance or extension of a permit that would allow the construction or installation of a structure, including a mobile home.
Part 3-2(B) Determination and Assessment of the Impact Fee

Section 3-2(B)(1) General

The amount of the impact fee shall be determined by the Impact Fees Administrator, who shall receive assistance from other departments when necessary and appropriate. The Impact Fees Administrator shall determine whether the method of fee determination is based on the fee schedule contained in the appropriate Impact Fee Ordinance or by an independent fee determination study. The calculation of exemptions, refunds, and credits and the determination of the net impact fee due shall also be the responsibility of the Impact Fees Administrator with the assistance of appropriate City Departments.

Section 3-2(B)(2) Assessment of Fee

The impact fee shall be assessed as follows:

1. For land that is platted or replatted on or after the effective date, the impact fee shall be preliminarily assessed for new development no later than at the time the subdivision plat is recorded.

2. For land platted or replatted prior to the effective date or for development that occurs on existing lots of record, the impact fee shall be assessed at the time of development approval, plan check or issuance of a building permit.

3. The assessment of an impact fee shall be in writing and shall be valid for a period of four years.

Part 3-2(C) Collection of Impact Fee

Section 3-2(C)(1) General

The impact fee shall be collected prior to issuance of a building permit. All payments shall be made at the Development Review Services Division of the Planning Department and can be paid by approved credit card, personal or business check, cashier’s check, or money order payable to City of Albuquerque. In lieu of monetary payment, up to 100% of an impact fee due may be paid by the use of applicable credits as defined in Article 3-9.

Section 3-2(C)(2) Invalid Payment

In the event the payment of an impact fee subsequently proves to be invalid due to insufficient funds, improper execution, or for any other reason, then all of the following actions shall be taken:

1. The Impact Fees Administrator shall, within 30 days of detection of such a deficiency, notify the fee payer, the contractor, and the property owner by certified mail of both of the following:
 a. An impact fee amount is due by valid payment immediately upon receipt of said notice.
 b. Permits, inspections, or certificates of occupancy will not be issued until the amount is paid and, if not paid within 30 days, the Impact Fees...
Administrator shall have authority to instruct the City Building Safety Division to stop all construction on the site until the payment is received.

2. No further building permits, construction permits, inspections, or certificate of use and occupancy (C.O.) shall be issued by the City of Albuquerque until the required impact fee is paid.

3. The amount due shall be the amount of the impact fee plus the amount charged by the bank for the dishonored payment, plus a service charge as established by City of Albuquerque.

Section 3-2(C)(3) Credits Prior to Completion

In the event that the fee payer has received approval from the Impact Fees Administrator for credits for construction of system improvements and the credits are to be applied before completion of the improvements, all of the following requirements shall be met:

1. The fee payer shall submit the Irrevocable Letter of Credit to the Impact Fees Administrator for an amount equal to 125% of the full amount of the completion cost of the system improvements. The letter of credit shall be payable to the City of Albuquerque and shall be approved by the City Attorney prior to acceptance;

2. The fee payer shall procure a City work order for the construction of the creditable improvements, including all of the following steps:
 a. A performance and warranty bond shall be issued by a company registered in and licensed to do business in the State of New Mexico, for the purpose of securing faithful performance of the construction and to indemnify the City for any damages associated with failure to satisfactorily perform construction, and shall be effective for 1 year after the City issues a certificate of completion and acceptance.
 b. The performance and warranty bond shall be reviewed and approved by the City Attorney prior to acceptance of the bond by the Impact Fees Administrator.
 c. The performance and warranty bond shall be renewed not later than 60 days prior to the renewal date. In the event of a notice to cancel or of intent not to renew, the Impact Fees Administrator shall be entitled to declare a default and make demand on the full amount of the bond.

Part 3-2(D) Expiration of Building Permits

1. If a building permit expires, is revoked, or is voluntarily surrendered and is, therefore, voided and no construction or improvement of land has commenced, then the fee payer shall be entitled to a refund, without interest, of 97% of the impact fee that was paid as a condition for its issuance. The City shall retain 3% of the fee for administrative costs. The fee payer must submit an application for such a refund to the Impact Fees Administrator at least 30 days prior to the expiration of the permit. In the case of an expired permit that was obtained in whole or in part by the use of credits, only that portion not paid by credits may be refunded. The fee payer shall apply to the Impact Fees Administrator to reinstate the credits that were not used. Any request to reinstate a credit must be made at the time of reapplication or it shall be deemed waived.

2. If a refund has been received by the fee payer, the fee payer must pay the appropriate impact fee if reapplication is made for a permit. If a permit expires and no refund has been issued, a fee payer will not be required to
pay the fee again if reapplication is made for the permit on the same lot, parcel, or tract unless the use or size of the structure has changed within the previous 4 years of the original assessment. In the event that the use or size of the structure has changed, the amount due would be the change in the amount of the fee based upon the new structure or use.

3. A credit for previous payment of an impact fee must be requested by the fee payer. Any credit not so requested at the time of reapplication shall be deemed waived by the fee payer.

4. A refund of the impact fee shall not be granted if the permit expires and construction has commenced. In this case, the fee payer will not have to pay the impact fee if reapplication is made for a permit for the same type and size of structure.

Part 3-2(E) Private Security

No credit will be given against a police impact fee for the provision of private security services or facilities.

Part 3-2(F) Private Fire Protection or Rescue

No credit will be given against a fire impact fee for the provision of private fire protection or rescue services or facilities.

ARTICLE 3-3 DETERMINATION OF AN IMPACT FEE BASED ON FEE SCHEDULES

Part 3-3(A) Payment from Schedule

The amount of the impact fee shall be determined from the Service Area Maps and Impact Fee Schedules and as provided by the Impact Fees Administrator or his/her designee or the City of Albuquerque Impact Fee Summary Form.

If the type of land use is not specified in the fee schedule or the IDO, the Impact Fees Administrator shall apply the fee of the most nearly equivalent type of land use on the fee schedule.

The Impact Fees Administrator shall be guided in the selection of a comparable land use type by the Albuquerque/Bernalillo County Comprehensive Plan (ABC Comp Plan) and the land development regulations of the City of Albuquerque, including, but not limited to, the IDO.

If a fee payer should choose to not have the impact fee determined according to the fee schedule, then the fee payer shall prepare and submit an independent fee determination study in accordance with the appropriate Impact Fee Ordinance.
In the event that the sub-classification of a particular use of land into the classification established by the Impact Fee Ordinance is unclear, the North American Industry Classification System (NAICS), United States, latest edition, shall be used as a guide.

Part 3-3(B) Residential Heated Area

The amount of the impact fee for residential structures shall be based on the floor area of the structure that is designed to be provided with heat and/or air conditioning and not on gross floor area of the structure.

Part 3-3(C) Gross Floor Area

The amount of the impact fee for non-residential structures shall be based on the total floor area, including basements, mezzanines and upper floors, if any, expressed in square feet and measured from the outside surface of the outside walls, but excluding enclosed vehicle parking areas.

Part 3-3(D) Mixed-use Development

If a development includes both residential and non-residential uses, the impact fee is to be assessed for each use based on the fee schedule and the results added together. If the owner can substantiate that the impact of the mixed-use project justifies a lower impact fee proportionate to the impact reduction, then the Impact Fees Administrator may consider a proportionate reduction of the impact fee. The Impact Fees Administrator is encouraged to use IDO Subsection 14-16-5(C)(5)(b) Shared Parking Reduction, the ULI Shared Parking Standards, and the ITE Trip Generation Manual for guidance.

Part 3-3(E) Mixed-use Structures

If a structure includes both residential and non-residential uses, the impact fee is to be assessed for each use individually based on the relevant fee schedule and the results added together. If the owner can substantiate that the impact of the mixed-use project justifies a lower impact fee proportionate to the impact reduction, then the Impact Fees Administrator may consider a proportionate reduction of the impact fee. The Impact Fees Administrator is encouraged to use IDO Subsection 14-16-5(C)(5)(b) Shared Parking Reduction, the ULI Shared Parking Standards, and the ITE Trip Generation Manual for guidance.

Part 3-3(F) Shell Permit

Subject to the following qualifications, an impact fee shall not be assessed for tenant development improvements. Builders will often apply for a building permit to construct the “shell” of a building. Remodeling permits would be issued later to finish construction of the interior of the structure. The impact fee shall be paid prior to the issuance of the building permit for construction of the shell. The amount of the fee should be based on the intended land use as described by the builder. If a builder applies for a “shell” permit and the
intended land use is not known, the impact fee shall be assessed based on that land use that generates the greatest impact and is allowed under the existing zoning for the lot or parcel. If it is found during review of the application for a Tenant Improvement Permit that the actual land use differs from the intended land use as described in the application, a determination shall be made as to whether or not an additional impact fee is due based on the procedures for change of use. If so, the additional impact fee shall be paid prior to the issuance of the Tenant Improvement Permit. If it is determined that there has been an overpayment of an impact fee, a refund would become available pursuant to the refund provisions of these administrative rules (Article 3-7).

If a shell permit is deemed complete prior to the effective date and left unfinished, an impact fee shall not be assessed at the time of reapplication of a shell permit. Subsequent change of use, redevelopment, or modification of the structure may be subject to an impact fee based on the procedures for change of use.

Part 3-3(G) Change of Use

In the case of a change of use, redevelopment, or modification of an existing use that requires the issuance of a building permit, the impact fee shall be based upon the net increase in the impact fee for the new use as compared to the previous use. The amount of the impact fee that is due as a result of the change in land use shall be determined at the time the fee payer applies for a building permit. The impact fee shall be paid prior to the issuance of a building permit for construction or remodeling.

Previous land use shall be the legal land use physically existing on the effective date of the Impact Fee Ordinance or the current legal land use. The fee payer shall furnish all documentation required by the Impact Fees Administrator to determine the previous use.

Should the change of use, redevelopment, or modification result in a net decrease in the impact fee, no refunds or credits for the impact fee previously paid shall be made.

If the change of land use does not require the issuance of a building permit, then there shall be no requirement to pay an impact fee.

Part 3-3(H) Accessory or Auxiliary Uses

Generally, no impact fee shall be assessed for accessory or auxiliary land uses, such as a clubhouse or tennis court in an apartment complex, unless it can be established by the Impact Fees Administrator that the land use constitutes an independent function; however, structures that meet the definition of a “dwelling” in the Building Code are not exempted as accessory or auxiliary uses.
Part 3-3(I) House Moves and Mobile Home Moves

An impact fee shall be assessed for structures or mobile homes moved from one location to another unless the structure or unit being moved is a replacement of an equivalent use at the new location. If the structure or mobile home moved is replaced by an equivalent use at the old location, no impact fee shall be due for the replacement use.

Part 3-3(J) Mobile Home/Recreational Vehicles (RVs) Parks

Impact fees for a mobile home park or recreational vehicle park shall be collected at the time of building permit, based on the number of mobile home/RV spaces created.

Part 3-3(K) Model Homes

Model homes on residentially zoned land shall be charged a residential impact fee. Model homes on non-residentially zoned land shall be charged a non-residential impact fee.

Part 3-3(L) Remodeling and Redevelopment

When a change of use, redevelopment, or modification of an existing commercial use or building requires a building permit, the impact fee shall be calculated based on the pro rata difference between previous use and the proposed use.

Remodeling or additions to single-family dwelling units shall not be subject to an impact fee.

Part 3-3(M) Miscellaneous Land Use Types

The Impact Fees Administrator shall maintain a list of the rulings and administrative determinations made pursuant to the Impact Fee Ordinance.
ARTICLE 3-4 INDEPENDENT FEE DETERMINATION

Part 3-4(A) Option of the Fee Payer

If a fee payer opts not to have an impact fee determined according to the Service Area Maps and Impact Fee Schedules, then the fee payer shall prepare and submit an independent fee determination in accordance with these administrative rules and the appropriate impact fee. Any submission not so made at the time of building permit application shall be deemed waived.

The utilization of this option by the fee payer shall not exempt the applicant from paying the impact fee prior to the issuance of a building permit.

Part 3-4(B) Notice of Intent by Fee Payer

The fee payer shall inform the Impact Fees Administrator of the fee payer’s intent to use an independent fee determination. The Impact Fees Administrator shall then schedule a pre-application meeting with the applicant.

Part 3-4(C) Pre-Application Meeting

Before beginning the independent fee determination study, the fee payer or the fee payer’s representative shall be given the opportunity to attend a pre-application meeting with the Impact Fees Administrator. The purpose of the pre-application meeting is to discuss the procedures of the independent fee determination study, the methodology to be employed, and the standards to be met and to produce a letter of understanding.

The results, conclusions, and agreements reached at the pre-application meeting regarding methodology, required forms of documentation, and procedures shall be placed in a letter of understanding by the Impact Fees Administrator within 15 days of the pre-application meeting. Nothing in that letter shall constitute a waiver of ordinance provisions.

A copy of this letter of understanding shall be sent to the applicant. The agreements set out in the letter of understanding will expire in 30 days from receipt unless the applicant acknowledges acceptance of the agreements in writing to the Impact Fees Administrator.

The applicant may waive the pre-application meeting. Any applicant who waives a pre-application meeting has waived his/her right to administratively raise methodological or procedural issues at a subsequent time.

Part 3-4(D) Guidelines

1. The purpose of the independent fee determination study is to measure the impact of the development in question on the roadway facilities; drainage...
facilities; parks, trails and open space facilities; and fire or police facilities of the City of Albuquerque.

2. An independent fee determination study must address the expected impact of the development over the projected life of the structures on the system improvement. Any claim that the use or occupancy of the structures within the development will be different from normal use or occupancy must be supported by the appropriate zone change or other appropriate documentation that will support the claim.

3. The independent fee determination study shall follow the methodologies and formats that are agreed upon during the pre-application meeting and be in accord with any documentation or methodology required by these administrative rules and the Impact Fee Ordinance.

4. The independent fee determination study shall be prepared and presented by qualified professionals in good standing in their respective fields. The methodology shall be consistent with best professional practice and support the central claim of the study. The study shall provide all necessary supporting documentation and information. Failure to adhere to best professional standards is a basis for rejection of the study. The applicant’s submission must certify that the study complies with best professional practices.

5. The applicant shall submit the independent study to the Impact Fees Administrator.

6. The applicant shall provide the Impact Fees Administrator with the name, address, and telephone number of the property owner, the professional preparing the study, and the applicant.

Part 3-4(E) Sufficiency Determination

1. The Impact Fees Administrator will review the independent fee determination study for sufficiency, methodology, technical accuracy, and findings. The Impact Fees Administrator shall have 30 days to review the study and to inform the applicant, in writing, of any deficiencies or defects in the study or to find the study complete and acceptable. A notice of acceptance or non-acceptance shall be mailed to the applicant. In the event that the notice is not given within 30 days, the study shall be considered complete and acceptable.

2. Upon receipt of a notice of non-acceptance, the applicant may modify or supplement the study and resubmit a modified study. The Impact Fees Administrator will consider the independent fee determination study to be withdrawn and the letter of understanding expired if the Impact Fees Administrator does not receive a response from the applicant within 30 days of receipt of the above notice.

3. Upon receipt of a response or resubmittal of the study, the Impact Fees Administrator shall have 30 days to review the resubmittal or response and notify the applicant of any defects or deficiencies in the submission. If the Impact Fees Administrator finds deficiencies or defects in a resubmitted study, notice of such deficiencies or defects shall be provided as in Subsection 1 above. If the fee payer disagrees with the findings or decisions of the Impact Fees Administrator, the fee payer may appeal the decision as outlined in the Impact Fee Ordinance.
Part 3-4(F) Determination of Impact Fee

The determination of the amount of the applicable impact fee shall be made by the Impact Fees Administrator based on review of a complete and acceptable independent fee determination study.

Part 3-4(G) Effective Date

The effective date for an impact fee assessed by an independent fee determination study shall be the date at which the Impact Fees Administrator issues a notice of acceptance for the independent fee determination. The independent fee determination shall be valid for 4 years.

Part 3-4(H) Application for Permit

It shall be the responsibility of the fee payer, at the time of application for a building permit, to present the approved independently determined fee as approved by the Impact Fees Administrator.

ARTICLE 3-5 COLLECTION AND DEPOSIT OF THE IMPACT FEE

Service areas for impact fees are established in [Part 14-19-10 (ROA 1994)](#), and maps are provided as an [Appendix](#).

Part 3-5(A) Road (Transportation) Impact Fee

Section 3-5(A)(1) Service Areas

There is 1 city-wide Road (Transportation) Service Area within the incorporated area of the City of Albuquerque, excluding the Mesa del Sol Development.

Section 3-5(A)(2) Deposit of the Impact Fee

All road impact fees collected shall be properly identified by the road service area and promptly transferred for deposit in the appropriate Road Impact Fee Fund to be held in a separate account until expended or encumbered in accord with these rules and the Impact Fee Ordinance.

Part 3-5(B) Drainage (Stormwater) Impact Fees

Section 3-5(B)(1) Service Areas

There are 5 Drainage (Stormwater) Service Areas within the incorporated area of the City of Albuquerque, excluding the Mesa del Sol Development.

Section 3-5(B)(2) Deposit of the Impact Fee

All drainage impact fees collected shall be properly identified by the drainage service area and promptly transferred for deposit in the appropriate Drainage Impact Fee Fund to be held in a separate account until expended or encumbered in accord with these Rules and the Impact Fee Ordinance.

Part 3-5(C) Park, Open Space and/or Trails Impact Fees

Section 3-5(C)(1) Service Areas

There are 4 Park Service Areas, 1 city-wide Open Space Service Area, and 1 city-wide Trails Service Area within the incorporated area of the City of Albuquerque, excluding the Mesa del Sol Development.
Section 3-5(C)(2) Deposit of the Impact Fee

All park, open space, and/or trails impact fees collected shall be properly identified by the park, open space, or trails impact fee service area and promptly transferred for deposit in the appropriate Park, Open Space, or Trails Impact Fee Fund to be held in a separate account until expended or encumbered in accord with these Rules and the Impact Fee Ordinance.

Part 3-5(D) Fire and Police Impact Fees

Section 3-5(D)(1) Service Areas

There is 1 city-wide Fire Service Area and 1 city-wide Police Service Area within the incorporated area of the City of Albuquerque, excluding the Mesa del sol Development.

Section 3-5(D)(2) Deposit of the Impact Fee

All fire and/or police impact fees collected shall be properly identified and promptly transferred for deposit in the appropriate Fire or Police Impact Fee Fund to be held in a separate account until expended or encumbered in accord with these rules and the Impact Fee Ordinance.
ARTICLE 3-6 USE OF IMPACT FEE FUNDS

Part 3-6(A) Purpose

Funds collected from Road, Drainage, Fire, Police, Parks, Trails, and Open Space impact fees shall be used for the purpose of acquiring and/or making system improvements to Road Facilities, Drainage Facilities, Fire Facilities, Police Facilities, Park Facilities, Trail Facilities, and Open Space Facilities under the jurisdiction of the City of Albuquerque, the State of New Mexico, or other political subdivisions and shall not be used for maintenance or operations.

Part 3-6(B) System Improvements

1. At least once each fiscal year the Impact Fees Administrator shall present to the City Council a report describing the amount of impact fees collected, encumbered and used, and a proposed Component Capital Improvements Plan (CCIP) for system improvements, which assigns funds, including any accrued interest, from the Impact Fee Fund accounts to specific system improvement projects and related expenses. Monies, including any accrued interest, not assigned in any fiscal period shall be retained in the same Impact Fee Fund account until the next fiscal period, except as provided by the refund provisions of this rule and the Impact Fee Ordinance.

2. Funds shall be used exclusively for acquisitions, expansions, or capital improvements on the City’s CCIP and within the Impact Fee Service Area from which the funds were collected.

3. In the event that bonds or similar debt instruments are issued for advanced provision of capital facilities for which impact fees may be expended, the impact fee may be used to pay debt service on such bonds or similar debt instruments to the extent that the facilities provided are of the type described in Subsections 1 and 2 above.

4. In the event that a developer enters into an agreement with the City to construct, fund, or contribute system improvements so that the amount of the credit created by such construction, funding, or contribution is in excess of the impact fee otherwise due, the developer shall be reimbursed for such excess construction funding or contribution from impact fees paid by other developments located in the service area that is benefitted by such improvements.

5. Only impact fees collected may be used to provide refunds.

6. Funds shall be considered expended on a first in, first out basis by the date received.
ARTICLE 3-7 REFUNDS

Part 3-7(A) Refund for Failure to Construct or Provide Service

1. The current owner of record of property on which an impact fee has been paid shall be entitled to a refund of the fee if the construction of the improvements for which the fee was paid are not completed and available to provide service within 7 years from the date of payment of the impact fee.

2. The current owner shall submit a written request for refund to the Impact Fees Administrator within 1 year of the date giving rise to the right to claim a refund. Failure to make a written request within 1 year shall constitute a waiver of the right to receive a refund.
 a. The current owner shall provide evidence of ownership in the form of a deed or title report.
 b. The Impact Fees Administrator shall make a written decision on the request for refund within 30 days.
 c. If a refund is due to the current owner of record, the City shall issue a refund payment within 30 days of the written decision.
 d. If the Impact Fees Administrator determines that a refund is not due, the current owner of the property may appeal the decision of the Impact Fees Administrator to the City’s Environmental Planning Commission within 30 days of the written decision.
 e. The refund shall bear interest calculated from the date of collection of the impact fee to the date of refund as set forth in Section 56-8-3 NMSA, 1978.
 f. Refunds shall be made on a first in, first out basis by the date received. Prior to making a refund, the Impact Fees Administrator shall notify all eligible fee payers by certified mail of the opportunity to make application for a refund.

Part 3-7(B) Overpayment

A refund, without interest, will be made if it is determined by the Impact Fees Administrator that an overpayment of an impact fee has occurred. Refunds under this section shall not be made more than 1 year after overpayment of the impact fee has been determined.

Part 3-7(C) Underpayment

In the event the Impact Fees Administrator determines that an underpayment of an impact fee has occurred through error or misrepresentation by the fee payer, the Impact Fees Administrator may revoke inspections or withhold the issuance of any building permit or certificate of occupancy or shall have the power to sue in law or equity as may be provided by law for relief in civil court to enforce the correct payment of the fee.
ARTICLE 3-8 EXEMPTIONS

Part 3-8(A) Exemptions Claimed by Fee Payers

An exemption must be claimed by the fee payer no later than 30 days prior to the time of application for a building permit. Any exemption not so claimed shall be deemed waived by the fee payer. Applicants whose requests for exemptions from an impact fee are rejected may appeal the decision within 30 days of the decision as outlined in the applicable Impact Fee Ordinance.

Part 3-8(B) Total Exemptions

1. All of the following shall be exempted from payment of all impact fees:
 a. Alteration of an existing building or use of land where the existing use of the property is not changed, and there is no additional enclosed or open area in non-residential structures.
 b. The construction of accessory or auxiliary buildings or structures incidental to a dwelling unit on a residential property.
 c. Replacement of a lawfully permitted building, mobile home, recreational vehicle, trailer, or structure with a new unit, building, or structure of the same type, use, and size. The permit applicant shall document such replacement.
 d. An amendment to a development approval, provided that the amended development approval does not increase the number of service units.

2. In applying for the above-mentioned exemptions, it shall be the applicant’s responsibility to furnish, as required by the Impact Fees Administrator, all materials and information necessary to validate the exemption, which may include any of the following:
 a. Current survey of the property by a registered, licensed, professional surveyor.
 b. Old and new construction plans.
 c. Official certificate of occupancy.
 d. Certified statements from owner stating past and proposed land use.
 e. Utility bills or receipts.
 f. Property tax records.
ARTICLE 3-9 CREDITS

Part 3-9(A) General Conditions

An applicant may obtain credit for the value of a system improvement and/or system study to offset up to 100% of an impact fee otherwise due or to become due, by offering to dedicate land, contribute cash, and/or construct improvements for City CCIP projects. Applicants shall file an Impact Fee Credit Application with the Impact Fees Administrator. Any application for credit must be made and determined prior to the time of application for a building permit or issuance of a work order. Any claim not so made shall be deemed waived. Excess credits shall only be granted for the same category of system improvement and/or system study and within the same service area for which the impact fee was imposed. The authority to determine credit lies exclusively with the Impact Fees Administrator. In every case impact fee credits, shall be calculated so as to be consistent with Section 5-8-15 NMSA, 1978.

1. Credits may be granted subject to any of the following conditions:
 a. Impact fee credits will not be authorized until they are memorialized in a Development Agreement between the City and the Developer for Impact Fee Credits or as further defined in Section 14-19-19(A) (ROA 1994).
 b. Credits may be granted for payments made or construction of system or off-site improvements between July 1, 2005 and December 5, 2012 (effective date), provided the system or off-site improvements are on the City’s current CCIP.
 c. Credits may be granted for payments made or construction of system improvements after December 5, 2012 (effective date), provided the system improvements are on the City’s current CCIP.
 d. Credits shall only be granted for the value of the system improvements as listed on the City’s current CCIP, including the value of any system studies.
 e. Credits shall be applied first to offset the impact fee otherwise due for the development project for which the credit was granted.
 f. Upon approval of the impact fee credit application by the Impact Fees Administrator, the Impact Fees Administrator shall issue a Certificate of Credit to the applicant.

2. No credit shall be given for any of the following:
 a. Private improvements.
 b. Road or trail right-of-way dedication after the effective date of the Impact Fee Ordinance.
 c. System improvements and system studies (as defined by the Impact Fee Ordinance) that are not accepted by the City.
 d. Construction of improvements or conveyance of land for which consideration has previously been given by a governmental body.

Part 3-9(B) General Documentation and Procedures

An offer to make a payment, construct capital improvements, or dedicate land in lieu of paying the impact fee shall be made in an application filed with the Impact Fees Administrator that identifies the capital improvement and/or land
dedication for which credits are requested. If the City of Albuquerque accepts such an offer, whether the acceptance is before or after the effective date of the Impact Fee Ordinance, the credit shall be determined and provided pursuant to the relevant section below.

Section 3-9(B)(1) Amount of Credit Requested

The applicant shall specify the dollar amount of the credit requested. The costs claimed by the applicant as the basis for the credit requested shall be no more than the actual costs or the fair market value as determined by the Impact Fees Administrator.

Section 3-9(B)(2) Documentation

It is the obligation of the applicant to submit written determination, to the satisfaction of the Impact Fees Administrator, that supports the amount of the credit requested and indicates the basis on which the amount requested was calculated.

Section 3-9(B)(3) Submittals for Construction Credits

Prior to site plan, preliminary plat, or work order approval, the applicant shall enter into a Development Agreement for Credits with the City as a condition for the granting of the credits. The Development Agreement for Credits shall establish all of the following:

1. The value of the credits.
2. The method by which the credits shall be valued.
3. A requirement that the improvement be completed to applicable City standards.
4. A construction completion deadline for the improvements.
5. Public liability insurance of at least $1,000,000 per occurrence for which the City is an additional insured party.
6. A labor and material payment bond and a performance and warranty bond in favor of the City.

Section 3-9(B)(4) City Approved Work Order

An applicant claiming credit for the construction of eligible system improvements and/or land dedication shall procure a City approved work order and provide information as described in the following subsections to the Impact Fees Administrator during development review or prior to application for the issuance of building permits.

3-9(B)(4)(i) Construction of System Improvements

The applicant claiming credit shall submit a project description in sufficient detail with an engineer’s cost estimate prepared by a professional engineer to allow the Impact Fees Administrator to verify the cost estimates. In no case shall the cost for design, engineering, testing, surveying, inspections, and overhead constitute more than 17% of the construction credit granted. The engineer’s estimate shall include all of the following:

1. Construction costs, including NM gross receipts tax.
2. Design costs.
3. Land acquisition costs.
4. Testing, survey, and inspection costs.

3-9(B)(4)(ii) Land Dedication

An applicant requesting credit for land dedication for approved improvements shall present all of the following, as applicable and as determined by the Impact Fee Administrator:

1. An approved subdivision plat.
2. A warranty deed to convey title to the appropriate governmental body.
3. A title policy issued by a title insurance company in good standing and authorized to do business in New Mexico.
4. A certified copy of the most recent assessment of the property for tax purposes.
5. A certified statement from the county treasurer certifying that all property taxes are current and paid.
6. A property appraisal prepared by qualified professionals approved by the City. In preparing their reports, appraisers shall value the land prior to any increase in value resulting from the development approval.
7. Confirmation that the land to be dedicated is included in the City’s current CCIP.
8. Phase I Environmental Study.
9. Other documentation as determined by the Impact Fee Administrator (e.g. geotechnical report, ALTA survey, etc.).

Section 3-9(B)(5) Change Orders

No increase in the amount of approved credit will be authorized unless it is determined during actual construction of the agreed-to improvements that change orders are to be made incurring additional expense for items that are necessary and are not shown on the approved plans and estimates previously furnished to the Impact Fees Administrator. It shall be the fee payer’s responsibility to obtain prior approval from the Impact Fees Administrator before all such change orders are made. All requests for an increase of the approved credit shall include all documentation required by the Impact Fees Administrator.

Section 3-9(B)(6) Acceptance of Construction for Credit

Credit against the impact fee otherwise due will not be provided until all of the following has occurred:

1. The construction is completed and accepted by the City as shown by a certificate of completion and acceptance signed by the City Engineer.
2. As-built record drawings are submitted to the City and certified by an engineer registered by the State of New Mexico.
3. A suitable performance, maintenance, or warranty bond or irrevocable letter of credit is submitted to and approved by the City Attorney, or, in the case of Subsection 5 below, the bond may be reduced to an amount and a time period as provided for by the City to cover a maintenance period for the improvements upon completion of the agreed-to construction improvements and upon acceptance by the appropriate governmental authority pursuant to Subsection 1 above.
4. All design, construction, inspection, testing, bonding, and acceptance procedures are in strict compliance with the then-current City ordinances and policies, as they may be applicable.

5. Credit may be provided before completion of specified improvements if the fee payer posts a financial guarantee for the costs of such construction in the form of an irrevocable letter of credit to be posted with the City in an amount determined by the Impact Fees Administrator equal to 125% of the full cost of construction. In the event of cancellation of the financial guarantee, notice of intent to cancel or not to renew must be given to the Impact Fees Administrator no later than 60 days prior to the renewal date. In such event of a notice to cancel or of intent not to renew, the Impact Fees Administrator shall be entitled to declare a default and collect the full amount of the financial guarantee. The financial guarantee shall be outlined in the Irrevocable Letter of Credit.
 a. If the construction project will not be completed within 2 years of the execution date of the Development Agreement for Impact Fee Credits, the amount of the financial guarantee shall be increased by 10% compounded for each year of the life of the financial guarantee. The financial guarantee shall be reviewed and approved by the City Attorney prior to acceptance of the financial guarantee by the City.
 b. In the event that (1) the City receives notification from the guarantor that the financial guarantee is being canceled before all agreed-to improvements have been completed and accepted by the appropriate governmental body or (2) the City determines that terms of the agreement for construction as set forth in the financial guarantee are not being complied with, then the City shall, in accordance with the terms of the financial guarantee, make demand on the financial guarantee and collect the full amount of the financial guarantee to be used for completion of the agreed-to improvements and other expenses. If the cost incurred by the City to complete the improvements exceeds the amount received from the financial guarantee, the City shall have the right to sue in law or equity to recover the difference.

Section 3-9(B)(7) Acceptance of Land Dedication for Credit

Credits for land dedication shall be granted when all of the following procedures have been completed and title to land has been delivered and accepted by the appropriate governmental body and recorded with the County Clerk:
1. The delivery to the Impact Fees Administrator of a deed, with sufficient funds to pay all costs of transfer of title, including the recording of a plat, if required.
2. The escrow or payment of taxes prorated to the date of closing.
3. The issuance of a title insurance policy subsequent to recording of the deed and escrow of taxes.

Section 3-9(B)(8) Transferability of Credits

Impact fee credits may be transferable from one project or development to another if provided for in the Development Agreement for Impact Fee Credits with the City of Albuquerque.
Section 3-9(B)(9) Withdrawal of Offer by Applicant

Any person who offers land and/or improvements in exchange for credits may withdraw the offer of dedication at any time prior to the execution of the Development Agreement and pay the full impact fee, as required by the appropriate Impact Fee Ordinance.

Section 3-9(B)(10) Value of Credits

The value of credits granted for approved construction will be established by the Impact Fees Administrator and will be based on actual construction costs as defined and approved in the City’s Work Order Close-Out Process. Should the developer request credits in advance of the actual construction of the improvements and post a financial guarantee to secure 125% of the estimated value of the credits, the Impact Fees Administrator will review the actual construction costs to ensure that the value of the work meets or exceeds credits granted. The Agreement and Financial Guarantee will be released once the work has been accepted by the City and the value of credits has been confirmed by the Impact Fees Administrator. Should the value of the work established through the City’s Work Order Close-Out Process exceed the value of the estimated credits granted, the developer may request an increase in credits granted for a project from the Impact Fees Administrator.

Should the value of the work established through the City’s Work Order Close-Out Process be less than the value of the estimated credits granted, the Impact Fees Administrator shall, at his/her discretion, be able to directly draw from the financial guarantee for the difference in those amounts.

Part 3-9(C) Excess Credits

1. If the value of the credits exceeds the amount of impact fee otherwise due, the applicant shall be entitled to excess credits, and the Impact Fees Administrator shall issue a Certificate of Excess Credits. The Certificate of Excess Credits shall state all of the following:
 a. Dollar amount of the excess credits.
 b. The system improvement category.
 c. Service area to which the excess credits may be applied.
 d. Name of the applicant as the original credit holder.
 e. Description of the CCIP project for which the excess credits were granted.
 f. The year(s) in which the excess credits may be applied. The Certificate of Excess Credits shall be dated, executed and notarized by the Impact Fees Administrator and the applicant.

2. Excess credits shall only be applied for the same category of system improvements and/or system studies and within the same service area for which the impact fee was imposed.

3. Excess credit and credits shall be freely assignable as long as notice to Impact Fees Administrator is provided prior to the assignment in the Notice of Assignment of Credits form.

4. Excess credits shall not accrue interest.

5. The Impact Fees Administrator shall, upon request of the excess credit-holder, reimburse excess credits on a first in, first out basis. The applicant submits a Request for Reimbursement of Excess Credits form to the Impact Fee Administrator. The Impact Fees Administrator shall not be obligated to provide reimbursement in the event that there is no unencumbered
account balance in the City’s impact fee account for the applicable service category and service area.

6. Excess credits must be used, sold, or redeemed within 15 years after their issuance. Excess credits issued prior to the effective date of the Impact Fee Ordinance shall be permitted to be used, sold, or redeemed within 15 years after the effective date of the Impact Fee Ordinance. Excess credits not used, sold, or redeemed within 15 years of the effective date shall expire.

ARTICLE 3-10 EXEMPTIONS

Part 3-10(A) Affordable Housing

Section 3-10(A)(1) Ownership Housing

1. On the first working day of each fiscal year, the Department of Family and Community Services, or its successor department, shall issue a determination of housing affordability based on the purchase price of a home. An affordable purchase price will be defined as what is affordable for a hypothetical household of 4 persons at 80% of Median Family Income (MFI), adjusted for family size as determined by the U.S. Department of Housing and Urban Development, if that household spends 30% or less of household income on housing costs and assumes a conventional mortgage at the Freddie Mac 30-year mortgage annual percentage rate published in the week prior to July 1.

2. Impact fees shall be waived fully or partially on building permits for new housing units that meet the definition of housing affordability as defined above.

3. In mixed-income projects, 60% of the impact fees will be waived for affordable units that are located outside of the areas where impact fees are waived completely. To qualify as a mixed-income project under R-04-159 (Resolution Establishing Interim Council Policy Regarding Lower Impact Fees Due to Service Efficiencies, Reductions/Offsets of Impact Fees Based on City Planning Policies, and Impact Fee Waivers for Affordable Housing), the percentage of units that meet the definition of affordable, after the fee waiver, must be at least 20% of the total units in the development and not more than 50% of the total units in the development. Additionally, at least 50% of the units in the development must have a sale price that is above the determination of housing affordability.

4. Finalization of impact fee waivers for affordable housing will be contingent upon a certification approved by the City of Albuquerque that the unit was purchased by an income-qualified buyer at a price that does not exceed the determination of housing affordability and before closing can provide documentation that the loan is structured in such a way that the buyer is not making monthly payments greater than their household income. Documentation of purchaser income will be completed by the mortgage lender on forms provided by the City and approved by the Department of Family and Community Services.

5. A deed restriction, or another mechanism for the amount of the waived impact fee, will be placed on the property when the developer can provide an executed purchase agreement for a house price that falls within
what has been defined as affordable. Before closing on the property, the mortgage lender will provide documentation to the Department of Family and Community Services that the buyer is at or below 80% of MFI and is not paying more than 30% of their household income on the first mortgage. Once the City has reviewed and approved this documentation, the deed restriction or other mechanism will be released 5 years after the closing date. If the buyer does not meet the income guidelines defining affordability, the developer will be responsible for paying the impact fees to the City in order to release the deed restriction or other mechanism.

Section 3-10(A)(2) Rental Housing

1. On the first working day of each fiscal year, the Department of Family and Community Services or its successor department shall issue a determination of affordability for rental housing calculated on the monthly rental costs for a housing unit occupied by a household at 60% and 80% of MFI, adjusted for family size, as determined by the U.S. Department of Housing and Urban Development, that is paying 30% or less of its monthly income on housing costs. When making this calculation, household size shall be converted to number of bedrooms per rental unit as follows:

<table>
<thead>
<tr>
<th>Household Size</th>
<th>Bedrooms</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 & 2 Persons</td>
<td>1</td>
</tr>
<tr>
<td>3 Persons</td>
<td>2</td>
</tr>
<tr>
<td>4 Persons</td>
<td>3</td>
</tr>
<tr>
<td>5 Persons</td>
<td>4</td>
</tr>
</tbody>
</table>

2. Impact fees will be waived for rental housing only for those projects developed under an agreement with an agent of local, state, or federal government that requires a specified number of units to be available at affordable rents only to households at or below 60% of MFI for a period of not less than 15 years. The agreement must specify the income test used to identify renters that qualify for affordable units.

3. Impact fees for mixed-income projects in Centers and Corridors designated in the ABC Comp Plan shall be waived completely proportionate to the percentage of units affordable to households at or below 60% of MFI adjusted for household size. For mixed-income projects not located in designated Centers and Corridors, 60% of impact fees will be waived proportionate to the percentage of units affordable to households at or below 60% of MFI adjusted for household size. To qualify for a waiver of impact fees for a mixed-income project, the affordable units (at 60% MFI) must be at least 20% and not more than 40% of all units in the project. In addition, the agreement must specify that at least 30% of the units will be at rents at or above the determination of affordability for households at 80% MFI adjusted for family size.

4. For rental projects that are not part of a mixed-income project, as defined in R-04-159, impact fees will be waived in proportion to the percentage of affordable units that will be reserved for households at or below 30% of MFI adjusted for family size.
Part 3-10(B) Development in Metropolitan Redevelopment Areas

Full or partial waivers of impact fees shall be provided for non-residential and residential development within Metropolitan Redevelopment Areas (MRA) that conform to the MRA and applicable Metropolitan Redevelopment Plan.

ARTICLE 3-11 AMENDMENTS

All additions or changes to these administrative rules shall be subject to review and approval pursuant to the DPM process as agenda items during the regular meetings of the DPM Executive Committee. Copies of these administrative rules, as revised and approved by the Mayor, shall be made available to all City staff who administer impact fees and shall be made available to members of the general public, upon request.
CHAPTER 4
CONSTRUCTION PLAN STANDARDS

This chapter presents drafting standards for infrastructure construction plans to be submitted for approval to the City of Albuquerque. Detailed requirements for drafting, original drawing materials, organization of plans, required information, and acceptable methods of presentation are covered.

CONTENTS

ARTICLE 4-1 GENERAL PLAN INFORMATION 4-4
Part 4-1(A) AutoCAD Software ... 4-4
Part 4-1(B) Plan Submittals .. 4-4
Section 4-1(B)(1) Project Development Stage (30%, 60%, 95%, 100%) 4-4
Section 4-1(B)(2) Final Plan Submittal (For City of Albuquerque Projects) ... 4-5
Section 4-1(B)(3) Plan Revisions .. 4-5

ARTICLE 4-2 PLAN SHEET ORGANIZATION 4-7
Part 4-2(A) File Accuracy (Units) .. 4-7
Part 4-2(B) Sheet Sizes .. 4-7
Part 4-2(C) Sheet Borders .. 4-7
Part 4-2(D) Plan Sheet Assembly ... 4-7
Part 4-2(E) Construction Document Arrangement 4-7

ARTICLE 4-3 GRAPHIC STANDARDS 4-8
Part 4-3(A) Plan Scales ... 4-8
Part 4-3(B) Line Weights ... 4-8
Part 4-3(C) Line Types/Styles ... 4-8
Part 4-3(D) Screening ... 4-9
Part 4-3(E) Text Styles and Fonts .. 4-9
Part 4-3(F) General Text Placement 4-9
Part 4-3(G) Drawing Callouts ... 4-9
Part 4-3(H) Keyed Notes ... 4-10
Part 4-3(I) Bar Scales .. 4-10
Part 4-3(J) Dimensioning ... 4-10
Part 4-3(K) Legend ... 4-10
Part 4-3(L) North Arrow ... 4-11

ARTICLE 4-4 DRAFTING PRACTICES 4-12
Part 4-4(A) Drawing Layout .. 4-12
Section 4-4(A)(1) Title Blocks .. 4-12
Section 4-4(A)(2) View Orientation 4-12
Part 4-4(B) Required Notation and Topography 4-13
Section 4-4(B)(1) Coordinate Systems 4-13
Section 4-4(B)(2) Directional Indicators 4-13
Section 4-4(B)(3) Benchmarks .. 4-13
ARTICLE 4-5 PLAN SHEET CONTENT ..4-17
Part 4-5(A) Cover Sheet..4-17
Part 4-5(B) Index of Sheets/Key Map...4-18
Section 4-5(B)(1) Index of Sheets ...4-18
Section 4-5(B)(2) Key Map ..4-18
Part 4-5(C) General Notes/Legend Sheet..4-19
Section 4-5(C)(1) General Notes ..4-19
Section 4-5(C)(2) Legend ..4-19
Part 4-5(D) Summary of Quantities Sheet (For City of Albuquerque Projects Only) ..4-20
Part 4-5(E) Survey Control Sheet..4-20
Part 4-5(F) Horizontal Layout Sheet ...4-20
Part 4-5(G) Removal Sheet ..4-20
Part 4-5(H) Plat Sheet ..4-20
Part 4-5(I) Approved Grading and Drainage Plan4-20
Part 4-5(J) Erosion Control Plan ...4-21
Part 4-5(K) Master Paving Plan (For Private Development Only)4-21
Part 4-5(L) Typical Sections Sheet ..4-21
Part 4-5(M) Environmental Sheet ..4-22
Part 4-5(N) Roadway Plans ..4-22
Section 4-5(N)(1) Stationing ...4-22
Section 4-5(N)(2) Horizontal Curve and Line Data for Left and Right Curb 4-22
Section 4-5(N)(3) Right-of-Way ...4-23
Section 4-5(N)(4) Sheet References ...4-23
Section 4-5(N)(5) Profiles and Grades ..4-23
Section 4-5(N)(6) Driveway Information/Details4-24
Part 4-5(O) Geometric Details/Special Details ..4-25
Section 4-5(O)(1) Geometric Details ...4-25
Section 4-5(O)(2) Specific Details ..4-25
Part 4-5(P) Construction Traffic Control Details (For City of Albuquerque Projects Only) ..4-26
Part 4-5(Q) Signing and Striping Details/Layout Sheets4-26
Section 4-5(Q)(1) General ..4-27
Section 4-5(Q)(2) Signage ...4-27
Section 4-5(Q)(3) Striping ..4-27
Section 4-5(Q)(4) Plan Symbol Coding ...4-27
Part 4-5(R) Traffic Signalization Details/Design Sheets4-28
Section 4-5(R)(1) Traffic Signal General Notes & Legend4-28
Section 4-5(R)(2) Equipment & Incidental Items and Interconnect Requirements 4-29
Section 4-5(R)(3) Traffic Signal Estimated Quantities4-29
Section 4-5(R)(4) Traffic Signal Plan ..4-29
Section 4-5(R)(5) Street “A” & Street “B” Traffic Signal Cables & Conduits– I 4-29
Section 4-5(R)(6) Street “A” & Street “B” Traffic Signal Cables & Conduits– II 4-30
Section 4-5(R)(7) Traffic Signal Blocks ... 4-30
Part 4-5(S) Lighting Details/Design Sheets ... 4-30
Part 4-5(T) Street Cross Sections .. 4-30
Part 4-5(U) Drainage Details .. 4-31
Section 4-5(U)(1) Utilities .. 4-31
Section 4-5(U)(2) Right-of-Way ... 4-31
Section 4-5(U)(3) Sheet References .. 4-31
Section 4-5(U)(4) Storm Drainage and Profile Drawings 4-31
Section 4-5(U)(5) Catch Basins and Connector Pipe Information 4-32
Section 4-5(U)(6) Utility Crossings ... 4-33
Section 4-5(U)(7) Channel Plans ... 4-33
Section 4-5(U)(8) Channel Cross Sections ... 4-34
Part 4-5(V) Utility Sheets .. 4-34
Section 4-5(V)(1) Master Utility Plan (Water, Sewer and Storm Drain) 4-34
Section 4-5(V)(2) Water Lines .. 4-35
Section 4-5(V)(3) Sanitary Sewer .. 4-36

ARTICLE 4-6 RECORD DRAWING CRITERIA ... 4-38
Part 4-6(A) General Criteria ... 4-38
Part 4-6(B) Digital Record Criteria .. 4-39
ARTICLE 4-1 GENERAL PLAN INFORMATION

All final plan sheets shall be sealed and signed by an appropriate professional (e.g. civil engineer, structural engineer, electrical engineer, architect, or landscape architect) licensed in the State of New Mexico and be submitted electronically in a format acceptable to the City. If a plan must be submitted in hard copy, it shall be provided on 22 inch x 34 inch (ANSI D) reproducible bond sheets. Half-size plans (11 inch x 17 inch) shall be true half-scale.

Special non-standard details shall be prepared and shown to scale on separate detail sheets as needed per discipline, with appropriate construction notes and quantities as needed.

Removal and installation notes (i.e. keyed notes) shall be numerically referenced and listed on the right-hand side of each sheet. Notes shall be consistent with the most recent City of Albuquerque Standard Specifications for Public Works Construction (City Standard Specifications). For City of Albuquerque projects, all quantities shall be summarized on a separate quantity summary sheet. Work to be done by others shall be called out simply with arrows and labeled “BY OTHERS.”

Plans shall be prepared in accordance with the latest City Standard Specifications, unless otherwise directed by the City Engineer. Bridge structures shall be prepared in accordance with NMDOT Standard Specifications for Highway and Bridge Construction, current edition, because they are not covered in the City Standard Specifications.

The latest sample plan templates, borders, and symbology shall be obtained from this City Planning webpage: https://www.cabq.gov/planning/development-review-services/design-review-construction-forms.

Part 4-1(A) AutoCAD Software

The City requires that all drawing files be in an Auto Computer-Aided Drafting (AutoCAD) compatible software or Civil 3D.

Part 4-1(B) Plan Submittals

Section 4-1(B)(1) Project Development Stage (30%, 60%, 95%, 100%)

For City projects, required plan submittals will be outlined at the Project Scoping Meeting. Each plan submittal shall include, at a minimum, all of the following:
1. Construction cost estimate with the appropriate amount of contingency applied based on the submittal being made. (For private development projects, an estimate is only required at 100% submittal).
2. Appropriate number of bound copies of full-size and half-size plans as requested by the Design Review & Construction (DRC) Section for review.
3. Previous redline review plans and any comment summary sheets supplied to the applicant by the DRC.

4. One electronic digital copy containing complete current version of scalable portable document format (PDF) files of the design plans at each plan submittal stage. The PDF shall contain all plan sheets available for that submittal (i.e. 30%, 60%, 95%, 100%) and an index.

Drawings submitted that do not meet the current City AutoCAD Standards may be returned for correction and resubmittal. Submittals not accompanied by previous City redline reviews will not be accepted.

All submittals shall be checked for quality assurance/quality control before each submittal. Submittals that do not address redlines or comments made by the City at a previous submittal or that are below the expected standard of the percentage submittal will be returned without City/DRC review.

The Milestone Submittal Checklist can be found on the City website (30%, 60%, 95%, 100%, and Final). These checklists only serve as a guideline for expectations and requirements at each design stage.

Section 4-1(B)(2) Final Plan Submittal (For City of Albuquerque Projects)

Once the appropriate signatures have been obtained on the plans, an electronic digital copy of the construction drawings in PDF format shall be provided to both the Department of Municipal Development, Construction Services Division (DMD/CSD) and the Maps and Records Section of the Albuquerque-Bernalillo County Water Utility Authority (ABCWUA) before construction begins.

Section 4-1(B)(3) Plan Revisions

After the plans are signed for approval by the DRC, all revisions shall be identified by a triangle with the revision number and the name or initials of the person making the revisions. The triangle and revision number shall be shown in the plan and/or profile view of the sheet along with a revision cloud surrounding the required plan change. The number and date of the revision shall then be recorded in the “Revisions” portion of the sheet border. The cover sheet shall list only the sheets on which revisions have been made.

Revisions to plans will be made in the “Revisions Block” only after DRC approval and signature by the City Engineer. Any plan changes made before those signatures are not required to appear in the “Revision Block.”

A revision block is necessary on the cover sheet of all revised plans, must note “Sheet No. __ revised” with the date, and must include sheets added, sheets deleted, or sheet numbers changed. A space must also be provided on the cover sheet for the City Engineer’s approval of all plan revisions. Substantive revisions may require additional signatures, as determined by the City Engineer.
Any party who makes revisions must ensure that the contractor, the owner, the Inspection Section (for City projects), and DRC (for private development projects) receive revisions as soon as possible so that construction changes can be noted.

All written corrections on the plan shall be legible in a permanent ink.
ARTICLE 4-2 PLAN SHEET ORGANIZATION

Part 4-2(A) File Accuracy (Units)

Engineering working units shall be as follows:
 i. Master Units = Survey Feet (ft)
 ii. Sub Units = Survey Inches (in) or Decimal Feet (x.xx)

Architectural working units shall be as follows:
 i. Master Units = Feet (ft)
 ii. Sub Units = Inches (in) or Decimal Feet (x.xx)

Part 4-2(B) Sheet Sizes

ANSI D size (22" x 34") borders shall be used for all drawings. All drawings shall be set up to be plotted true half-scale on 11x17/ tabloid. Use of non-standard sheets must have prior approval of the City Engineer or City Architect in writing.

Part 4-2(C) Sheet Borders

The plans shall use the approved City sheet borders for the preparation of the cover sheet, plan and profile sheets, and detail sheets. These files shall be obtained from the City website or the City project manager. Click the following hyperlinks for AutoCAD files.
 • Cover Sheet for CIP Projects
 • Title Block and Border
 • Plan and Profile Template

Part 4-2(D) Plan Sheet Assembly

There shall be 1 sheet file per drawing. Designs (sometimes called “base files,” created in model space) intended to be referenced into sheet drawings should be kept as separate files. There shall be 1 title block/border model file per project.

Part 4-2(E) Construction Document Arrangement

The drawings within the construction documents set shall be arranged in the sequence shown in the Milestone Submittal Checklist (for City projects) or the DRC Checklist (for private development projects).

Drawings within each discipline shall be arranged in sequence following lead discipline. For example, if a new roadway is to have utilities installed underneath, the utilities portion of the plan set should follow the same or similar geographical direction and scale as the roadway plan and profiles.
ARTICLE 4-3 GRAPHIC STANDARDS

Unless specified otherwise, the graphic standards shall be as recommended in the City AutoCAD Standards. The line widths and color requirements for specific features shall be followed as outlined in the City AutoCAD Standards.

See Part 4-3(K) Legend for the City Legend. This drawing also includes line width, color standards, and text styles.

The recommended plot style, in .ctb format, can be accessed at the following hyperlink: ABCWUA Plot Style.

Part 4-3(A) Plan Scales

The scales for the various plan sheets can be found in TABLE 4.3.5 TYPICAL PLAN SCALES and shall be followed unless otherwise approved by the City project manager or City Engineer.

On a project by project basis, any combination of the following scales may be used with prior approval by the City project manager or City Engineer:

<table>
<thead>
<tr>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"=100'</td>
<td>1"=10'</td>
</tr>
<tr>
<td>1"=50'</td>
<td>1"=5'</td>
</tr>
<tr>
<td>1"=40'</td>
<td>1"=4'</td>
</tr>
<tr>
<td>1"=20'</td>
<td>1"=2'</td>
</tr>
<tr>
<td>1"=10'</td>
<td>1"=1'</td>
</tr>
</tbody>
</table>

See Part 4-3(I) Bar Scales and Part 4-3(L) North Arrow for hyperlinks to AutoCAD files.

Part 4-3(B) Line Weights

Line weights must conform to the requirements shown in the City standard Legend in Part 4-3(K) Legend. Plans containing line work that does not reproduce satisfactorily will not be accepted by the DRC.

Line weights and screening are based on color. The actual display color associated with a specific AutoCAD element color is defined by the color table. Refer to City Standard Specifications for recommended plot style. If the user is unable to distinguish between the assigned colors, the screen color table can be modified; however, the line widths used shall be as recommended in these AutoCAD Standards.

1 Horizontal and vertical scale combinations shall not result in an exaggeration greater than 10:1. *Scales of 1"=100' can be used for overall layouts only.*
Proposed features shall be displayed using a line weight of not less than 0.01 but not more than 0.025. Line weight and screening definitions by color are listed, as well as a visual representation of what each color in the table looks like when displayed.

Part 4-3(C) Line Types/Styles

Only the default, "out-of-the-box" AutoCAD line styles, or the City AutoCAD standard supported/furnished line styles shown in the Line Types Template shall be used. See the City standard Legend referenced in Part 4-3(K). Custom line styles developed by the user are not desired. In the event a custom line type/style is needed, approval by the City is required.

Part 4-3(D) Screening

Screened colors (half-tone lines) shall be used to depict existing/unchanged features on plan, profiles, and sections. Grids on profiles and sections may be screened.

Part 4-3(E) Text Styles and Fonts

The TrueType (TT) font Arial shall be used for text callouts and dimensions. If symbols such as “+” or “=” are part of the text, TT symbols shall be used. TT Lucida Console shall be used for general notes and table/schedule text. All text shall be in upper case, unless lower case lettering is needed to define a formula. TT Arial Black shall be used for a filled font.

Text styles are provided in a template provided on the City website. Text style applications are defined in the template. Lettering must generally conform to these standards. Click the following hyperlink for the City Text Styles Template.

Part 4-3(F) General Text Placement

When more than one line of text is needed, text shall be placed in text nodes. Text should be justified so that moving the text node will either not be required or will be minimal should the text require future editing. (For example, general numbered notes should have upper left justification; elevation labels appearing to the left of a feature should have bottom right justification; and elevation labels appearing to the right of a feature should have bottom left justification.) Text shall never be placed over other text. Text shall not obscure feature lines, hatching, or patterning. If text is placed in a hatched or patterned area, the hatching/patterning shall be clipped so that the text can be clearly read.
Part 4-3(G) Drawing Callouts

Callouts shall be left justified, and whenever possible, they shall be aligned with each other. Callout text shall be placed so that it appears horizontal on the sheet file. Callout leaders shall never cross text, dimension lines, or each other. Placing callout leaders through dimension extension lines should be avoided whenever possible; however, if this type of placement is necessary, the extension line shall be broken where the leader line passes through it. This shall be accomplished without exploding the dimension. When placing callouts, long lines shall be avoided so each callout remains within the modular area of the detail. If the leader to the multi-line callout is on the right side, the lines of text subsequent to the first line of text should be no longer than the first line of text whenever possible.

Part 4-3(H) Keyed Notes

Keyed notes shall be placed on the right-hand side of the drawing. Only those notes shown on any one particular sheet shall be listed. Key note numbers shall remain the same for each note throughout the drawing set; a master key note list can be referenced near the beginning of each plan type, if desired.

Part 4-3(I) Bar Scales

Sheet files shall contain the appropriate bar scale(s). The graph bar scale shown in Bar Scale Template is an example of what should be used. Click the following hyperlink for an AutoCAD file with various Bar Scales and North Arrow.

Part 4-3(J) Dimensioning

The automatic dimensioning features of a computer-aided drafting software, such as AutoCAD, shall be used for all dimensioning. Association shall be toggled on. If the extension line is broken to accommodate the placement of a callout leader, the association shall be dropped. Filled arrowheads shall be used as dimension terminators.

Part 4-3(K) Legend

Provide a legend identifying the nature of lines and symbols used in drawing the plans. The Legend template provides acceptable standard symbols. Click the following hyperlink for the City standard Legend.
Part 4-3(L) North Arrow

The location of the north arrow shall be consistent (or as consistent as possible) within the drawing set, typically located in the upper right-hand corner of the drawing or detail. Click the following hyperlink for an AutoCAD file with various Bar Scales and North Arrow referenced in Part 4-3(I) Bar Scales above.
ARTICLE 4-4 DRAFTING PRACTICES

In general, all features should be drawn to scale. Dimensions of prefabricated items that may vary depending on the manufacturer shall be drawn as proportional. Connecting feature/component lines shall connect. When break or match lines are used, feature lines shall be terminated at the break or match line. Match lines connecting two sheets shall match exactly.

All line work within the sheet shall be trimmed back so as not to encroach on the line work for the border.

Part 4-4(A) Drawing Layout

Section 4-4(A)(1) Title Blocks

All plan sheets, except for the cover sheet, shall have a title block in the lower right-hand corner of the sheet. See Part 4-2(C) Sheet Borders above for hyperlinks to AutoCAD files of standard City sheets and title blocks. The title block shall have all of the following information clearly displayed:

1. Name of organization preparing the plans.
2. For City of Albuquerque projects only, the contracting division indicated under “City of Albuquerque Municipal Development Department.”
3. The type of plan depicted on each sheet (e.g. “PAVING” or “STORM DRAIN”).
4. The project description (e.g. Southern Blvd: Eubank Blvd to Juan Tabo Blvd). Project street name descriptions should generally be labeled from south to north or from west to east. The plan should normally use the same project description provided in the contract.
5. The City Project Number (e.g. 738001).
6. The individual sheet number.

Section 4-4(A)(2) View Orientation

Drawing views should generally be oriented so that north points to the top of the sheet or to the right. Street centerline stationing should normally increase from left to right on the sheet. Utilities constructed within and generally parallel to the street right-of-way should be stationed relative to the street centerline with stations and offsets. The drawing should include ties to intersecting street centerlines or existing documented property corners or City monuments so that all construction baselines can be easily reestablished and so that the project can be staked directly from the plans without ambiguity.

Views should be orientated on the sheet so that plan and profile views are aligned whenever possible. When detailing, details shall appear on the sheet based on their orientation on the feature. For instance, a detail of the top of a wall shall be orientated above a detail of the bottom of the wall. If a detail is taken from a large-scale plan or elevation, the orientation shall remain the same as the view from which the cut was taken. If this is not possible, a note stating the orientation was changed should be added (e.g. “VIEW ROTATED 90 DEGREES”). When 2 or more plans of the same structure or the plans of 2 or more different structures are put on the same drawing, the orientation of all must conform to one another and to their relative positions on the ground.
Orient enlargements, insets, or other details in the same direction as the plan from which it was taken. If impractical to keep the same orientation, include a north arrow for each enlargement, inset, or detail plan.

Maintain 1 direction of profile stationing on all profile sheets, even if the north arrow criteria must be violated to do so. The major portion of the street right-of-way along the alignment should be placed horizontally on the plan. Should this be impractical, the plan continuity may be broken and the match lines joined by a leader and the word “IDENTICAL.” Place a north arrow on each viewport when the orientation of the viewports varies.

If gravity hydraulic systems are to be constructed on a separate alignment from a street right-of-way, they shall be stationed increasing upstream. In combined projects where storm drain plans are combined with street plans, the alignment of the street should be followed where practical to maintain the same orientation.

Part 4-4(B) Required Notation and Topography

Section 4-4(B)(1) Coordinate Systems

The specified coordinate system/datum shall be denoted on maps (civil plans). The datum shall comply with the current datum used by the City as specified in Chapter 10 Surveys and Monumentation. The grid system used shall be described in the general notes and should also be identified in the survey control plan.

Section 4-4(B)(2) Directional Indicators

The direction of water flow of all waterways will be indicated by the standard flow symbol, pointing in the direction that the water moves.

Section 4-4(B)(3) Benchmarks

Plans shall denote benchmarks as reference points. The following types of benchmarks are required:

1. Base all elevations shown on the plans on City current datum. See Chapter 10 Surveys and Monumentation.
2. Note the location and description of the permanent benchmarks used to extend level datum to the project in the designated location on the title block of each plan or plan and profile sheet. Identify benchmarks by number, description, brief location, and elevation.
3. Show benchmarks that are located within the area covered by the plans on the plan view in the proper location.
4. Designate all temporary benchmarks used for control of the project on the plan view stating elevation, location, and description. Show the nearest such benchmark on each sheet.
5. All elements in the site plan will be laid out using geometric processes originating from a benchmark or other identifiable, permanent, physical element to facilitate staking by contractor. Grid layouts with dimensions shall not be used.
Section 4-4(B)(4) Symbols

All symbols and line work shown in the topographic map ("Topo") shall be in accordance with the approved City Legend referenced in Part 4-3(K) above and drawn initially at a one-to-one scale. Symbols shall be scaled appropriately to conform to the construction documents drawing scale (i.e. 1"=20' or 1"=40'). In addition, all symbols shall be scaled for use in details or any other applications within the construction documents (i.e. 1"=5' or 1"=10').

Section 4-4(B)(5) Right-of-Way

All proposed and existing right-of-way and easement limits shall be shown on the plans in accordance with the approved City Legend referenced in Part 4-3(K) above. Included in the plans shall be all subdivision names, property splits, and names of major businesses, schools, fire stations, private property signs, and other public facilities.

Section 4-4(B)(6) Utilities

All underground utilities and appurtenances shall be shown. This information will be used to coordinate with the appropriate utility owners within the project limits.

When information is available, the utilities shall be labeled with size and type. All existing storm drain, sanitary sewer manholes, and water valves shall be shown on the plans. Utilities that are abandoned or that will be abandoned or removed shall be identified. Any utilities to be constructed prior to the bidding of the project shall be noted on the plans.

All existing and proposed street lights, utility poles, traffic signal poles, and appurtenances shall be shown. Materials of existing poles shall be labeled or clearly indicated in the legend. All proposed poles, structures, and appurtenances shall be located by station and offset from the construction baseline.

Any City-owned or ABCWUA-owned utilities or appurtenances requiring relocation shall be included with the work order, including all necessary design and details, as well as dimensioning or stationing. Any existing utilities that are not owned by the City or ABCWUA and that need to be relocated shall be clearly indicated as "To be relocated by others [utility owner]."

Section 4-4(B)(7) Existing Features

For projects that require installing or modifying improvements within the existing right-of-way, all of the following information shall be obtained and shown on plans.

1. Research record drawings and obtain sufficient elevations to indicate the direction of surface flow on all intersecting side streets, frontage roads, and paved parking lots. The direction of flow shall be shown by small arrows in the plan view.

2. The topo shall show elevations and cross section data (i.e. construction centerline, gutter flow line, top of curb, right-of-way, and grade breaks) on side streets and beyond the ends of planned construction for a distance of 300 feet to provide information pertaining to drainage and existing conditions that may influence design. Some or all of this information may
be needed on the plan sheets if tapers are needed or drainage grading or inlet construction is required.

3. The topo shall show all existing parking curb stops within 10 feet of the proposed right-of-way line. Relocation of existing parking curb stops and the addition of new safety curbs, where required, shall be shown and called out on the plans.

4. The topo should show features such as mailboxes, signs, light posts, walls, fences, gates, retaining walls, railroad ties, stone dividers, etc. All signs within the right-of-way shall be shown on the plans. All subdivision entrance structures and any associated lighting and power connections shall be shown. When these interfere with new construction, they should be noted for relocation or reconstruction.

5. Where certain items such as water valves and sanitary sewer or storm drain manholes are supposed to exist according to plan records, but cannot be found in the field, they shall be labeled “NOT FOUND” or “NF” on the plans.

6. All affected driveways and alleys shall be located and profiled. The surface material on each driveway shall be identified in the topographic notes and/or the plan view (e.g. “DIRT”, “GRAVEL”, “DECOMPOSED GRANITE”, “ASPHALT”, or “CONCRETE”). If it will be necessary to reconstruct or re-grade a driveway, the reconstructed driveway connection should match existing materials and thickness.

7. Edges of existing driveways shall be depicted on the plan view from the roadway connection to a point at least 10 feet beyond the proposed right-of-way line. Where driveways may require significant alterations beyond the property lines, sufficient elevations beyond the property line should be taken, and driveway profiles should be prepared to ensure compliance with City standard driveway details.

8. Existing signing and striping shall be shown at least 300 feet beyond the project limits. This will provide information on how the signing and striping will need to be modified with the new improvements. This information should identify conflicting signing and striping that will need to be removed or replaced.

9. For projects that require new right-of-way or modifications to existing improvements directly adjacent to existing right-of-way, the topo shall provide, in addition to the information required above, all of the following information:

 a. All topography to at least 10 feet beyond the proposed right-of-way or easements. Standard symbols should be used where applicable.
 b. All information for canopies, overhead and ground signs, and building overhangs within 10 feet of the proposed right-of-way. The outline of the street-side face and corners of each building on property abutting the right-of-way shall also be shown on the plan view if any part of the building lies within 10 feet of the proposed right-of-way line.
 c. The floor elevation of each building within 10 feet of the proposed right-of-way shown in the plan view.
 d. All berms and ditches within 10 feet of proposed right-of-way shown in plan view. Toe and crest of berms and top and bottom of ditches shall be shown on the plans with spot elevations at minimum 50-foot intervals showing top of berm and ditch flow line. Flow lines of existing drainage ditches shall be shown in the profiles.
 e. All existing landscape irrigation appurtenances within 10 feet of the proposed right-of-way.
f. All signs within and 10 feet beyond the right-of-way. Plans shall also note whether signs are electric, along with whether the electrical source is overhead or underground.

g. All trees and shrubs within 10 feet of the proposed right-of-way and easements. The tree trunk diameter shall be measured one foot above the existing ground. The City will determine the disposition of all trees and shrubs. If slight changes in alignment could be made to save valuable trees or the sidewalk could be realigned, it should be brought to the attention of the City as early as possible.

Part 4-4(C) Cross Referencing Between Drawings

All drawings shall be cross-referenced using the sheet number located in the block of the border and the name of the plan sheet.

Section 4-4(C)(1) Section and Detail References

Sections shall be denoted with alpha characters. Details should use numbers for identification. A combination of alpha and numeric characters may be used, provided that the first character of a section is an alpha character and that the first character of a detail is numeric. All alpha characters shall be capitalized. When referencing sections/details from another sheet, use characters unique to the drawing set (i.e. do not reuse letters/numbers).

Section 4-4(C)(2) Project Phasing, Bid Lots, or Bid Alternatives (For City Projects Only)

If the project will be broken up into phases, the boundaries of each phase shall be clearly identified within the plan set. The line type and text that is to be used can be found in the City’s standard Legend referenced in Part 4-3(K) above. If the project will contain bid lots or bid alternatives that need to be a part of the bid phase, then these areas shall be clearly identified using the same line style and text as when identifying the phases of a project.

All plan or plan and profile sheets and site grading plans submitted as part of a project package for DRC approval must be on City standard drawing sheets. All public and private rights-of-way, easements, property lines, and building lines must be shown. Points of connection to existing facilities shall be clearly shown. When the work area extends onto more than one drawing sheet, show match lines to other plan or profile sheets, along with sheet numbers.

All proposed work shall be dimensioned from right-of-way and property lines or referenced with stations and offsets to a centerline or construction baseline as described above. All existing utility lines shall be clearly shown and identified, including type, material, size, and ownership. Utilities shall be shown using complex line type (e.g. “G” for gas, “W” for water, “SAS” for sanitary sewer, and “SD” for storm drain). Refer to Article 4-3 for standard line types for existing utilities.
ARTICLE 4-5 PLAN SHEET CONTENT

The drawings are instructions to the contractor. They must be accurate and easily interpreted. Drawings shall be prepared so that they convey the complete meaning intended. A project plan package consists of, but is not limited to, the following sheets and contents, collated as follows.

Part 4-5(A) Cover Sheet

This page contains project title, vicinity map, zone atlas page, legal description, total square footage of project area, index, “Approved for Construction” signature block, general notes, logo, and revision block with approval space. Blanks for separate work order numbers must be provided, when applicable.

A special information block needs to be located on the cover page of plan sets and specifications to accommodate information that may be required for specific projects. (For example, those projects funded or partially funded by state grants need to have the state project number placed on the title sheet/spec cover.) The cover sheet will be considered sheet 1. Click the following hyperlink for the standard City Cover Sheet for CIP Projects.

The cover sheet shall contain all of the following items:

1. The City’s logo, project name, project limits/description, and City project number. Center project title (name of subdivision, street, arroyo, area, etc.) within the border.
2. The vicinity map in upper right hand corner. Use legible scale for map. Standard Zone Atlas maps may also be used for preparing vicinity maps. Clearly mark the location of the project and show all street names surrounding the project.
3. An index below the PROJECT TITLE.
4. A signature block “Approved for Construction, City Engineer” in the lower right hand corner and the project number and sheet ___of ___.
5. If the project is being fully or partially funded by state, federal, or other agency, the agency’s logo and funding control number along the right-hand side above the signature block.
6. The consultant’s professional engineer seal, placed in the designated area located near the right-hand corner of the sheet.
7. The project number, project name, and the percent submittal of the plan set labeled along the right margin outside the border line, so that when the plans are rolled up, this information can be seen.
8. The appropriate signature lines for City, ABCWUA and, as applicable, Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA), New Mexico Department of Transportation (NMDOT), etc.
9. For multiple projects with individual project numbers that are to be packaged into one bid set, a cover sheet for each project number as well as a master cover sheet listing each project number and description in the set.
10. Benchmark information that notes the location and description of the permanent benchmarks per Section 4-4(B)(3) Benchmarks in the designated location within the border. If temporary benchmarks are used for control.
of the project, this information shall be shown on the survey control sheet, with the elevation, location, and description.

11. If the plan is for a project going to public bid, a block for plan set number in the lower right hand corner.

12. General notes placed near the right hand border or provided on a separate sheet. Show applicable standard beneral notes. Click the following hyperlink for an AutoCAD drawing of commonly used General Notes, as shown in Part 4-5(C) below. Note that not all notes shown will apply to every project.

13. A revision block, included in the Title Block and Border, as shown in Part 4-2(C) Sheet Borders above.

14. Optional: A logo placed as shown on the Cover Sheet for CIP Projects, in Part 4-2(C) Sheet Borders above.

Part 4-5(B) Index of Sheets/Key Map

The index of sheets/key map is the second drawing in the plan set. This sheet will provide the sheet index for the plan set as well as a key map to indicate where each sheet falls within the project limits. For simpler projects where only one plan view is needed, the key map may be eliminated, and the index of sheets may be placed on the key or cover sheet. Click the following hyperlink for an example of a Key Map and Index to Sheets.

Section 4-5(B)(1) Index of Sheets

The index of sheets will be shown in a table format made up of multiple columns and rows. The plan sheet name will be listed along the right-hand side of the table, and the corresponding sheet numbers will be shown along the left-hand side of the table.

Section 4-5(B)(2) Key Map

The key map shall legibly show the entire project. The key map shall be sufficiently sized to be readable when printed at half-size. The City Zone Atlas maps can be used for the key maps, if so desired. All of the following information shall be indicated on the key map:

1. Project limits and corresponding stationing.
2. Street names for all major cross streets or minor street names if there are no major cross streets in the vicinity of the project.
3. The portion of each street covered by each plan or profile sheet.
4. A key map legend to denote the paving plan and profile sheet breakout.
5. A north arrow.

Part 4-5(C) General Notes/Legend Sheet

For City of Albuquerque projects, the general notes/legend sheet will be the third sheet in the plan set. This sheet shall contain all the general notes pertaining to the project in addition to the standard City Legend referenced in Part 4-3(K) above.
Section 4-5(C)(1) General Notes

The consultant shall use the City-approved general notes. Click the following hyperlink for an AutoCAD drawing of commonly used General Notes. The Consultant may add special notes as necessary for the specific project. The note additions should be identified under a separate header: “SPECIAL NOTES.”

Notes that are not applicable to the project may be deleted at the discretion of the engineer by striking through the line of text for all submittals leading up to the final submittal. At the final submittal, the notes can be removed from the plans for final signature. General notes shall not be used in lieu of supplemental general provisions, supplemental general provisions, or supplemental technical specifications.

Section 4-5(C)(2) Legend

The consultant shall use the City-approved legend symbols consistently throughout the entire plan set. See Legend referenced in Part 4-3(K) above.

Part 4-5(D) Summary of Quantities Sheet
(For City of Albuquerque Projects Only)

Each City of Albuquerque project shall contain a summary of quantities sheet. This sheet consists of various tables showing the summary of each bid item number, description of each item, unit of measurement of each bid item, and a total for each item in the project. The summary of quantities will be divided up into several tables related to the type of work being performed (i.e. roadway, drainage, water, sewer, etc.). Click the following hyperlink for a Summary of Quantities drawing sheet.

Part 4-5(E) Survey Control Sheet

All existing survey monuments/control points used to survey the project shall be shown on this sheet. The control point information will be shown as a physical location on a key map as well as in a table format. The identifier for the control point (CP) information shall consist of a letter and number combination (i.e. CP-1), northing and easting information for each point, elevation, and a brief description.

All adjacent streets and properties shall be clearly labeled with the appropriate street names and property owner names. The scale of the drawing shall be denoted using the City-approved bar scale as referenced in Part 4-3(A) above. The City-approved north arrow as referenced in Part 4-3(A) above shall also be included on this sheet. Click the following hyperlink for an AutoCAD file of a typical Survey Control Plan.

Part 4-5(F) Horizontal Layout Sheet

Click the following hyperlink for an AutoCAD file of a typical Horizontal Layout Sheet. The horizontal layout sheet should contain the following information:
1. The construction centerline and the bearings and distances along the
 construction centerline.
2. Stationing along the construction centerline.
3. North arrow and bar scale, along with the appropriate street name labels
 and adjacent property owner names.
4. Optional: Survey control points.
5. On curved sections, construction centerline stationing along the centerline
 of the curve (not along the tangent lines).
6. Curve data (i.e. radius, delta, tangent and curve lengths) shown on same
 sheet as the curve. This information can be shown either near the curve or
 summarized in a table on the same sheet.
7. Proposed and existing hardscape features (e.g. curb, gutter, and sidewalk)
 as the only line work shown in this sheet. All utilities, contours, signing and
 striping, etc. shall be turned off.

Part 4-5(G) Removal Sheet

Removal sheets shall be included in the construction documents when
requested by the City. Each project shall be dealt with on a case-by-case basis
to determine whether removal sheets are necessary to provide clarity on the
plans.

For projects that are in well-established/developed areas of the City, removal
sheets should be included so that the detail of what is being removed is clear
to the contractor.

Removal sheets shall identify the existing improvements that are to be removed
or relocated to avoid conflict with the proposed improvements. Items that
should be highlighted include the removal of asphalt, curb, sidewalk, striping,
sidewalk ramps, driveways, utilities, vegetation/landscaping, signs, structures,
etc.

The scale of the sheet shall be chosen to clearly show what is to be removed.
Additional details may be needed or incorporated as necessary for clarity. Click
the following hyperlink for an AutoCAD file of a typical Removal Sheet.

Part 4-5(H) Plat Sheet

This sheet shall be provided in the plan set with a note clearly indicating “FOR
INFORMATION ONLY.” See Chapter 5 Recordable and Development Documents for
plat standards.

Part 4-5(I) Approved Grading and Drainage Plan

This drawing, which will be reviewed and approved separately through the
process outlined in Chapter 6 Drainage, Flood Control, and Erosion Control, shall be
inserted into the plan set with a note clearly indicating “FOR INFORMATION
ONLY.” This drawing shall include all of the following elements:
1. Site layout with existing and proposed contours.
2. Elevations at property line corners in residential subdivisions, building pads, ponding area, along street frontage, and curbs and gutters.
3. Locations and elevations of existing and proposed drainage courses.
4. Locations and elevations of required retaining walls.
5. Flow directions of on-site and right-of-way storm flows.
6. Size (length, width and depth) of ponding areas.
7. Cross slopes on walks, ramps, drives, parking, etc., with arrows indicating the direction of surface drainage and percentage (%) of the cross slope.

Part 4-5(J) Erosion Control Plan

An approved Erosion and Sediment Control (ESC) plan and Stormwater Control Permit for Erosion and Sediment Control (ESC Permit) are required when the earth disturbance is 1.0 acre or greater, or for smaller sites depending on site conditions as specified in Chapter 6 Drainage, Flood Control, and Erosion Control. The earth disturbance area includes disturbed areas of the site plus the work order. Plans and permit applications shall be submitted to the Stormwater Quality Engineer. The ESC Plan and permit are not required for projects wherein the owner is an MS4 Permittee (e.g. City of Albuquerque or AMAFCA).

Part 4-5(K) Master Paving Plan (For Private Development Only)

The master paving plan is a drawing depicting the overall site layout and shall contain the following information:
1. Location of streets with names.
2. Location of valley gutters with crown transitions.
3. Direction of storm runoff flows.
4. Street widths.
5. Accessible ramps (which must comply with prescribed City standards for accessibility).
7. Sidewalk easements and any other roadway easements.
8. Both proposed and deferred sidewalks, clearly distinguished.
9. Lot numbers or street addresses.

Part 4-5(L) Typical Sections Sheet

The typical section shall be shown such that it represents the existing and proposed conditions in one section. The existing conditions within the typical section shall be screened back. Click the following hyperlink for an AutoCAD file of an example Typical Sections drawing.

Typical sections shall be shown looking up-station. The station limits that pertain to each typical section shall be shown (i.e. STA XX+XX to STA XX+XX) along with the corresponding roadway name. All improvements and proposed grading to match existing conditions shall be shown. The limits of the proposed and existing/apparent right-of-way shall be shown, along with the construction centerline.
The appropriate dimensions for lane widths, median widths, sidewalk widths, and available right-of-way shall be shown. The existing and proposed pavement cross slopes shall also be indicated on the typical section. Street crown or cross slope and transition areas shall be clearly shown. Type of curb and gutters shall be shown, referencing City Standard Specifications.

The proposed structural sections of pavement for the project shall be shown. The appropriate labels/information for each layer of the pavement section shall be provided.

At least one typical pavement cross section for each proposed street width and pavement type shall be included. Cross slopes for the entire section shall be clearly shown. Adjoining structures shall be included in the section to indicate heights of new structures in relation to existing structures.

Part 4-5(M) Environmental Sheet

As a typical condition of using federal funding, project-specific environmental commitments are identified within a project’s environmental document (e.g. EIS, EA, or CE). These environmental commitments are any agreed-upon commitments to avoid, minimize, or compensate for a social, economic, or environmental impact. These environmental commitments should be included and listed within the construction plan set. These environmental commitments provide additional guidance, instructions, restrictions, and requirements that the project must follow during construction.

Part 4-5(N) Roadway Plans

Most plan/profile layouts should be shown on standard half-plan/half-profile sheets using the City-approved borders. In the case where steep grades or wide plan views prohibit plotting on these sheets, separate full-plan and full-profile sheets may be used. Click the following hyperlink for an AutoCAD file of an example Roadway Plan drawing.

Section 4-5(N)(1) Stationing

Centerline stationing shall be shown on plan and profile sheets. Stationing should generally run from west to east or south to north. Stationing will be at 100-foot increments, with tick marks at 50 foot increments. Centerline stationing should generally begin at Station 10+00 or higher to avoid “negative” stationing. Stationing call outs shall be perpendicular to the alignment stationing for all projects shall correlate with the paving project when feasible.

Section 4-5(N)(2) Horizontal Curve and Line Data for Left and Right Curb

The horizontal curve and line data for the left and right curb shall be represented in a table format and be placed on the right-hand side of the sheet within the “CONSTRUCTION NOTES” margin or within the plan view area.
The “CURVE AND LINE DATA” shall contain the information in **TABLE 4.5.6**.

| **TABLE 4.5.6 CURVE AND LINE DATA** |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| **NO** | **DELTA** | **TANGENT** | **ARC LENGTH** | **RADIUS** |
| **C1** | | | | |
| **C2** | | | | |
| **C3** | | | | |
| **L1** | | | | |
| **L2** | | | **1** | |
| **C1** | | | | |

1. The associated elevations and begin-and-end stations for the curve and line data shall be shown in the profile with appropriate labels used to identify this information (PC and PT).
2. Horizontal curve data must indicate stationing of PC, PT, radius, delta, length of curve, and tangent. Detailed street information not adequately shown on the plat must be shown on the plans. The plat must be included in the plan set, clearly marked “FOR INFORMATION ONLY.”
3. Crown and cross slope, if other than standard 2 percent, must be sufficiently detailed to assure accurate construction. Cross slope transitions must be clearly defined.
4. Use centerline stationing with right and left offsets to face of curb. Station median curbs similarly.
5. Provide stationing to the centerlines and dimensions of proposed driveway entrances.

Section 4-5(N)(3) Right-of-Way

All plan views, horizontal control views, storm drainage plans, etc., should show the limits of existing and new right-of-way, as well as any needed construction easements.

Section 4-5(N)(4) Sheet References

Sheet number references for match lines and other related plan sheets such as references to storm drain plan sheets, median detail sheets, driveway details, ramp details, connector pipe profile sheets, etc., should be noted on each individual plan sheet. This can be done in the plan view area or within the construction notes.

Section 4-5(N)(5) Profiles and Grades

1. Separate profiles shall be shown for left curb and gutter (along flow line or gutter lip), construction centerline (crown), and right curb and gutter (along flow line or gutter lip). Elevations and stations at all grade breaks, curb returns, and intersections shall be shown. Street profile grades shall be shown as percentages to 2 decimal places. All grade breaks shall be identified by symbol and profile note.
2. The proposed construction centerline profile shall show the profile of the existing surface at the construction centerline. The proposed curb and
gutter profiles shall show the existing surface line at the location of the new curb lines.

3. Vertical curve data must indicate VPC, VPT, VPI, length of curve, percent grade of tangents and K Value, and stationing and elevation of any high or low points.

4. Show existing ground at right-of-way lines if plans are not accompanied by other grading plans showing existing elevations. Curb profiles are to be run through intersections showing projected flowlines. Both curb lines may be shown on single profile, if clear. If clarity cannot be preserved, two profiles (individual curb lines) will be required.

5. Provide top of curb and flowline elevation at returns and valley gutters as shown in the City Standard Specifications.

6. Crown and cross slope, if other than standard, must be sufficiently detailed to assure accurate construction. Transitions must be clearly defined.

7. Show true slopes and lengths of curb lines through horizontal curves.

8. Show curve data, including radius, central angle, and length along the flowline, on all curves including curb returns. The same requirement applies to median curb.

9. Streets must be designed such that private property drainage is not adversely affected. Sufficient elevations shall be taken and shown on the plans to ensure that the new curb grades will not adversely affect private property drainage. This survey information, its recording on the plans, and its use in setting proper street grades is extremely important. If, in the opinion of the City, this information is not sufficient to properly check the proposed grade, the plans will be returned for the consultant to provide the required information.

Section 4-5(N)(6) Driveway Information/Details

Sufficient elevation information shall be obtained to ensure good driveway match to private property. Spot elevations on existing driveways shall be shown on plans where needed to show that the driveway match is adequate and does not violate compliance with City, state, or federal requirements. The plans shall provide detailed driveway profiles where necessary to clearly show how the driveway match will be made. (Click the hyperlink for an example Roadway Plan and more information on driveway details.) Any driveway reconstruction that may need to occur beyond the right-of-way shall have temporary construction easements in place, with dimensions shown on the plans to cover the additional area required.

The driveway details shall provide plan and profile information to ensure that the maximum slope allowed by the DPM is not exceeded. Each driveway detail shall be labeled with a center of driveway station and, if applicable, the property name.

If a driveway grade must be changed, and there is a fence with a gate for this driveway, the plan shall determine whether the gate/fence must be adjusted to function properly with the new driveway grade. If adjustment is necessary, the plan shall provide the necessary design and notations.

If requested by the City, the plan shall provide driveway profile worksheets to show how the proposed profile will meet requirements. In some cases, these profiles may be included in the design plans to clearly show a contractor how they are to be built.
Where significant cuts or fills are required to match proposed work to existing adjacent property, the cut or fill lines shall be shown on the plans. These general cuts and fills shall also be shown on the roadway typical sections.

Whenever possible, existing trees, fences or other structures should be protected from significant cuts or fills. Where these cannot be avoided, the plan should provide whatever design or plan notations may be necessary to remove, relocate or reconstruct conflicting items.

Part 4-5(O) Geometric Details/Special Details

1. Provide detail for all items that are not covered by the City Standard Specifications. This may include standard drawings from other government agencies.

2. If City Standard Specifications are referred to, the drawing number and revision number must be specified on the drawing.

Section 4-5(O)(1) Geometric Details

Geometric details should provide the detailed curve and line data information for medians, sidewalk ramps, intersections, driveways, etc. The details should contain information for slopes, elevations, stations, and offsets.

The ramp details shall contain, at a minimum, information for slopes, elevations, line and curve data, stations, and offsets.

All information for curve and line data shall be provided in a table format and referenced by the standard curve and line annotations. Click the following hyperlink for an AutoCAD file of an example Geometric Details drawing.

Section 4-5(O)(2) Specific Details

Specific details shall be included where necessary to clarify non-standard features in order to provide the contractor specific information. Such details are not covered by the City Standard Specifications. These details may pertain to
utilities, structures, retaining walls, cut-off walls, etc. Click the hyperlink for an example Roadway Plan, as referenced in Section 4-5(N)(6) Driveway Information/Details.

Part 4-5(P) Construction Traffic Control Details (For City of Albuquerque Projects Only)

Traffic control plans are used to show existing site conditions, how bicycle/pedestrian and vehicular traffic will be maintained during construction, and proposed changes to an area. The City project manager will decide whether traffic control details need to be prepared for the project. The consultant shall coordinate this with the City project manager or DRC Chair for private development.

In the event that traffic control plans are prepared, the plans shall be submitted at 1”=20’ unless otherwise approved by the City project manager. If the City project manager determines that the limits of the work would more clearly be shown at a smaller scale, the plans shall be submitted at 1”=40’, unless the City project manager approves a different scale.

Part 4-5(Q) Signing and Striping Details/Layout Sheets

Pavement markings are used to convey traffic control information to the driver. Pavement markings may be used alone or to supplement other traffic control devices, such as signs and traffic signals. Ensure that the appropriate signs and signal controls are used in conjunction with markings where intended. Any markings that are no longer applicable may create confusion and shall be obliterated.

Signing and striping shall be in accordance with the latest edition of the Manual of Uniform Traffic Control Devices (MUTCD), U.S. Department of Transportation, and the Federal Highway Administration. Click the following hyperlink for an AutoCAD file of an example Signing and Striping Plan drawing.

The cover sheet for signing and striping plans shall contain the general notes for signing and striping along with the following note:

<table>
<thead>
<tr>
<th>EXISTING CONDITIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The posted speed limit on ________ is _______.</td>
</tr>
<tr>
<td>The design speed on ________ is _______.</td>
</tr>
</tbody>
</table>

Plan symbol codes are used to simplify the pavement marking annotation needed to prepare plans. These symbols shall be used when preparing City of Albuquerque pavement marking plans. Click the following hyperlink for an AutoCAD file of the Signing and Striping Legend and Notes drawing.
Section 4-5(Q)(1) General

Signing and pavement marking design shall be shown in the same plan view. Plan sheets are to be double-loaded plan view at a scale of 1” = 40’, unless otherwise approved by the City project manager. The signing and markings shall use the City standard plan symbol coding. See Section 4-5(Q)(4) Plan Symbol Coding.

The entire length of project is to be shown in plan view. “Typical Sections” representative of striping and/or signing will not be accepted.

Signing and pavement marking plans shall include all existing signing and pavement markings for a minimum of 300 feet past the limits of construction and shall include adequate transitions and tapers to maintain traffic at the design speed.

Section 4-5(Q)(2) Signage

All signs shall be stationed and referenced to the appropriate MUTCD sign designation with size noted. Stationing shall conform to the roadway construction centerline stationing. All signs shall be shown at a scale that is relative to scale of the drawing (i.e. 1”=40’).

Existing signs will be screened back and dashed. Signs will be identified as either to remain, to be removed, or to be relocated. All existing advance or approach signing applicable to the project shall be field verified. Reference signs on plan sheet, including location or station, and note status of sign.

Section 4-5(Q)(3) Striping

Existing striping shall be fully shown (as screened lines) and identified by type and width. Lane widths shall be dimensioned across roadway (e.g. 11’, 12’, etc.) and the length of all left and right turn lanes shall be specified (e.g. 100’, 160’, etc.). All existing and proposed striping on the plans shall be shown graphically as they exist in the field (e.g. 10’ stripe/30’ gap).

All new striping shall be clearly identified noting color, line type, and line width. They shall also include beginning and ending stations.

Striping to be obliterated shall be identified on the plans.

All pavement markings (i.e. arrows, crosswalks, stop bars, stripes, etc.), shall be located by station and/or dimension lines. Show all advance traffic signal loops in the pavement (where applicable). This is critical in producing striping plans.

Section 4-5(Q)(4) Plan Symbol Coding

The MUTCD categorizes pavement markings as longitudinal or transverse markings. Longitudinal markings include: center lines, lane lines, edge lines, and dotted lines. Transverse markings include: diagonal lines, stop lines, crosswalk lines, arrows, and symbols. The meaning of these longitudinal and transverse markings is denoted by their color, line type, line width, and pavement marking pattern. The following examples are outlined in the plan symbol coding.
that is to be used on the signing and striping plans prepared for the City of Albuquerque.

FIGURE 4.5.1

4DY 4” Solid Double Yellow Stripe

FIGURE 4.5.2

12SW 12” Solid White Stripe

Click the following hyperlink for an AutoCAD file of a Traffic Control Details drawing. These plan symbol codes simplify the pavement marking annotation needed to prepare plans. The plan symbols shall be used when preparing City of Albuquerque pavement marking plans.

Part 4-5(R) Traffic Signalization Details/Design Sheets

Traffic signal plans are used to show existing signal design, proposed signal design, and signal equipment to be removed or retained. All traffic signal plans shall be submitted at 1”=20’. Note that signal faces shall be shown on this plan in addition to the traffic timing and phasing plan.

The traffic timing and phasing plans should show signal timings, major items required at the intersection, a preferential phase diagram, and the signal faces used. Click the following hyperlink for an AutoCAD file of an example Traffic Signal Plan drawing.

Section 4-5(R)(1) Traffic Signal General Notes & Legend

The general notes/legend sheet for traffic signal plans shall contain all the general notes pertaining to the signal plans in addition to the approved City Traffic Signal Legend. Click the following hyperlink for an AutoCAD file of an example Traffic Signal Plan drawing, referenced in Part 4-5(R) Traffic Signalization Details/Design Sheets above.
The consultant shall use the approved City General Notes as referenced in Section 4-5(C)(1) General Notes. The consultant may add special notes as necessary for the specific project. The note additions should be identified under a separate header: “SPECIAL NOTES.”

Notes that are not applicable to the project may be deleted at the discretion of the engineer by striking through the line of text for all submittals leading up to the final submittal. For final submittal, the non-applicable notes shall be removed from the plans for final signature.

The consultant shall use City’s approved Traffic Signal Legend symbols in the Traffic Signal Plan, as referenced in Part 4-5(R) Traffic Signalization Details/Design Sheets above, consistently throughout the entire plan set.

Section 4-5(R)(2) Equipment & Incidental Items and Interconnect Requirements

The traffic signal equipment and incidental items and interconnect requirements shall be in accordance with approved equipment and procedures as established by the City’s Traffic Engineering Department. See the Traffic Signal Plan as referenced in Part 4-5(R) Traffic Signalization Details/Design Sheets above.

Section 4-5(R)(3) Traffic Signal Estimated Quantities

Traffic signal item numbers and description are based on the latest City Engineer’s Estimated Unit Prices for Contract Items.

Section 4-5(R)(4) Traffic Signal Plan

The traffic signal plan provides information on control cabinet, meter pedestal, service riser, signal poles, and equipment located on signal poles. Utilities, pavement markings, right-of-way, centerline, and stationing shall be shown on this sheet. Pull boxes, conduits, and conductors call-outs and requirements shall be shown on traffic signal cables and conduits sheets, as referenced in Section 4-5(R)(5) Street “A” & Street “B” Traffic Signal Cables & Conduits– I and Section 4-5(R)(6) Street “A” & Street “B” Traffic Signal Cables & Conduits– II, below. In addition, the consultant shall determine and annotate the height measurements relative to existing power lines of traffic signal/appurtenances to ensure that there is sufficient clearance and to avoid conflict during construction.

Section 4-5(R)(5) Street “A” & Street “B” Traffic Signal Cables & Conduits– I

This sheet shall show conduits and conductor requirements. Excel tables provided on the City website may be used as a template. See TABLES_COA SIGNAL STANDARDS.xls. Call-outs for conduits, signal poles, and pull boxes shall be included on this sheet. Pole location instead of signal mast arm shall be shown on this sheet in order to maintain legibility of the sheet.
Section 4-5(R)(6) Street “A” & Street “B” Traffic Signal Cables & Conduits– II

This sheet should show wiring diagrams and requirements to provide sufficient information such that traffic signal wiring is performed by the contractor according to City standards.

Section 4-5(R)(7) Traffic Signal Blocks

Typical traffic signal equipment is most often depicted using blocks for clarity and consistency. Click the following hyperlink for an AutoCAD file of the City’s drawing showing Traffic Signal Blocks. Note that not all the equipment is drawn to scale to maintain legibility on the plan sheets.

Part 4-5(S) Lighting Details/Design Sheets

Streetlight plans shall convey information about the type, wattage, and location of streetlights required to be installed with various types of residential, commercial, and industrial development projects. Streetlight plans prepared by the developer’s engineer are reviewed by the City to optimize public street illumination for traffic safety purposes, without imposing undue public maintenance and energy costs. A well-designed public streetlight system enhances public safety while contributing to community quality of life. Click the following hyperlink for an AutoCAD file of an example Lighting Plan drawing.

Part 4-5(T) Street Cross Sections

Street cross sections may be required if terrain or design problems are encountered.

In some situations, cross sections are helpful for measurement of earthwork volumes in roadway construction. They are profile views of the ground, perpendicular to the centerline or base line, and indicate ground elevations at points of change in the ground slope. Sections should be taken at intervals of 50 ft along the centerline of the roadway. Click the following hyperlink for an AutoCAD file of example Street Cross Sections.

The following items shall be shown and annotated on each cross section:
1. Existing ground surface (dashed).
2. Proposed finished ground surface (continuous).
3. Cross section station (at every 50’ station).
5. Existing or proposed right-of-way (labeled).
6. Proposed elevation at the centerline.
7. Cross slope along the finished grade of the roadway.
8. Elevations and offsets at the top of curb or edge of pavement.
9. Slope needed to tie into existing ground (i.e. 4:1, 3:1, etc.).
10. Volume of cut and fill, when required by the City project manager.
Cross sections may or may not be required for submittal with every project for the City of Albuquerque. The City project manager and consultant will determine if the preparation of cross sections will be beneficial to the project.

Part 4-5(U) Drainage Details

Section 4-5(U)(1) Utilities

In plan and profile, existing and proposed underground utilities should be labeled according to size and type, when feasible. Corresponding alphanumeric labels shall be shown for each utility and depicted in the legend. If the utility is an underground conduit, give all the details such as number of ducts and whether or not the conduit is encased in concrete. Any known utilities to be constructed prior to the project shall be shown and so indicated. Conflicts between existing utilities and proposed construction shall be identified. Utilities that are or will be abandoned shall be indicated, as well as those designated to be relocated or removed.

The engineer shall contact the appropriate utility if any questions arise about types or locations of underground facilities. The minimum vertical clearance between a proposed storm drain and all existing utilities shall be shown in the profile. Above-ground utilities, such as power poles, light poles, guys and anchors, irrigation structures, utility pedestals, transformers, switching cabinets, gas regulators, waterline back-flow prevention units, etc., shall be called out, including size and pad elevation, shown in plan, and stationed relative to the adjacent road construction centerline from the street side face of the utility (e.g. 12+33 R 32').

When below-ground appurtenances (e.g. utilities, monuments, tanks, valve boxes, etc.) depicted on As-Built or "Record" drawings can not be field located, they shall be shown and labeled as "not found."

A pothole table along with the subsurface utility explorations (SUE) information shall be shown on each sheet as applicable with x, y, and z elevations.

Section 4-5(U)(2) Right-of-Way

The plan view of the plan and profile, horizontal control, paving plans, etc. shall show and label the limits of existing and new right-of-way, as well as any needed construction easements.

Section 4-5(U)(3) Sheet References

Sheet number references for match lines and other related plan sheets such as references to paving plan sheets, median detail sheets, driveway details, ramp details, connector pipe profile sheets, etc. shall be noted on each individual plan sheet. This can be done in the plan view area or in the area where the construction notes are located under the heading of "GENERAL NOTES."

Section 4-5(U)(4) Storm Drainage and Profile Drawings

The appropriate level of detail and information (elevations) should be provided to determine drainage patterns. In addition, information to determine that an adjacent property's existing drainage pattern will not be adversely affected.
should be included. Click the following hyperlink for an AutoCAD file of an example Storm Drain Plan and Profile drawing.

A plot of hydraulic grade line profile for storm drain pipe 18 inches or larger shall be provided. The profiles shall be submitted in summary form in plan and profile, intended to highlight the general alignment and hydraulic connectivity of the system herein referred to as the Hydraulic Grade Line Profile Sheet(s). Profile slopes shall be shown in percent to two decimal places (XXX%).

The following data shall also be included with the storm drain profiles:
1. Horizontal and vertical alignment of the storm drains and storm drain pipe size, material type, length, and slope of pipe.
2. Stationing of storm drain line when independent of street stationing increasing upstream of flows. If storm drain is depicted on the street plan, presentation may be as for sanitary sewers.
3. Hydraulic gradient, design flow, and velocities on design review plans.
4. The finished street grade over the storm drain pipe.
5. The proposed pipe profile.
6. Stationing (by angle and distance if necessary), invert elevation of all lines, the type, size, manholes/junction structures. Also provide rim and invert elevations at all existing storm drain manholes.
7. Station catch basins at "Point of Measurement" as shown on City Standard Specifications and tie to street centerline. Also, show type, invert elevations, top-of-curb elevations, grate elevations, type, length, and slope of connection pipe (in percent to two decimal places, such as XXX%).
8. Connector pipe.
11. Other drainage appurtenances (e.g. headwalls, trash racks, drop inlets, hand rails, pipe supports, etc.).
12. Location of all other utilities crossed.

Section 4-5(U)(5) Catch Basins and Connector Pipe Information

All catch basin structures and connecting piping shall be shown, detailed, and specified in accordance with the following:
1. Catch basins or other drainage structures should reference the number from City Standard Specifications, if applicable. If other structures are used (e.g. NMDOT), the appropriate details should be included in the plan set.
2. Gutter, grate, and top-of-curb elevations shall be shown.
3. Catch basins shall be stationed at the "Point of Measurement" shown on the City Standard Specifications and shall be tied to the street centerline.
4. Connector pipe inverts shall be shown at the catch basin and at the connection to the main-line storm drain, as well as any grade breaks.
5. If there are more than two connecting pipes, specify spatial orientation of the connection pipe with respect to the manhole (e.g. N, S, E, W, NE, SE, NW, SW).
6. Show the invert elevation at the outlets of all catch basins to the nearest 0.01 foot.
7. Specify pipe size, material, and slope (in percent to two decimal places, such as XXX%).
8. Show in profile all utility crossings that may be in conflict with the proposed alignment.

Section 4-5(U)(6) Utility Crossings

All utilities (existing and proposed) that are perpendicular to the proposed improvement shall be shown on the profile sheet. Utilities requiring adjustment to clear conflicts shall be shown and noted on the profile, along with their potholed elevations.

Utilities larger than 12 inches in diameter shall be drawn to scale (to show the size of the pipe) in the plan view. Utilities 12 inches or smaller in diameter can be drawn as a single line in the plan view.

Section 4-5(U)(7) Channel Plans

The design and layout of channels shall be shown in both plan and profile views to illustrate the horizontal and vertical alignment. The dimensions of the walls, side slopes, and bottom shall be included, along with the slope (grade) of the channel and the available right-of-way.

The profile of the channel shall include the following:
1. Horizontal and vertical location of channel, invert elevations, slope, top of channel, and bottom of berm.
2. All existing and proposed utility information, including type, invert information, top of concrete channel, and berm profiles, etc.
3. Stationing along the centerline, increasing upstream, regardless of north arrow orientation.
4. Transitions along the channel, clearly identified and detailed in both plan and profile views.
5. Water surface elevation, design flows, and velocities.
6. Intersection of lateral drainage.
7. Supplement channel design on plan and profile with corresponding cross sections.
8. Clear detail and tie transitions in both plan and profile.
9. The horizontal location of all changes in type of material, cross section, and horizontal and/or vertical alignment of all cutoff walls, inlets to the channel, and all structures designed to change the flow characteristics to the nearest 1.0 ft. of the actual location.
10. Elevations on the top of the side walls or top of the bank in earth channels and the centerline of the channel for all points to the nearest 0.1 ft. of the actual elevation.
11. Channel cross sections to show the actual elevation to the accuracy at each right-of-way line, at the top of bank or side wall on each side, at the bottom of bank or side wall on each side, and at the centerline of the channel.
12. The length of the channel between points to the nearest 1.0 ft. of the actual length.
13. The slope on the centerline of the channel between all changes in vertical alignment to the nearest 0.01 percent (0.0001 ft./ft.).
Section 4-5(U)(8) Channel Cross Sections

For simple channels, a typical channel section is required that shows the geometry of the channel, along with material types and thicknesses necessary to clearly reflect the design. When complexity or length of project warrants, location-specific cross sections shall be provided to depict the changing conditions along the length of the project. These specific cross sections shall be in accordance with the following:

1. All cross sections for work within right-of-way or easements must be drawn to scale showing existing ground and proposed construction. Sections should extend into adjacent properties so that unusual terrain or existing building data can be analyzed. Draw cross sections so that stations increase from the bottom of the sheet toward the top.
2. Station each section clearly along the centerline increasing upstream.
3. Indicate existing ground profile at each station.
4. Station the beginning and ending points of a project and draw cross sections for both the stations.
5. Show cross sections of streets, alleys, drainage facilities as looking toward the increasing stationing. Show property lines on cross sections and label as north, south, east, or west.
6. Show the type of material and bank or side wall slope and dimensions of all channels constructed.
7. Show proposed channel configuration at the station.
8. Show areas of cut and fill.
9. Indicate quantities of cut and fill between stations as directed by the City project manager.
10. Show elevations of channel invert and top of channel.
11. Show the project name, stations covered on the cross section sheet, and sheet numbers at the bottom right of the cross section sheet.

Part 4-5(V) Utility Sheets

Section 4-5(V)(1) Master Utility Plan (Water, Sewer and Storm Drain)

The water and sewer plan and profile sheets shall be prepared in accordance with ABCWUA AutoCAD requirements or as directed by the ABCWUA. See the ABCWUA webpage for the ABCWUA Water and Sewer Template drawing. All other plans shall conform to the ABCWUA AutoCAD standards and shall include all of the following:

1. Location of sewer line.
2. Size of sewer pipe. The type of pipe shall be specified or the plan may contain a note that states: "All sewer lines in this project shall be constructed of ductile iron pipe (DIP), high-density polypropylene pipe (HPPP), high-density polyethylene pipe (HDPE), or poly-vinyl chloride pipe (PVC), unless specified otherwise."
3. Location, type, size, and length of service connections. (Provide tables for multiple services.)
4. Required elevations for manholes (e.g. rims, invert (in) and invert (out)).
5. Connection points to existing system.
6. Other utilities crossed or to be crossed by proposed line. (Show the separation distance.)
7. Location of water line.
8. Size of water pipe. The type of pipe shall be specified or the plan may contain a note that states: “All waterlines in this project shall be constructed of ductile iron pipe (DIP), concrete cylinder line (CCYL), or poly-vinyl chloride pipe (PVC), unless specified otherwise.”

9. Connection points to existing system.

10. Location of fire hydrants.

11. Pressure zone lines, if applicable.

12. Service locations, pressure reduction valves, and air pressure release valves.

13. Location of meter boxes. (Provide tables for multiple services.)

14. Other utilities crossed or to be crossed. (Specify separation when less than 3 ft.)

15. Location of all storm drain structures and pipe sizes.

16. Location of all utility easements and right-of-way lines.

17. Location of lighting, signal poles, and other appurtenances.

18. Line widths shown heavier than surrounding information.

Section 4-5(V)(2) Water Lines

Water plans and profile drawings shall be prepared per ABCWUA requirements in accordance with the following:

1. Stationing of water lines should correspond to the stationing of the street centerline if the street is new construction under the same contract as the water line. Show horizontal and vertical alignment of water lines. Vertical alignment may be by reference to top of curb. Identify depth of cover from finished grade for all of waterlines. If a public/private ABCWUA easement is required, the width of the easement shall be shown with a place for the recording information.

2. Show the type of material including class or code and internal diameter of all pipe installed by general note.

3. Show the curve data or the amount of deflection (ft./ft. of pipe) and the direction of such deflection when the horizontal or vertical alignment of the pipe is changed by deflection of the joints.

4. Identify the horizontal location (to the nearest 1.0 ft.) all fittings, restrained joints, valves, valve boxes, meter boxes, fire hydrants, and other applicable line features by type, size, and possibly elevation, where necessary. Indicate material type and SDR where applicable as well as tracer wire location. All valves, fire hydrants, meter boxes, water manholes, and vaults require spatial coordinates to note their respective locations on the drawings. Coordinates shall be provided in the coordinate system stated in Section 4-4(B)(1) Coordinate Systems. Valve elevations shall be provided at both the top of the valve box cover, as well as the operating nut. An enlarged detail must be included when multiple fittings and/or valves are installed as a unit or when clarity of the location of the various items listed above cannot be obtained on standard plan and profile views.

5. For multiple water meters, fire hydrants, water valves, water manholes, and vaults, use tables to show location, stationing, and spatial coordinates (x,y, and z coordinates) to note their respective locations on the drawings. Coordinates shall be provided in the coordinate system stated in Section 4-4(B)(1) Coordinate Systems. (Provide coordinate tables during plan review stages with space to fill in coordinates, but actual coordinates are not required to be shown until record drawings are submitted.) Where backflow preventers are required, show or note where they will be located.
6. Show the invert elevation of all fittings, valves and changes in grade of
 the pipe for lines 16 in. diameter and larger, top of cover elevation for all
 valve boxes not in paved streets and bottom of flange elevation on all fire
 hydrants to the nearest 0.1 ft. of the actual elevation.

7. Show the size and type of joint of all valves installed. For valves 16 inches
 and larger, show the number of turns required for stop to stop operations.
 If pressure relief valves or surge valves are installed, show the location of all
 bypass valves, fittings, and/or discharge lines in an enlargement.

8. Show the location of all anodes installed and all non-galvanic joints.

9. Locate fire hydrants by station or tie to a centerline or property line with a
distance to the hydrant from centerline shown. The elevation at the bottom
of the flange must be shown. If an easement is required, the dimensions of
the easement shall be shown.

10. Indicate water pressure zone lines, if applicable.

11. If the project is to be separated into several construction phases, such as
master plan water line and normal distribution system, show the points or
lines of separation.

12. For all non-pressure connections to existing water lines, a water shutoff
plan needs to be provided with an area map. Additionally, in the
Construction Notes section, there should be a link to the seven (7) day line
shutoff request.

13. If San Juan Chama lines are within ten (10) feet of any proposed waterline
construction involved in the excavation, an Administrative Order ABCWUA
permit will be required to work near the San Juan Chama lines. Forms are
available on the ABCWUA website.

14. Show the tubing diameter and type of material, including class or code,
installed in each service connection. General notes stating types of material
are acceptable when the same materials are used throughout.

15. Show special fittings in sufficient detail to facilitate the future maintenance
or replacement.

16. Show the type of blocking, if blocked, or the type of restraint used for all
fittings, joints, and valves requiring restraint. If the same type of blocking or
restraining is used, general notes will suffice.

17. Show the length of pipe between tees and/or crosses to the nearest 1.0 ft.
of the actual length.

18. Show and dimension all valves added to adjacent systems necessary to
isolate the new system.

Section 4-5(V)(3) Sanitary Sewer

Sanitary sewer plans and profile drawings shall be prepared per ABCWUA
requirements in accordance with the following:

1. Show horizontal and vertical alignment of the sewer line. The sewer
will generally be located along the centerline of the street. Also include
size, type, length, and slope of all pipe installed in sewer mains, service
connections, and risers as measured between centerlines of manholes.

2. Sanitary sewer lines may be shown by means of reaches giving the distance
and slope of the line between centerlines of manhole barrels. For large
diameter lines or for special circumstances where invert elevations at face
of manhole are critical, additional notation may be required.

3. Show the following information for all sanitary sewer manholes:
 a. location of the manhole tied to street centerline stationing (by angle and
distance if not on street centerline).
 b. invert elevation of all connecting lines.
Specify invert elevations by showing "invert (in)" and "invert (out)" with a 0.1-foot difference in elevation between inverts, where possible.

- rim elevation, material type and size.
 - Show manhole lid/rim elevations. Indicate flowline directions.

4. Show all proposed sanitary sewer service lines, including size, material type, length, invert at property line, and an SAS Table showing the pertinent information, when multiple service lines are required.

5. Note respective locations of all sanitary sewer manholes, cleanouts, and vacuum valve pits with spatial coordinates (x,y, and z coordinates). (Provide coordinate tables during plan review stages with space to fill in coordinates, but actual coordinates are not required to be shown until record drawings are submitted.)
 a. Show location of the manhole tied to street centerline stationing (by angle and distance if not on street centerline).
 b. Show manhole lid/rim elevation and invert elevations for all connecting lines within each manhole and indicate flow directions.
 c. For cleanout and vacuum pits, show vertical data of lid or cap as well as invert elevations.
 d. Show all proposed sanitary sewer service lines with required information, including size, material type, length, and invert at property line.

6. Show the horizontal location of the center of all manhole barrels or junction boxes, the dead end of each sewer main or stub, the end of each service connection, and all changes in the type of pipe material used for sewer mains to the nearest 1.0 ft. of the actual location.

7. Show invert elevations of all pipe (inlets and outlets) within each manhole to the nearest 0.1 ft. of the actual elevation when the slope of the pipe exceeds 1% or to the nearest 0.01 ft. where the slope of the pipe is less than 1%.

8. Show the invert elevation at the end of each service connection to the nearest 0.1 ft. of the actual elevation. This may be accomplished by revision of tables, if originally presented in tabular form.

9. Indicate the type and diameter of all manholes and wall type (e.g. precast, block, or poured in place) and the dimensions of all junction boxes on the drawings for each manhole or junction box or by general note.

10. Show the rim elevation of all manholes to the nearest 0.1 ft. of the actual elevation.

11. Show the length of pipe between manholes (measured center to center of manholes), the length of all dead end stubs, the height of each riser and the length of each service connection to the nearest 1.0 ft. of the actual length.

12. Show the slope of the pipe between manholes and on dead end stubs by actual slope to the nearest 0.01 percent (0.0001 ft./ft.).

13. When a new manhole is constructed around an existing sewer line, show the distance to the center of the existing adjacent manholes to the nearest 1.0 ft. of the actual distance.

14. Show the curve data, or the amount of deflection (ft./ft. of pipe), and the direction of such deflection when the horizontal or vertical alignment of the pipe is changed by deflection of the joints.
ARTICLE 4-6 RECORD DRAWING CRITERIA

Upon completion of construction, record drawings shall be prepared and submitted for review and approval. They shall reflect all changes from the original, approved construction drawings, including sizes, materials, horizontal locations, and elevations, as applicable. The record drawings may be prepared manually by depicting all as-built information on the original construction drawings or electronically by submitting paper copies. Regardless of the method chosen, the original, approved construction drawings shall be used as a basis, with all changes shown. The line work and labeling for the as-built conditions shall be distinctive, easy to read, legible, and fully comprehensible. Each drawing sheet shall be stamped “As-built” or “Record Drawing,” with the date of preparation shown.

The original drawings bearing the original approval signatures must be used in the preparation of the record drawings. If such drawings cannot be revised to produce a clear and legible record, new drawings must be prepared and clearly marked “Redrawn for Record Purposes.” Originals must be marked “revised” and submitted with the new drawings. The use of drawings incorporating aerial photographs in the plan view of a plan and profile sheet should be avoided, due to the difficulty in obtaining acceptable copies of the microfilmed record drawing.

Part 4-6(A) General Criteria

The applicable sections of the following criteria govern the type and accuracy of the information required on the record drawings to be accepted by the City for all construction work. It is intended that most items for record drawings can be obtained by verification of compliance to design at time of construction and that resurvey should only be required in instances of substantial departure from design.

1. Show the new construction as actually accomplished on each drawing in heavy solid lines in both the plan and profile views.
2. Show the horizontal location, elevation, size, type of material, and nature of all discovered underground utilities or obstructions. Facilities existing prior to the project are to be shown in a thin dashed line in both the plan and profile as required to indicate the continuity of the system.
3. The horizontal location information for all facilities within a public right-of-way or easement must be based on centerline stationing and centerline offsets. Sufficient ties to existing property corners or other right-of-way control monuments must be provided to clearly establish the actual location of such facilities.
4. Base all elevations on City control monuments as shown on the plans.
5. Identify on each plan and/or profile sheet all revisions to the approved construction drawings that occurred during construction by placing a revision symbol and number at the location on the drawing where the change occurred and by providing a revision block to record all required information. Identify the limits of all revisions on the drawings.
6. Record the information required in the as-built information block after the record drawings have been prepared.
Part 4-6(B) Digital Record Criteria

At the end of construction, the signed record drawings shall be submitted in PDF format to the DMD/CSD for roadway projects and the DRC for private development of public infrastructure within the public right-of-way and/or easements. In each case, the following digital record criteria shall be submitted:

1. A single, multiple page, image based, electronic PDF file named [ProjectNumber].pdf containing one PDF sheet for each sheet of the project drawing plan set.

2. The resolution shall be no less than 300 dpi.

3. An electric copy containing the project’s “Base File.” The base file drawing information shall be in AutoCAD (.dwg) and submitted to the City project manager.

4. Each sheet shall be oriented as if you are reading the drawings on your desk (e.g. top to bottom, left to right, no rotated images).

5. Each sheet of the single multiple-paged PDF shall be numerically ordered according to the plan set.

6. The Title Block “as-built information” block on each sheet shall be fully completed.

7. Each sheet within the plan set shall be stamped/marked in large, red, bold text: “RECORD DRAWING.” This stamp/text shall be placed at or near the bottom right-hand corner of the sheet near the title block.

8. The cover sheet shall contain the “RECORD DRAWING CERTIFICATION” along with the engineer’s or architect’s seal. The “RECORD DRAWING CERTIFICATION” for the construction of infrastructure for the engineer and surveyor shall read as follows:

I, ________________, of ________________, A LICENSED PROFESSIONAL ENGINEER IN THE STATE OF NEW MEXICO, DO HEREBY CERTIFY, TO THE BEST OF MY KNOWLEDGE AND BELIEF, THAT THE INFRASTRUCTURE INSTALLED AS A PART OF THIS PROJECT HAS BEEN INSPECTED BY ME OR BY A QUALIFIED PERSON AND HAS BEEN CONSTRUCTED IN ACCORDANCE WITH THE PLANS AND SPECIFICATIONS APPROVED BY THE CITY ENGINEER AND THAT THE ORIGINAL DESIGN INTENT OF THE APPROVED PLANS HAS BEEN MET, EXCEPT AS NOTED ON THE RECORD DRAWINGS. THIS CERTIFICATION IS BASED ON THE INSPECTIONS CONDUCTED AND AS-BUILT SURVEY PERFORMED BY ____________________, ON ____________________.

I, ________________, A LICENSED NEW MEXICO PROFESSIONAL SURVEYOR NO.________, DO HEREBY CERTIFY THAT THIS AS-BUILT WAS BASED ON AN ACTUAL GROUND SURVEY BY ME OR UNDER MY DIRECT SUPERVISION; THAT THIS AS-BUILT SURVEY WAS PERFORMED IN THE MONTH OF_______; THAT IT MEETS ALL REQUIREMENTS LISTED UNDER THE STANDARD DRAWINGS AND STANDARD SPECIFICATIONS FOR SURVEYING ISSUED BY THE ENGINEER OF RECORD; AND THAT IT IS TRUE AND CORRECT TO THE best OF MY KNOWLEDGE AND BELIEF.
9. For City of Albuquerque projects, the cover sheet shall contain the approval of the DMD/CSD construction engineer of record for the project using the following signature block:

 APPROVED AS RECORD DRAWINGS
 DMD/CSD
 CITY CONSTRUCTION ENGINEER
 DATE: _________________________

10. If the City’s DMD/CSD is performing the prime role as the inspection team on the project, the following record drawing certification must be used:

 I, THE UNDERSIGNED, A REGISTERED PROFESSIONAL ENGINEER IN THE STATE OF NEW MEXICO, DO HEREBY CERTIFY THAT THE INDICATED RECORD DRAWINGS ARE BASED UPON INFORMATION PROVIDED BY THE CONSTRUCTION CONTRACTOR IN THE FORM OF THE REDLINED CONSTRUCTION DRAWING MARKUPS TO THE ORIGINAL DESIGN DRAWINGS. THE TRANSFER OF INFORMATION HEREIN IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF; HOWEVER, I HAVE NOT VERIFIED THE ACCURACY AND/OR COMPLETENESS OF THE INFORMATION PROVIDED BY THE CONSTRUCTION CONTRACTOR AND SHALL NOT BE RESPONSIBLE FOR ERRORS AND OMISSIONS THAT MAY BE INCORPORATED AS A RESULT OF ERRONEOUS INFORMATION PROVIDED BY OTHERS. ALL INFORMATION INCLUDING VERTICAL AND HORIZONTAL DIMENSIONS SHOULD BE FIELD VERIFIED PRIOR TO USE ON FUTURE PROJECTS.

 ___________________________________ _________________________

11. All drawings in the project set must be clearly marked “Record Drawing.” A Registered Professional Engineer must affix his/her seal and a certification bearing his/her signature. A registered land surveyor may certify as to position. This certification must state that the drawings have been revised in accordance with information furnished by to reflect the construction as actually accomplished.

12. Submit the record drawings and one print of each sheet to the City Engineer for review.
This chapter presents detailed specifications for the preparation of significant development-related documents, which ultimately are recorded with the Bernalillo County Clerk or filed in the records of the City. Detailed requirements for drafting, drawing materials, and the organization of recordable documents are covered.

CONTENTS

GOVERNING REGULATIONS...5-3

ARTICLE 5-1 GENERAL REQUIREMENTS FOR ALL PLATS5-3
 Part 5-1(A) Nature and Purpose of Plat..5-3
 Part 5-1(B) Title of Plat...5-4
 Part 5-1(C) Date of Plat...5-4
 Part 5-1(D) Location Map / Zone Atlas Map Number......................5-4
 Part 5-1(E) Scale and North Arrow ...5-4
 Part 5-1(F) Plat Boundary Lines...5-4
 Part 5-1(G) Tie to Permanent Survey Monuments..........................5-4
 Part 5-1(H) Existing Easements..5-5
 Part 5-1(I) Existing Public Right-of-Way..5-5
 Part 5-1(J) Total Area of Plat...5-5
 Part 5-1(K) Monument Description and Location............................5-5
 Part 5-1(L) Special Flood Hazard Areas...5-5

ARTICLE 5-2 PRELIMINARY PLAT REQUIREMENTS5-5
 Part 5-2(A) Scale..5-6
 Part 5-2(B) Proposed Monumentation..5-6
 Part 5-2(C) Existing Conditions..5-6
 Part 5-2(D) Proposal Elements..5-7

ARTICLE 5-3 FINAL PLAT DETAILED REQUIREMENTS5-7
 Part 5-3(A) Scale..5-7
 Part 5-3(B) Monuments ..5-7
 Section 5-3(B)(1) Subdivision Control Monuments....................5-7
 Section 5-3(B)(2) Permanent Survey Monuments.......................5-8
 Section 5-3(B)(3) Benchmarks...5-8
 Section 5-3(B)(4) Existing Monumentation..................................5-8
 Part 5-3(C) Plat Boundary..5-8
 Part 5-3(D) Plat Area..5-8
 Part 5-3(E) Reference to Federal Rectangular System.....................5-9
 Part 5-3(F) Interior Data...5-9
 Part 5-3(G) Exterior Data...5-10
 Part 5-3(H) Subdivision Data..5-10
 Part 5-3(I) Metes and Bounds Description / Legal Description........5-10
Part 5-3(J) Consent and Dedication Statements ... 5-10
Part 5-3(K) Certifications .. 5-11

ARTICLE 5-4 GRANT OF DRAINAGE EASEMENT5-13

ARTICLE 5-5 DRAINAGE COVENANTS ..5-13

ARTICLE 5-6 GRAPHIC STANDARDS ..5-14
Part 5-6(A) Materials .. 5-14
Part 5-6(B) Drafting Standards ... 5-15

ARTICLE 5-7 ACCEPTABLE FORMS OF LANGUAGE5-15
Section 5-7(B)(1) Free Consent and Dedication ... 5-15
Section 5-7(B)(2) Surveyor's Certification .. 5-16
Section 5-7(B)(3) Sample Signature Block for Plats 5-16
The major and most significant document discussed is the final plat as required by the Integrated Development Ordinance (IDO) Part 14-16-6 (ROA 1994). The preparation of a preliminary plat is also discussed in detail, since it becomes the basis for preparation of the final plat once it is approved by the Development Review Board (DRB).

Examples of appropriate dedication statements on plats and formats for grants of easement by separate instrument for certain purposes are also included.

GOVERNING REGULATIONS

The IDO is the primary regulation governing plat preparation for subdivided land within the jurisdiction of the City planning and platting authority. Additional requirements related to processing and recording are promulgated by the Bernalillo County Clerk.

ARTICLE 5-1 GENERAL REQUIREMENTS FOR ALL PLATS

For the purposes of this Chapter, the term "plat" means a formal graphic presentation of subdivided land prepared in the manner specified herein and containing required descriptions of subdivided land, acknowledgment by owners of consent to subdivision, dedications, and certification by the plat preparer. This Chapter covers requirements for all of the following:

1. Preliminary plats, which are often required as a step toward final plat preparation and approval.
2. Plats intended for abbreviated procedure, which are generally final plats involving minor subdivisions or minor boundary changes or are for a limited special purpose and which, by their nature, are appropriate for abbreviated processing.
3. Final plats of proposed subdivisions of land submitted for approval to the DRB.

The following are requirements for all plats. (Detailed requirements for specific types of plats are given in subsequent Articles.)

Part 5-1(A) Nature and Purpose of Plat

The nature and purpose of the plan should be in the form of a brief statement placed in the upper right-hand corner on each plat sheet. Examples of appropriate statements are as follows:

1. Subdivision plat for ...
2. Replat of ... (lands being replatted) ... to ... (new name)
3. Amended plat of ...
4. Plat for abbreviated procedure of ...
5. Annexation plat of ...
Part 5-1(B) Title of Plat

The name of the subdivision or parcel(s) created by the plat should be placed near the upper right-hand corner of each plat sheet immediately below the nature and purpose statement and should be the boldest lettering on the sheet.

Part 5-1(C) Date of Plat

The month and year in which the plat is prepared should be placed immediately below the title of the plat on each sheet.

Part 5-1(D) Location Map / Zone Atlas Map Number

A reduced scale map showing the relationship of the lands of the plat to principal landmarks and municipal boundaries should be placed in the upper left-hand corner of the plat sheet or “first sheet” if the plat has multiple sheets. The identification of the Albuquerque Zone Atlas map within which the plat lies shall be shown, preferably immediately below or above the location map.

Part 5-1(E) Scale and North Arrow

Drawing scale shall be shown as both equivalent scale and graphic scale, preferably immediately below the north arrow, which shall be shown in proper orientation with respect to the plat lines on each plat sheet. A north arrow must also be provided to orient the location map.

Part 5-1(F) Plat Boundary Lines

Plat boundary lines shall be shown as the boldest lines on the plat sheet and shall be properly oriented and annotated giving the bearings of all lines in degrees, minutes, and seconds and the basis for such bearings. The distances of all lines shall be drawn to correct scale and dimensioned in feet correct to hundredths or other functional reference system.

Part 5-1(G) Tie to Permanent Survey Monuments

Tie to permanent survey monuments from the plat boundary lines shall be shown giving monument identification, New Mexico State Plane Coordinates, if applicable, and bearings and distances of courses establishing ties; bearings in degrees, minutes and seconds; and distances in feet and hundredths. (See DPM, Section 10-1(A)(2) Permanent Survey Monuments, for detailed information.)
Part 5-1(H) Existing Easements

Existing easements within, along, or intersecting the plat boundaries shall be shown giving correct location, dimensions, and purpose or nature of right of easement. Existing easements that are to remain in the final plat should be drawn in light lines or dashed lines and be clearly labeled. Easements intended to be abandoned or vacated by final plat approval should be shown as ghost lines, easily distinguished from lines for easements to remain, and shall be clearly labeled, including the intent to abandon or vacate. Vacation of easements will require additional documentation. (See Article 5-3 Final Plat Detailed Requirements).

Part 5-1(I) Existing Public Right-of-Way

Existing public right-of-way along or intersecting the plat boundary or boundary streets of the plat shall be shown, giving correct locations and dimensions, purpose or nature, and name, if applicable.

Part 5-1(J) Total Area of Plat

Total area of plat within the plat boundaries shall be shown in acres, rounded as specified for the type of plat being prepared.

Part 5-1(K) Monument Description and Location

Monument description and location shall be shown for all found monuments and for all monuments set or, if a preliminary plat, intended to be set, within or related to the plat boundary and ties thereto. Monument description must include the registration number of the surveyor who set the monument or the number that appears on found monuments.

Part 5-1(L) Special Flood Hazard Areas

Special Flood Hazard Areas shall be shown on the plat, and a note shall be added to the plan indicating the Flood Insurance Rate Map (FIRM) number, type of flood zone, and effective date.

ARTICLE 5-2 PRELIMINARY PLAT REQUIREMENTS

The following requirements for preliminary plats are in addition to the general requirements for all plats:
Part 5-2(A) Scale

Shall be 1 in. to 100 ft. (1".100’) or, if determined to appropriate by the DRB, 1 in. to 50 ft. (1".50’).

Part 5-2(B) Proposed Monumentation

All of the following shall be shown:
1. Proposed benchmark locations.
2. Proposed permanent survey monument(s) location and method of tie to plat boundary.
3. Proposed subdivision control monuments location and type.

Part 5-2(C) Existing Conditions

All of the following shall be shown:
1. Type and width of paving on existing streets intersecting, along, or within 150 feet of the plat boundary, including curb, gutter, and sidewalk locations.
2. Existing utilities within and adjacent to plat, including all of the following:
 a. Location and size of all of the following:
 i. Water wells.
 ii. Water reservoirs.
 iii. Water lines.
 iv. Sanitary sewers.
 v. Storm drains, channels and other facilities.
 b. Location of all of the following:
 i. Gas lines.
 ii. Fire hydrants.
 iii. Power lines and poles.
 iv. Telephone lines and poles.
 v. Street lights.
 vi. Any other facilities in the right-of-way.
 c. If not on or immediately adjacent to site, direction to, distance to, and size of both of the following:
 i. Nearest water lines.
 ii. Nearest sanitary sewers with invert elevation.
3. Ground elevation and site based on mean sea level as established within DPM Chapter 10 Surveys and Monumentation.
 a. For land having slopes less than 1%: by contour lines at intervals of not more than 1 ft. and spot elevations not more than 100 ft. apart at selected locations sufficient to define all breaks in grade and drainage features.
 b. For lands sloping between 1% and 5%: by contour lines at intervals not to exceed 2 ft.
 c. For lands sloping more than 5%: by contour lines at intervals not to exceed 5 ft.
4. Existing property lines to be eliminated: by light dashed lines clearly annotated to indicate intent to eliminate.
Part 5-2(D) Proposal Elements

All of the following shall be shown:
1. Plat boundary gross area in acres to the nearest tenth of an acre.
2. Proposed public right-of-way locations and widths, street widths, street names, and sidewalk locations and widths.
3. Proposed private way locations and widths, street names and widths, and sidewalk locations and widths.
4. Proposed easements of any nature, locations, dimensions, nature or purpose, ownership and any limitations thereto.
5. Proposed block and lot lines with number or letter identification of each block and lot to be created. Lot fronts must be designated on any double fronting residential lots.
6. Proposed ground elevations presented as specified in Part 5-2(C).
7. Proposed locations of any planned water wells, reservoirs.
8. Any significant topographic features and/or conditions on-site.
9. Zoning of and adjacent to the site.

Article 5-3 Final Plat Detailed Requirements

The following detailed requirements for final plats are in addition to the general requirements for all plats given in Article 5-1 General Requirements for All Plats.

Part 5-3(A) Scale

Shall be either 1 inch to 100 feet (1" to 100’) or 1 inch to 50 feet (1" to 50’). When practical, 1 inch to 50 feet is preferable.

Part 5-3(B) Monuments

All monumentation shall conform to the requirements specified in the State’s Minimum Standards for Surveying in New Mexico, Title 12, Chapter 8, Part 2, NMAC, 17 D through F and shall be set by a surveyor licensed by the State of New Mexico or under his/her direct responsible charge.

Section 5-3(B)(1) Subdivision Control Monuments

5-3(B)(1)(i) Exterior Monumentation

All angle points, points of curvature, and points of tangent along the subdivision perimeter shall be monumented as exterior subdivision control monuments before the City Surveyor signs the final plat.
5-3(B)(1)(ii) Interior Monumentation

1. Interim monuments may be required as specified in the State’s Minimum Standards for Surveying in New Mexico 12.8.2.17(D) NMAC.
2. Before the City will accept subdivision street improvements, permanent interior subdivision control monuments shall be installed.

Section 5-3(B)(2) Permanent Survey Monuments

All subdivision perimeters shall be referenced by bearing and distance to a minimum of one permanent survey monument approved by the City Surveyor. Two (2) permanent survey monuments shall be referenced for each major subdivision by bearings and distances to at least two points on the subdivision perimeter. The permanent survey monument shall be identified on the plat by reference to AGRS published data, including name, northing, easting, ground to grid factor, convergence angle, New Mexico Coordinate System zone and reference datum. (See DPM Section 10-1(A)(2) Permanent Survey Monuments, for detailed information.)

Section 5-3(B)(3) Benchmarks

The location, description, elevation based on mean sea level datum per Chapter 10, Surveys and Monumentation and the registration number of the surveyor who set it shall be shown on the plat for each benchmark required to be set or used for vertical control in the subdivision. The elevations to be shown for benchmarks on the plat shall be as approved by the City Surveyor, according to the procedures given in DPM Chapter 10 Surveys and Monumentation.

Section 5-3(B)(4) Existing Monumentation

All existing monumentation, including found property corners, shall be shown on the plat, giving accurate description, location, and registration number of surveyor who set the monument, if available.

Part 5-3(C) Plat Boundary

In addition to the boundary items required by Part 5-3(G) Exterior Data, record and measured distances and bearings shall be shown and identified for all courses in the plat boundary on final plats.

Part 5-3(D) Plat Area

The total gross area in acreage or square feet expressed to four decimal places within the plat boundary shall be shown on the final plat as specified in the Part 5-1(F).
Part 5-3(E) Reference to Federal Rectangular System

Final plats shall refer to the Federal Rectangular System (i.e. the "sectionalized system") by giving the location of the platted area within the appropriate section, township, range, and, if applicable, fraction or aliquot part of a section. If the plat does not lie within an officially sectionalized area, the reference may be given to a projection of the official system and identified as projected. The description of location should also include the New Mexico Principal Meridian. When projected location descriptions are used and when projection is impractical, the name of the land grant or other body of unsectionalized land in which the plat lies shall be identified. The reference to the Federal Rectangular System and, if applicable, the name of the unsectionalized land is to be located on the plat immediately under the title of the plat.

Part 5-3(F) Interior Data

All of the following additional data shall be shown within the boundary of all final plats:

1. All existing public rights-of-ways that will remain and those to be created by the plat. Required information includes all of the following:
 a. Names of streets.
 b. Right-of-way widths and locations.
 c. Right-of-way data, including the length, central angle, and radius of all curves in right-of-way lines.
 d. Centerline data, including the length, central angle, and radius of all curves.

2. All easements, both existing and those to be created by the plat must give all the following information:
 a. Location and dimensions by bearing and distance.
 b. Purpose.
 c. Limitations, if any.

3. Any easements intended to be abandoned, identified as "to be abandoned or vacated by this plat."

4. All block and lot lines must give all of the following information:
 a. Location and dimensions of all lot lines by bearing and distance.
 b. Areas of all lots/tracts (gross and net) in acreage or square feet.
 c. Number or letter identification, in progression, for each lot and each block. No lot identification may be duplicated within a single block, and no block identification may be duplicated within a plat boundary.
 d. Lot fronts must be designated for all single-family residential lots abutting more than 1 street.

5. Any lots dedicated or reserved for public use shall be identified giving location and dimensions by bearing and distance, area in acres or square feet, and the intended purpose(s). If dedicated by a separate instrument, the document identification and identifying information from the County Clerk record is to be included.

1 Easements may only be vacated by this means if legal consent of all those holding legal interest in the easement is provided on the final plat. If vacated by separate procedure or instrument, the approved document shall be identified by title and county clerk recordation identification.
Part 5-3(G) Exterior Data

Both of the following items concerning elements exterior to the plat boundary shall be shown on the final plat:

1. Identification of lands adjoining the platted land, giving the identity of recorded subdivision plats, including the County Clerk recordation information, and for other parcels of land, the most appropriate and accurate identification available.

2. All streets on adjacent lands that intersect the boundary or boundary streets of the plat shall be shown, giving the location, dimensions of right-of-way, and name. Private ways that intersect the plat boundary or boundary streets shall be shown, giving the same information.

Part 5-3(H) Subdivision Data

All of the following additional general information shall be shown on the final plat:

1. The total miles of full-width streets and the total miles of half-width streets, as well as the total miles of all streets created by the plat.

2. The total area of dedicated right-of-way.

3. The total number of lots and or tracts created by the plat.

4. The case number of the plat as assigned by the City/County Planning Authority.

5. The date, including at least the month and year, of the survey.

Part 5-3(I) Metes and Bounds Description / Legal Description

A metes and bounds description of the exterior boundary of the platted land shall be given on the final plat, or the caption portion of the description may include reference to the most recent recorded identification of the lands being subdivided or platted and the record information from the County Clerk. The description is to be located within the central 1/3 of the area of the first sheet of the final plat, beginning near the upper margin.

Part 5-3(J) Consent and Dedication Statements

1. The final plat shall clearly state that the proposed plat represents the desires of the owners and that all dedications, grants of easements, and other public features of the plat are given for public use in perpetuity with the knowledge and free consent of the owners. Separate clauses of such statements may be necessary for specific special purpose features such as drainage easements. Unless otherwise approved by the planning authority, all grants of easements to the City should generally allow use for other purposes (e.g., drainage easements must also allow for installation of underground sanitary sewer and water lines).
2. All lands dedicated for public rights-of-way are to be dedicated in fee simple, with warranty covenants, and the dedication statement must so state.

3. If lands are to be dedicated as parks within or associated with the plat, a separate deed for the dedicated land is required. The dedicated park land shall be clearly indicated on the plat, as described herein for public areas, and the information from the County Clerk record of the previously-recorded deed for the land shall be shown on the plat.

4. If the plat includes any private ways, there shall be a statement on the plat establishing the permanent legal character of such private ways, and the statement must be acknowledged by the owners. The statement must indicate the permanent owners of the rights granted in the private ways. A typical form of such statement might read:

```
Private ways (streets) shown hereon are hereby granted as permanent access easements to be indivisibly and privately and collectively owned by the owners of the individual properties that the easements serve.
```

Similar statements shall be provided if other ownerships are intended; however, the permanence of access rights to individual properties shall be indicated.

If any private way on the plat serves more than 1 lot and is not to be paved prior to request for plat approval, a bond assuring required paving shall be posted with the City. A statement shall be placed on the plat indicating the private ways that are covered by such bond, the date by which such paving is required to be installed, and the information for the County Clerk record documenting the agreement under which the bond is established.

5. All easements must include beneficiary and maintenance responsibility.

6. All owners’ signatures on the plat must be acknowledged in the manner required for acknowledgment of deeds.

Part 5-3(K) Certifications

All of the following certifications are required to be on the final plat:

1. Certification by the registered land surveyor who performed the surveys for the plat and who prepared the plat certifying the accuracy of the surveys and the plat and that the surveys were either performed by the surveyor or under his/her supervision and that the plat was prepared by the surveyor or under his/her supervision. If the plat is prepared from record documents only, the certification should so state.\(^2\)

2. Certification by franchised utilities that respective needs, if reasonable, are met by the plat.

3. Certification by the Albuquerque-Bernalillo County Water Utility Authority (ABCWUA) that its requirements have been met.

4. Certification by the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) that its needs have been met. For lands lying within

\(^2\)Plats that do not contain clearly identified ties to permanent survey monuments either by record or existing found monuments will not be accepted.
City limits, this certification may be made by the AMAFCA designee on the City Engineer's staff. ³

5. Certification by the Parks and Recreation representative that park and open space requirements have been met.

6. Certification by the City Land Surveyor that required monumentation is in place or that satisfactory arrangements for deferred monumentation have been made, including financial security and that surveys have been found in compliance with design standards.

7. Certification by the City Engineer that water courses, storm drainage provisions, and street names are approved. ⁴

8. Certification by the City Real Property Division that requirements have been met for change in the City ownership or rights, involving any rights-of-way, grants of easement, or public lands to be altered by the plat.

9. Certification of approval by the City Traffic Engineer of street, alley, and sidewalk configuration, right-of-way width, street width, and any private ways.

10. Certification by the Planning Director of plat approval and of conditional acceptance of all dedications and grants of easement for public use. This certification shall be accompanied by a statement on the plat indicating such approval and acceptance. An acceptable form of such statement is shown in Article 5-7 Acceptable Forms of Language of this chapter.

11. Related certifications may be required in special circumstances as determined by the Development Review Board (DRB) or Environmental Planning Commission (EPC).

12. If lot lines are proposed to change from existing locations, and public infrastructure such as water systems, and sanitary sewer systems are in place prior to the proposed platting, the owners of the lands being replatted or seeking such a change to the lot line must certify acceptance of responsibility for any necessary relocation of water or sanitary sewer services to the lots affected by the lot line change.

13. Certification by Albuquerque Geographic Information System (AGIS) Division of the City Planning Department of approval of digital plat submittal. Digital plat submittals shall, at a minimum, meet all of the following criteria:
 a. Data shall be in NAD83 New Mexico State Plan Grid Coordinates or ground coordinates tied to ACS (Albuquerque Control Survey) network monumentation.
 b. The submittal shall disclose the coordinate system.
 c. The digital submittal shall include all of the following:
 i. A single drawing in model space showing only parcel lines and easement lines.
 ii. Only final plat data shall be provided.
 iii. Parcel lines shall be in 1 separate layer.
 iv. Access easement lines and all other easements that are 20 feet wide or greater shall be in a second separate layer.
 v. All other easements shall be in a third separate layer.
 d. The digital plat submittal shall be accepted in any of the following formats:

³ The requirement for AMAFCA approval generally applies only to plats lying east of the north and south diversion channels constructed under AMAFCA auspices and west of the Middle Rio Grande Conservancy District channels on the west side of the Rio Grande.

⁴ Street names must not contain more than 17 letters and spaces. In order to assure that street names will receive approval, the City Surveyor’s office should be contacted to review proposed names for possible conflicts with existing street names.
i. DXF (Drawing Interchange Format) in ASCII (American Standard Code for Information Interchange) format.

ii. Other formats directly compatible with ArcGIS Software (shapefiles or feature class within a file geodatabase) that have attributes defining which features are parcel lines, access easements, or other easements 20 feet wide or greater, and all other easements.

e. A PDF (Portable Document Format) or hard copy of all pages of the plat shall accompany the electronic digital plat submittal.

f. Files may be transmitted as attachments to email directly to AGIS Division staff or brought into the AGIS Division offices with the current acceptable media (disc or USB flash drive).

g. The assigned Planning Department project number shall be clearly communicated, and file names shall follow this standard naming convention <DRB Project#>.file extension (.dxf, .pdf).

h. The digital plat submittal shall be validated by AGIS as a condition to final sign-off, and the validation review will be performed in a timely manner. Upon approval, AGIS staff will notify the applicant and the DRB Chair via email.

ARTICLE 5-4 GRANT OF DRAINAGE EASEMENT

Whenever stormwater runoff is directed from a public right-of-way or easement into private property, the drainage improvements or natural drainage conveyance system must be contained in a public drainage easement, whether it is maintained by the private property owner or by the public.

The easement must conform to the requirements of DPM Article 6-13 Drainage Right-of-Way and Easements, and the language in the granting document must conform to standards established by the City Engineer and City Legal Department staff. All of the following are links to standard language for drainage easements:

1. [Drainage Facilities and/or Detention Areas Maintained by Lot Owner on a Plat](#).
2. [Dedication of Drainage Easements: City Constructs and Maintains on a Plat](#).
3. [Dedication of Drainage Easements: City Constructs and Maintains as a separate instrument](#).

ARTICLE 5-5 DRAINAGE COVENANTS

Nearly all new developments include drainage improvements that are required by the Article 14-5 Flood Hazard and Drainage Control (ROA 1994). In those instances where such drainage features must be perpetually maintained to minimize possible damage to other properties or to public properties, the City may require the developer enter into a covenant assuring maintenance of such facilities. There are 3 types of covenants that are discussed below.
Covenants run with the land. They generally require the owner of the land to maintain features to City standards and allow the City’s entrance upon the property to inspect drainage features for such maintenance as needed. All of the following items are brief descriptions of the 3 types of drainage covenants the City may require the developer to enter into:

1. **Private Facility Drainage Covenant**: for a privately owned, privately maintained facility, places maintenance and inspection responsibility on the property owner(s). For example, a cutoff wall to protect property adjacent to an unlined arroyo or a first flush pond.

2. **Drainage Covenant (no public easement)**: for a privately owned, privately maintained facility whose non-function or failure to perform, will cause damage to others. For example, a large detention pond in a shopping center. The maintenance responsibilities lie with the owner. The City has the right to inspect periodically and to enforce proper maintenance.

3. **Agreement and Covenant**: for a privately maintained facility that is within the City’s property (public right-of-way or City easement). The City has the right to inspect and to enforce proper maintenance. If the public right-of-way or City easement does not already exist before the development then one must be dedicated and/or granted in accordance with the “Final Plat” or “Grant of Drainage Easement” Procedures above. For example, an agreement and Covenant may be required for phased developments that require temporary retention ponds and/or sediment ponds.

ARTICLE 5-6 GRAPHIC STANDARDS

Part 5-6(A) Materials

1. Preliminary plats shall be drawn on stable reproducible material.
2. Final plats shall be drawn in permanent black ink on stable reproducible material or produced by other means resulting in a permanent, stable, and reproducible material. Signatures, including acceptable electronic signatures, must be original, not reproduced. Plat sheet size for single sheet plats shall be 18 inches x 24 inches.
3. Spliced plat sheets are not acceptable.
4. Adhesive materials may not be used for line work or dimensions and bearings of lines on final plats. Stable adhesive materials containing typed data, legends, location maps, north arrows, logos, and standard signature/certifications may be used, provided that the adhesive material is permanent and fully reproducible. Signatures must be original. Plats assembled with adhesive materials that are not firmly adhered to the plat base sheet will not be considered acceptable. Permanent, stable, reproducible copies of plats assembled with adhesive materials may be accepted, provided that all signatures on the copy are original.
Part 5-6(B) Drafting Standards

DPM Chapter 4 Construction Plan Standards provides the minimum standards required to achieve satisfactory plat submittals. All plats shall comply with the standards outlined in Chapter 4.

ARTICLE 5-7 ACCEPTABLE FORMS OF LANGUAGE

The following are examples of acceptable forms of language for required plat elements. The people preparing the plat and those who are signatory to any aspect of the plat are cautioned that it is their responsibility to assure that the statements they make or certify on the plat express clearly their desired intent and that they have the legal right and authority to certify, consent, or dedicate as their signature indicates.

Section 5-7(B)(1) Free Consent and Dedication

The subdivision hereon described is with the free consent and in accordance with the desires of the undersigned owner(s) and/or proprietor(s) thereof, and said owner(s) and/or proprietor(s) do hereby dedicate all streets and public right-of-way shown hereon to the City (or county of Bernalillo) in fee simple with warranty covenants and do hereby grant all utility easements shown hereon to the public use forever, including the rights of ingress and egress (both surface and subsurface). The undersigned owner(s) and/or proprietor(s) also grant to the City in perpetuity all sanitary sewer, water line, and drainage easements shown hereon including the right to construct, operate, inspect, and maintain sanitary sewers, water lines, and drainage facilities therein. Unless specifically limited elsewhere on this plat, all easements granted to the City may be used for any or all of the purposes of sanitary sewer, water line, or drainage facility even though only one of these purposes is stated on the easement as drawn on the plat.

The undersigned owner(s) and/or proprietor(s) do hereby freely consent to all the foregoing and do hereby represent that I/we am/are authorized to so act.

Owner/Proprietor name typed or printed

______________________________________ ________________________
Owner/Proprietor's Signature Date

If there are other holders of equitable interest in the property being platted or subdivided, the following statement should be added to the consent and dedication material.⁵

⁵ Each owner/proprietor's or interest holder's signature must be acknowledged as required for a deed (i.e. notarized). If the owner(s)/proprietor(s) is a corporation, the signatory on behalf of such corporation must be empowered to bind the corporation in this manner, and the signatory’s office in the corporation must be shown.
Section 5-7(B)(2) **Surveyor’s Certification**

I, __ , a registered professional land surveyor under the laws of the State of New Mexico, do hereby certify that this plat was prepared by me or under my supervision and meets the minimum requirements of monumentation and surveys of the Albuquerque Subdivision of Land Regulations, and that it is true and correct to the best of my knowledge and belief.

__________________________________ ______________________
John Q. Surveyor Date
PLS No. 0000
New Mexico

Section 5-7(B)(3) **Sample Signature Block for Plats**

PROJECT NUMBER

Application Number: __

PLAT APPROVAL

UTILITY APPROVALS:

___ _________________________
PNM Electric Services Date

___ _________________________
New Mexico Gas Company Date

___ _________________________
Century Link Date

___ _________________________
Comcast Date

CITY APPROVALS:

___ _________________________
City Surveyor Date

___ _________________________
Real Property Division Date

___ _________________________
Environmental Health Department Date

6 Title reports, when used, must be current as of the dates of the plat.
<table>
<thead>
<tr>
<th>Department/Division</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic Engineer, Dept. of Municipal Development</td>
<td></td>
</tr>
<tr>
<td>Parks and Recreation Department</td>
<td></td>
</tr>
<tr>
<td>City Engineer</td>
<td></td>
</tr>
<tr>
<td>Code Enforcement Division, Planning Dept.</td>
<td></td>
</tr>
<tr>
<td>DRB Chair, Planning Department</td>
<td></td>
</tr>
<tr>
<td>ABCWUA</td>
<td></td>
</tr>
<tr>
<td>AMAFCA</td>
<td></td>
</tr>
</tbody>
</table>
This chapter presents the design standards established for drainage, flood control, and erosion control within the City of Albuquerque. Detailed requirements to facilitate the planning, design, construction, and operation of both public and private drainage control, flood control, stormwater quality, and erosion control facilities are covered.

CONTENTS

ARTICLE 6-1 GOVERNING REGULATIONS ..6-8

ARTICLE 6-2 HYDROLOGY ..6-9
Part 6-2(A) Procedure for 40-Acre and Smaller Basins6-9
 Section 6-2(A)(1) Precipitation Zones ...6-10
 Section 6-2(A)(2) Land Treatments ..6-14
 Section 6-2(A)(3) Abstractions ..6-15
 Section 6-2(A)(4) Excess Precipitation & Volumetric Runoff6-15
 Section 6-2(A)(5) Peak Discharge Rate for Small Watersheds6-18
 Section 6-2(A)(6) Rational Method for Watersheds Larger than 40 Acres6-20
 Section 6-2(A)(7) Hydrograph for Small Watersheds6-22
Part 6-2(B) Time of Concentration, Lag Time, and Time to Peak6-23
 Section 6-2(B)(1) Definitions ..6-23
 Section 6-2(B)(2) Computation of Time of Concentration6-23
 Section 6-2(B)(3) Computation of National Resources Conservation Service (NRCS) Lag Time ..6-26
 Section 6-2(B)(4) Computation of Time to Peak6-26
 Section 6-2(B)(5) Time of Concentration for Steep Slopes and Natural Channels ...6-28
Part 6-2(C) Procedure for Small and Large Watersheds6-30
 Section 6-2(C)(1) Computer Program ..6-32
 Section 6-2(C)(2) Precipitation Zones ..6-32
 Section 6-2(C)(3) Design Storm ..6-32
 Part 6-2(D) Symbols and Bibliography6-33
 Section 6-2(D)(1) Definitions of Symbols6-33
 Section 6-2(D)(2) Bibliography ..6-35

ARTICLE 6-3 SITE DEVELOPMENT ...6-38

ARTICLE 6-4 GRADING AND EROSION CRITERIA6-38
Part 6-4(A) Slope Criteria ..6-38
Part 6-4(B) Grading near the Property Line6-38
Part 6-4(C) Grading in and Adjacent to Major Facilities6-38
Part 6-4(D) Grading in and Adjacent to Major Public Open Space6-39
Part 6-4(E) Means of Erosion Control ..6-39
Part 6-4(F) Levees and Berms ..6-40
ARTICLE 6-5 VALLEY DRAINAGE CRITERIA ..6-41
Part 6-5(A) Single-lot Residential Development and Additions 6-42
Part 6-5(B) Residential Subdivisions .. 6-42
Part 6-5(C) Non-single-family Residential Development and Commercial
Development .. 6-42
Part 6-5(D) Flat Grading Scheme for Residential Subdivisions 6-42

ARTICLE 6-6 DEVELOPING IN OR ADJACENT TO A FLOOD ZONE ..6-44
Part 6-6(A) Grading ... 6-44
Part 6-6(B) Compensatory Volume .. 6-44
Part 6-6(C) Determination of Base Flood Elevation (BFE) in an AO Zone 6-44
Part 6-6(D) A Zone .. 6-44
Part 6-6(E) Floodplain Development Permit 6-45
Part 6-6(F) Letters of Map Revision (LOMR) 6-45
Part 6-6(G) Project Requirements .. 6-45

ARTICLE 6-7 DOWNSTREAM CAPACITY AND OFF-SITE FLOWS6-46
Part 6-7(A) Downstream Capacity .. 6-46
Part 6-7(B) Off-site Flows ... 6-46
Part 6-7(C) Historic Flow Path through Adjacent Private Property 6-46

ARTICLE 6-8 ENGINEERED CHANNELS AND NATURAL ARROYOS 6-47
Part 6-8(A) General Hydraulic Criteria ... 6-47
Part 6-8(B) Sharp Curves ... 6-47
Part 6-8(C) Maximum Froude Number .. 6-47
Part 6-8(D) Water Surface Profile Calculations 6-47
Section 6-8(D)(1) Determination of Controlling Water Surface Elevation 6-48
Section 6-8(D)(2) Direction of Calculation 6-48
Section 6-8(D)(3) Head Losses .. 6-48
Section 6-8(D)(4) Channel Inlets .. 6-49
Section 6-8(D)(5) Bank Protection .. 6-52
Section 6-8(D)(6) Piers .. 6-52
Section 6-8(D)(7) Curving Alignments .. 6-52
Section 6-8(D)(8) Freeboard .. 6-55
Part 6-8(E) Channel Design Criteria .. 6-56
Section 6-8(E)(1) Unlined Channels ... 6-56
Section 6-8(E)(2) Composite Linings .. 6-56
Section 6-8(E)(3) Maximum Sidewall Slopes 6-56
Section 6-8(E)(4) Channel Maintenance and Access Road 6-57
Section 6-8(E)(5) Channel Access Ramps 6-57
Section 6-8(E)(6) Street Crossings .. 6-57
Section 6-8(E)(7) Subdrainage ... 6-58
Section 6-8(E)(8) Channel Bed Width .. 6-58
Part 6-8(F) Miscellaneous Hydraulic Calculations 6-58
Section 6-8(F)(1) Hydraulic Jump .. 6-58
Section 6-8(F)(2) Trash Rack Head Loss 6-59
Section 6-8(F)(3) Side Channel Weirs .. 6-59
Part 6-8(G) Channel Treatment Selection Guidelines 6-60
ARTICLE 6-9 STREET HYDRAULICS ... 6-64
Part 6-9(A) Street Hydraulic Design Criteria... 6-65
Part 6-9(B) Option to Drain the Street to the Median............................... 6-65
Part 6-9(C) Effects of Hydraulic Jump or Superelevation.......................... 6-65
Part 6-9(D) Intersection.. 6-65
Part 6-9(E) Drainage Design Criteria in Street Design............................... 6-66
Part 6-9(F) Inlet Placement and Design Criteria .. 6-66
Section 6-9(F)(1) Standard Inlets .. 6-67
Section 6-9(F)(2) Cattle-guard and Median Inlets...................................... 6-72
Section 6-9(F)(3) Publicly-Maintained Inlets to Be Located Within Street Rights-of-Way .. 6-72
Section 6-9(F)(4) Inlets in a Sump Condition.. 6-73
Part 6-9(G) Inlet Lateral and Connector Pipe Capacity............................... 6-73
Section 6-9(G)(1) Connector and Lateral Pipe Criteria............................... 6-74
Section 6-9(G)(2) Consideration of Existing Drainage Systems During Construction .. 6-74

ARTICLE 6-10 CRITERIA FOR HYDRAULIC DESIGN OF CLOSED CONDUITS ... 6-75
Part 6-10(A) General Hydraulic Criteria.. 6-75
Part 6-10(B) Hydraulic Grade Line (HGL) Calculations 6-75
Section 6-10(B)(1) Determination of Control Water Surface Elevation 6-75
Part 6-10(C) Instructions for Hydraulic Calculations 6-76
Section 6-10(C)(1) Head Losses ... 6-77
Part 6-10(D) Design Requirements for Maintenance and Access 6-79
Section 6-10(D)(1) Manholes ... 6-79
Section 6-10(D)(2) Pressure Manholes ... 6-80
Section 6-10(D)(3) Special Manholes .. 6-80
Section 6-10(D)(4) Deep Manholes .. 6-80
Section 6-10(D)(5) Bends .. 6-80
Section 6-10(D)(6) Curvilinear Storm Drain ... 6-80
Part 6-10(E) Closed Conduit Pipe Size and Slope 6-81
Section 6-10(E)(1) Minimum Pipe Size ... 6-81
Section 6-10(E)(2) Minimum Slope .. 6-81
Part 6-10(F) Earthen Channels to Storm Drain Structures........................ 6-81
Part 6-10(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds.... 6-81
Section 6-10(G)(1) Urban Storm Drainage Criteria 6-82
Section 6-10(G)(2) Additional Erosion Protection Criteria for Public Drainage Facilities ... 6-99
Section 6-10(G)(3) Private Storm Drain Outlets to On-site Basins or Swales 6-99
ARTICLE 6-11 POND REQUIREMENTS ..6-102

Part 6-11(A) Design Requirements ..6-102
 Section 6-11(A)(1) Detention Ponds ..6-102
 Section 6-11(A)(2) Retention Ponds ..6-103
 Section 6-11(A)(3) Surge Ponds ..6-104
 Section 6-11(A)(4) Stormwater Quality Ponds6-104
Part 6-11(B) Infiltration Rate ...6-104
Part 6-11(C) Ponds in Parking Areas ...6-104
Part 6-11(D) Fencing Around Ponds ...6-104
Part 6-11(E) Private Ponds to be Built to Public Pond Specifications6-105
Part 6-11(F) Rock Void Space for Pond Volume6-105
Part 6-11(G) Privately Maintained Ponds with a Public Drainage Easement
Part 6-11(H) Ponds Maintained by the City ...6-105
 Section 6-11(H)(1) Access ...6-105
 Section 6-11(H)(2) Spillways ...6-106
 Section 6-11(H)(3) Outlets ...6-106
 Section 6-11(H)(4) Pond Bottoms ...6-106
 Section 6-11(H)(5) Side Slope and Bottom Treatments6-106
 Section 6-11(H)(6) Minimum Pond Size ..6-106
 Section 6-11(H)(7) Fencing ...6-106
Part 6-11(I) Temporary Public Ponds ...6-106
Part 6-11(J) Pond Evacuation Time ...6-107
Part 6-11(K) Infiltration System Design ...6-107

ARTICLE 6-12 STORMWATER QUALITY AND LOW-IMPACT
DEVELOPMENT ...6-108

Part 6-12(A) Low Impact Development Strategies6-109
Part 6-12(B) Effective Strategies for Stormwater Treatment6-109
 Section 6-12(B)(1) Landscape Category ..6-110
 Section 6-12(B)(2) Paving Category ..6-113
 Section 6-12(B)(3) Elevated Category ..6-114
 Section 6-12(B)(4) Streetscape Category ..6-114
 Section 6-12(B)(5) Flood Control Category ..6-115
Part 6-12(C) Waiver from SWQV Management On-site6-117
 Section 6-12(C)(1) Payment-in-lieu ..6-118
 Section 6-12(C)(2) Annual Adjustment of Fee6-118
Part 6-12(D) Land Uses that Require Additional Stormwater Controls6-119
 Section 6-12(D)(1) Automotive Repair and Parts Shops6-119
 Section 6-12(D)(2) Restaurants and Commercial Food Processing6-119
 Section 6-12(D)(3) Gas Stations/Fueling Facilities6-119
Part 6-12(E) Post-Construction Maintenance and Responsibilities 6-119
Part 6-12(F) Construction Site Responsibility By Property Owner 6-120
Part 6-12(G) Construction Site Maintenance and Inspections 6-121

ARTICLE 6-13 DRAINAGE RIGHT-OF-WAY AND EASEMENTS 6-121
Part 6-13(A) Rights-of-Way ... 6-121
Part 6-13(B) Easements ... 6-121
Part 6-13(C) Configuration .. 6-122
 Section 6-13(C)(1) Surface Facilities ... 6-122
 Section 6-13(C)(2) Public Underground Facilities 6-122
Part 6-13(D) Drainage Right-of-Way and Public Drainage Easement Access ... 6-122
Part 6-13(E) Private Storm Drain Improvements within City Right-of-Way and/or Easements ... 6-122

ARTICLE 6-14 DRAINAGE AND STORMWATER QUALITY SUBMITTALS ... 6-124
Part 6-14(A) Introduction .. 6-124
 Section 6-14(A)(1) Drainage Report ... 6-124
 Section 6-14(A)(2) Conceptual Grading and Drainage Plan 6-124
 Section 6-14(A)(3) Grading and Drainage Plan 6-124
 Section 6-14(A)(4) Erosion and Sediment Control Plan 6-124
 Section 6-14(A)(5) LOMR, CLOMR and LOMR-F (LOMC) Submittals .. 6-125
 Section 6-14(A)(6) Engineer’s Certifications 6-125
 Section 6-14(A)(7) Pad Certification ... 6-125
 Section 6-14(A)(8) Drainage and Erosion and Sediment Control Submittals per Requested Approval ... 6-125
Part 6-14(B) Drainage Submittal Criteria .. 6-127
 Section 6-14(B)(1) Executive Summary 6-127
 Section 6-14(B)(2) Introduction .. 6-127
 Section 6-14(B)(3) Project Description ... 6-128
 Section 6-14(B)(4) Background Documents 6-129
 Section 6-14(B)(5) Existing Conditions 6-129
 Section 6-14(B)(6) Developed Conditions 6-130
 Section 6-14(B)(7) Grading Plan ... 6-131
 Section 6-14(B)(8) Calculations .. 6-131
 Section 6-14(B)(9) Conclusion ... 6-132
Part 6-14(C) Grading Plan Checklist ... 6-132
 Section 6-14(C)(1) General Information 6-132
 Section 6-14(C)(2) Existing Conditions 6-132
 Section 6-14(C)(3) Proposed Conditions 6-133
Part 6-14(D) Erosion and Sediment Control Plan Checklist 6-134
Part 6-14(E) Conceptual Grading and Drainage Plan Submittal Criteria .. 6-135
Part 6-14(F) Engineer’s Certification for Non-Subdivisions 6-136
Part 6-14(G) Engineer’s Certification for Subdivisions 6-137
Part 6-14(H) Required Certification Language 6-138

ARTICLE 6-15 MAINTENANCE AND POST-CONSTRUCTION RESPONSIBILITY .. 6-139
Part 6-15(A) Fenced & Gated Public Facilities 6-139
Part 6-15(B) Drainage Maintenance Plan 6-139
Section 6-15(B)(1) Purpose ... 6-139
Section 6-15(B)(2) Plan Outline ... 6-140
Part 6-15(C) Drainage Maintenance Covenants 6-140
ARTICLE 6-16 COMMON EQUATIONS ..6-142
Part 6-16(A) Weirs ...6-142
Part 6-16(B) Orifices ..6-142
Part 6-16(C) Manning’s Equation ..6-143

ARTICLE 6-17 HISTORY ..6-144

TABLES
TABLE 6.2.7 Precipitation Zones ..6-11
TABLE 6.2.8 Precipitation for Zones 1-46-11
TABLE 6.2.9 Land Treatments ...6-14
TABLE 6.2.10 Percent Treatment D (Impervious)6-14
TABLE 6.2.11 Initial Abstraction ..6-15
TABLE 6.2.12 Infiltration (INF) ..6-15
TABLE 6.2.13 6-hour Excess Precipitation, 'E'6-16
TABLE 6.2.14 Peak Discharge ...6-18
TABLE 6.2.15 Coefficient C ...6-19
TABLE 6.2.16 Conveyance Factors ..6-24
TABLE 6.2.17 Lag Equation Basin Factors6-25
TABLE 6.2.18 Definitions of Symbols6-33
TABLE 6.8.19 Maximum Rate of Bottom Width Transitions6-51
TABLE 6.8.20 Maximum Sidewall Slopes6-57
TABLE 6.8.21 Length of a Jump ..6-59
TABLE 6.8.22 Channel Stability Changes6-62
TABLE 6.12.23 Development Types6-62
TABLE 6.12.24 Recommended Implementation Matrix6-117
TABLE 6.14.25 Drainage Submittals per Requested Approval6-126
TABLE 6.16.26 Values of Manning’s “n”6-143
FIGURES

FIGURE 6.2.3 Precipitation Zones .. 6-11
FIGURE 6.2.4 Precipitation and Time ... 6-16
FIGURE 6.2.5 Time to Peak in 10-years ... 6-22
FIGURE 6.2.6 Depth - Area Curves .. 6-33
FIGURE 6.4.7 Berm Cross Section .. 6-40
FIGURE 6.8.8 Easement Curve .. 6-54
FIGURE 6.9.9 Grate Capacities for Types "A," "C," and "D" ... 6-69
FIGURE 6.9.10 Grate Capacities for Types "Double A," "Double C," and "Double D" ... 6-70
FIGURE 6.9.11 Grating Capacities for Type "B" .. 6-71
FIGURE 6.9.12 Optimum Spacing of Catch Basins on a Continuous Grade 6-72
FIGURE 6.10.13 Hydraulic Grade ... 6-76
FIGURE 6.10.14 Contractions ... 6-78
FIGURE 6.10.15 Junction Losses .. 6-78
FIGURE 6.10.16 General Design Dimensions for U.S.D.I. Bureau of Reclamation Type VI Impact Sill Basin ... 6-84
FIGURE 6.10.17 Basin Width Diagram for U.S.D.I. Bureau of Reclamation Type VI Impact Sill Basin ... 6-85
FIGURE 6.10.18 Modified Impact Sill Basin for Conduits 18-48 Inches in Diameter ... 6-87
FIGURE 6.10.19 Impact Stilling Basin for Pipes Smaller than 18 Inches in Diameter Upstream of Forebays ... 6-88
FIGURE 6.10.20 Baffle Chute Pipe Outlet ... 6-91
FIGURE 6.10.21 Grouted Boulder Rundown ... 6-92
FIGURE 6.10.22 Upstream and Downstream Views of a Low Tailwater Basin in Douglas County ... 6-93
FIGURE 6.10.23 Low Tailwater Rip-rap Basins for Storm Sewer Pipe Outlets (HS-19) ... 6-96
FIGURE 6.10.24 Concrete Flared End Section with Cutoff Wall for All Pipe Outlets ... 6-96
FIGURE 6.10.25 Low Tailwater Rip-rap Basins for Storm Sewer Pipe Outlets - Discharge and Flow Area Relationships for Circular and Rectangular Pipes ... 6-97
FIGURE 6.10.26 Low Tailwater Rip-rap Basins for Storm Sewer Pipe Outlets - Brink Depth Horizontal Pipe Outlet ... 6-97
FIGURE 6.10.27 Low Tailwater Rip-rap Basins for Storm Sewer Pipe Outlets - Rip-rap Selection Chart for Low Tailwater Basin at Pipe Outlet ... 6-98
FIGURE 6.10.28 Unprotected Culvert Outlets Cause Downstream Erosion............. 6-99
FIGURE 6.11.29 Peak Site Flow .. 6-104
FIGURE 6.12.30 Depressed Parking Island ... 6-110
FIGURE 6.12.31 Depressed Parking Island Diagram .. 6-111
FIGURE 6.12.32 Depressed Bioretention Areas .. 6-111
FIGURE 6.12.33 Landscape Conveyance-Bioswale ... 6-111
FIGURE 6.12.34 Infiltration Trench with Aggregate .. 6-112
FIGURE 6.12.35 Infiltration Trench with Aggregate and Pipe 6-113
FIGURE 6.12.36 Infiltration Trench with Aggregate and Pipe Under Parking Lot ... 6-113
FIGURE 6.12.37 Porous Pavement with Typical Features ... 6-114
FIGURE 6.12.38 Planter Boxes Diagram ... 6-114
FIGURE 6.12.39 Swale Diagram ... 6-114
FIGURE 6.12.40 Splitter Manhole ... 6-116
Chapter 6 provides standards, guidelines, and criteria to facilitate the planning, design, construction, and operation of both public and private drainage control, flood control, stormwater quality, and erosion control facilities within the City of Albuquerque.

The criteria are not intended as a substitute for good engineering judgment; imagination and ingenuity are encouraged. The thrust of these criteria is toward generalization in order to provide guidance for a large majority of design circumstances, but it must be understood that situations will arise in which these criteria are not appropriate.

The City Engineer or the Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) Executive Engineer, as appropriate, may, in specific cases, require more stringent criteria or allow relaxation of these criteria based on their judgment and sound engineering practice.

The Development Review Board (DRB) representative from the Development Review Services Division of the City Planning Department acts as the designee of the AMAFCA Executive Engineer except in review of proposals involving major arroyos or platting outside the City Limits where there is no immediately pending proposed annexation.

ARTICLE 6-1 GOVERNING REGULATIONS

The planning, design, construction, and operation of both public and private drainage control, flood control, stormwater quality, and erosion control facilities must be conducted according to the ordinances and policies listed in the Drainage, Flood Control and Erosion Control Governing Regulations Summary, found on the City website. Some development plans may require coordination with and approval by jurisdictions or agencies other than the City of Albuquerque because the project site drains to, or may impact, property in another jurisdiction. These jurisdictions and agencies are also listed in the summary.
ARTICLE 6-2 HYDROLOGY

The primary method for hydrology calculations in the DPM since the update in 1993 has been the Arid-lands Hydrologic Model (AHYMO), and it continues to be the basis for hydrology calculations in this Article. Other methods described in this Article are calibrated to produce results close to the AHYMO method. Part 6-2(A) Procedure for 40-Acre and Smaller Basins is calibrated to exactly match AHYMO. In 1993, AHYMO replaced a Rational Method that had been derived from the Soil Conservation Service (SCS) Curve Number method. One version of the SCS Curve Number method is being allowed with the DPM update 2020 because its results closely match AHYMO’s results.

The methods in the 1993 DPM were based on precipitation data from the National Oceanic and Atmospheric Agency (NOAA) Atlas 2, which has been superseded by NOAA Atlas 14. Atlas 14 Volume 1, Version 1 was published in 2001; Volume 4 was published in 2006; and Version 5, the most current version, was published in 2011. Atlas 14 precipitation data can be accessed via the NOAA website: https://hdsc.nws.noaa.gov/hdsc/pfds. More revisions are expected as new data are collected. AHYMO-93 and AHYMO-97 used the precipitation distributions from NOAA Atlas 2. AHYMO-S4, released in 2009, uses precipitation distribution based on NOAA Atlas 14. The methods, graphs, and tables that follow will be used by City staff to review and evaluate development plans and drainage management plans, including 2 basic methods of analysis.

1. Part 6-2(A) describes a simplified procedure for smaller watersheds based on the Rational Method and initial abstraction/uniform infiltration precipitation losses. The procedure is applicable to watersheds up to 40 acres in size, and the procedure may be used for certain larger watersheds, with some limitations.

2. Part 6-2(C) describes 2-unit hydro graph procedures that are accomplished using computer programs. One method is the AHYMO method, and the other method is the SCS Curve Number method. The AHYMO-S4 program is used for the AHYMO method, and TR-20 and HEC-HMS are two of the programs that can be used for the SCS Curve Number method and the Atlas 14 precipitation distribution. These procedures are applicable for small and large watersheds.

Part 6-2(B) describes the computation of time of concentration, lag time, and time to peak that are used in Part 6-2(A) and Part 6-2(C).

Part 6-2(D) contains a list of definitions of symbols used in this chapter and a bibliography.

Part 6-2(A) Procedure for 40-Acre and Smaller Basins

A simplified procedure for projects with basins smaller than 40 acres has been developed based on initial abstraction/uniform infiltration precipitation losses and Rational Method procedures. For this procedure, the portion of Bernalillo County within City limits has been divided into 4 precipitation zones, as shown in FIGURE 6.2.3.
Section 6-2(A)(1) Precipitation Zones

Albuquerque’s 4 precipitation zones are indicated in Table 6.2.7 and on Figure 6.2.3, and the corresponding precipitation values are in Table 6.2.8. When modeling the storm, the standard practice is to set the peak intensity 1.5 hours into the storm when using AHYMO losses and 12 hours into the storm when using the SCS Curve Number losses, which must use NOAA Atlas 14 precipitation distributions, must not smooth the distribution, and must not use the SCS precipitation distribution. The storm duration must be 24 hours, and the calculation increment should be set to 5 minutes for the distribution used with the SCS Curve Number method. The unit hydrograph time increment must be 0.01 hours or less. NOAA Atlas 14 can be used for several other frequency events, and it can be used to obtain a more precise precipitation depth for a particular location than the precipitation depths listed in Table 6.2.8.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>West of the Rio Grande</td>
</tr>
<tr>
<td>2</td>
<td>Between the Rio Grande and San Mateo</td>
</tr>
<tr>
<td>3</td>
<td>Between San Mateo and Eubank, North of Interstate 40 and between San Mateo and the East boundary of Range 4 East, South of Interstate 40</td>
</tr>
<tr>
<td>4</td>
<td>East of Eubank, North of Interstate 40 and East of the East boundary of Range 4 East, South of Interstate 40</td>
</tr>
<tr>
<td></td>
<td>Not including the Cibola National Forest</td>
</tr>
</tbody>
</table>
TABLE 6.2.8 Precipitation for Zones 1-4

<table>
<thead>
<tr>
<th>Partial Duration</th>
<th>500 year</th>
<th>100 year</th>
<th>10 year</th>
<th>2 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth (in)</td>
<td>Intensity in/hr</td>
<td>Depth (in)</td>
<td>Intensity in/hr</td>
</tr>
<tr>
<td>ZONE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 min.</td>
<td>0.701</td>
<td>8.41</td>
<td>0.538</td>
<td>6.46</td>
</tr>
<tr>
<td>10 min.</td>
<td>1.070</td>
<td>6.42</td>
<td>0.819</td>
<td>4.91</td>
</tr>
<tr>
<td>12 min.</td>
<td>-</td>
<td>5.96</td>
<td>-</td>
<td>4.58</td>
</tr>
<tr>
<td>15 min.</td>
<td>1.320</td>
<td>5.28</td>
<td>1.020</td>
<td>4.08</td>
</tr>
<tr>
<td>30 min.</td>
<td>1.780</td>
<td>3.56</td>
<td>1.370</td>
<td>2.74</td>
</tr>
<tr>
<td>60 min.</td>
<td>2.200</td>
<td>2.20</td>
<td>1.690</td>
<td>1.69</td>
</tr>
<tr>
<td>2 hr.</td>
<td>2.530</td>
<td>1.27</td>
<td>1.920</td>
<td>0.96</td>
</tr>
<tr>
<td>3 hr.</td>
<td>2.760</td>
<td>0.92</td>
<td>2.000</td>
<td>0.67</td>
</tr>
<tr>
<td>6 hr.</td>
<td>2.780</td>
<td>0.46</td>
<td>2.170</td>
<td>0.36</td>
</tr>
<tr>
<td>24 hr.</td>
<td>3.090</td>
<td>0.13</td>
<td>2.490</td>
<td>0.10</td>
</tr>
<tr>
<td>4 day</td>
<td>3.780</td>
<td>0.04</td>
<td>3.120</td>
<td>0.03</td>
</tr>
<tr>
<td>10 day</td>
<td>4.680</td>
<td>0.02</td>
<td>3.900</td>
<td>0.02</td>
</tr>
<tr>
<td>ZONE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 min.</td>
<td>0.731</td>
<td>8.77</td>
<td>0.565</td>
<td>6.78</td>
</tr>
<tr>
<td>10 min.</td>
<td>1.110</td>
<td>6.66</td>
<td>0.860</td>
<td>5.16</td>
</tr>
<tr>
<td>12 min.</td>
<td>-</td>
<td>6.20</td>
<td>-</td>
<td>4.81</td>
</tr>
<tr>
<td>15 min.</td>
<td>1.380</td>
<td>5.52</td>
<td>1.070</td>
<td>4.28</td>
</tr>
<tr>
<td>30 min.</td>
<td>1.860</td>
<td>3.72</td>
<td>1.440</td>
<td>2.88</td>
</tr>
<tr>
<td>60 min.</td>
<td>2.300</td>
<td>2.30</td>
<td>1.780</td>
<td>1.78</td>
</tr>
<tr>
<td>2 hr.</td>
<td>2.660</td>
<td>1.33</td>
<td>2.030</td>
<td>1.02</td>
</tr>
<tr>
<td>3 hr.</td>
<td>2.730</td>
<td>0.91</td>
<td>2.100</td>
<td>0.70</td>
</tr>
<tr>
<td>6 hr.</td>
<td>2.980</td>
<td>0.50</td>
<td>2.290</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Table 6.2.8 Precipitation for Zones 1-4

<table>
<thead>
<tr>
<th>Partial Duration</th>
<th>500 year</th>
<th>100 year</th>
<th>10 year</th>
<th>2 year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depth (in)</td>
<td>Intensity in/hr</td>
<td>Depth (in)</td>
<td>Intensity in/hr</td>
</tr>
<tr>
<td>24 hr.</td>
<td>3.210</td>
<td>0.13</td>
<td>2.590</td>
<td>0.11</td>
</tr>
<tr>
<td>4 day</td>
<td>3.590</td>
<td>0.04</td>
<td>2.960</td>
<td>0.03</td>
</tr>
<tr>
<td>10 day</td>
<td>4.330</td>
<td>0.02</td>
<td>3.620</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Zone 3

<table>
<thead>
<tr>
<th></th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min.</td>
<td>0.753</td>
<td>9.04</td>
<td>0.584</td>
<td>7.01</td>
<td>0.368</td>
<td>4.42</td>
<td>0.228</td>
<td>2.74</td>
</tr>
<tr>
<td>10 min.</td>
<td>1.150</td>
<td>6.90</td>
<td>0.889</td>
<td>5.33</td>
<td>0.560</td>
<td>3.36</td>
<td>0.348</td>
<td>2.09</td>
</tr>
<tr>
<td>12 min.</td>
<td>1.420</td>
<td>5.68</td>
<td>1.100</td>
<td>4.40</td>
<td>0.693</td>
<td>2.77</td>
<td>0.431</td>
<td>1.72</td>
</tr>
<tr>
<td>15 min.</td>
<td>1.910</td>
<td>3.82</td>
<td>1.480</td>
<td>2.96</td>
<td>0.934</td>
<td>1.87</td>
<td>0.580</td>
<td>1.16</td>
</tr>
<tr>
<td>30 min.</td>
<td>2.370</td>
<td>2.37</td>
<td>1.840</td>
<td>1.84</td>
<td>1.160</td>
<td>1.16</td>
<td>0.718</td>
<td>0.72</td>
</tr>
<tr>
<td>2 hr.</td>
<td>2.810</td>
<td>1.41</td>
<td>2.150</td>
<td>1.08</td>
<td>1.340</td>
<td>0.67</td>
<td>0.845</td>
<td>0.42</td>
</tr>
<tr>
<td>3 hr.</td>
<td>2.890</td>
<td>0.96</td>
<td>2.220</td>
<td>0.74</td>
<td>1.400</td>
<td>0.47</td>
<td>0.895</td>
<td>0.30</td>
</tr>
<tr>
<td>4 hr.</td>
<td>3.090</td>
<td>0.52</td>
<td>2.430</td>
<td>0.41</td>
<td>1.570</td>
<td>0.26</td>
<td>1.010</td>
<td>0.17</td>
</tr>
<tr>
<td>6 hr.</td>
<td>3.570</td>
<td>0.15</td>
<td>2.840</td>
<td>0.12</td>
<td>1.900</td>
<td>0.08</td>
<td>1.300</td>
<td>0.05</td>
</tr>
<tr>
<td>24 hr.</td>
<td>4.000</td>
<td>0.04</td>
<td>3.290</td>
<td>0.03</td>
<td>2.290</td>
<td>0.02</td>
<td>1.620</td>
<td>0.02</td>
</tr>
<tr>
<td>4 day</td>
<td>4.940</td>
<td>0.02</td>
<td>4.100</td>
<td>0.02</td>
<td>2.890</td>
<td>0.01</td>
<td>2.060</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Zone 4

<table>
<thead>
<tr>
<th></th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
<th>Depth (in)</th>
<th>Intensity in/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min.</td>
<td>0.798</td>
<td>9.58</td>
<td>0.624</td>
<td>7.49</td>
<td>0.398</td>
<td>4.78</td>
<td>0.249</td>
<td>2.99</td>
</tr>
<tr>
<td>10 min.</td>
<td>1.210</td>
<td>7.26</td>
<td>0.950</td>
<td>5.70</td>
<td>0.606</td>
<td>3.64</td>
<td>0.380</td>
<td>2.28</td>
</tr>
<tr>
<td>12 min.</td>
<td>1.510</td>
<td>6.04</td>
<td>1.180</td>
<td>4.72</td>
<td>0.751</td>
<td>3.00</td>
<td>0.471</td>
<td>1.88</td>
</tr>
<tr>
<td>15 min.</td>
<td>2.030</td>
<td>4.06</td>
<td>1.590</td>
<td>3.18</td>
<td>1.010</td>
<td>2.02</td>
<td>0.634</td>
<td>1.27</td>
</tr>
<tr>
<td>30 min.</td>
<td>2.510</td>
<td>2.51</td>
<td>1.960</td>
<td>1.96</td>
<td>1.250</td>
<td>1.25</td>
<td>0.784</td>
<td>0.78</td>
</tr>
<tr>
<td>2 hr.</td>
<td>3.010</td>
<td>1.51</td>
<td>2.330</td>
<td>1.17</td>
<td>1.470</td>
<td>0.74</td>
<td>0.933</td>
<td>0.47</td>
</tr>
<tr>
<td>3 hr.</td>
<td>3.120</td>
<td>1.04</td>
<td>2.420</td>
<td>0.81</td>
<td>1.530</td>
<td>0.51</td>
<td>0.991</td>
<td>0.33</td>
</tr>
<tr>
<td>6 hr.</td>
<td>3.340</td>
<td>0.56</td>
<td>2.640</td>
<td>0.44</td>
<td>1.730</td>
<td>0.29</td>
<td>1.150</td>
<td>0.19</td>
</tr>
<tr>
<td>24 hr.</td>
<td>4.490</td>
<td>0.19</td>
<td>3.600</td>
<td>0.15</td>
<td>2.400</td>
<td>0.10</td>
<td>1.640</td>
<td>0.07</td>
</tr>
<tr>
<td>4 day</td>
<td>5.910</td>
<td>0.06</td>
<td>4.750</td>
<td>0.05</td>
<td>3.200</td>
<td>0.03</td>
<td>2.200</td>
<td>0.02</td>
</tr>
<tr>
<td>10 day</td>
<td>7.760</td>
<td>0.03</td>
<td>6.270</td>
<td>0.03</td>
<td>4.260</td>
<td>0.02</td>
<td>2.950</td>
<td>0.01</td>
</tr>
</tbody>
</table>

The principal design storm is the 100-year event defined by the NOAA Atlas 14 Volume 1, Version 5, and its subsequent updates. Table 6.2.8, Table 6.2.14, and Table 6.2.15 will be updated when NOAA Atlas 14 precipitation depths are updated. For certain applications (e.g. street drainage, low-flow channels, and sediment transport), storms of greater frequency than the
100-year storm must be considered, and the 500-year storm must be used for some floodplains.
Section 6-2(A)(2) Land Treatments

All land areas are described by one of four basic land treatments or by a combination of the four land treatments. Land treatments are provided in TABLE 6.2.9.

<table>
<thead>
<tr>
<th>TABLE 6.2.9 Land Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>A (CN=77)</td>
</tr>
<tr>
<td>B (CN=79)</td>
</tr>
<tr>
<td>C (CN=86)</td>
</tr>
<tr>
<td>D (CN=98)</td>
</tr>
</tbody>
</table>

Most watersheds contain a mix of land treatments. To determine proportional treatments, measure respective subareas. For large developed basins, the areal percentages in TABLE 6.2.10 may be used instead of specific measurement for treatment D.

<table>
<thead>
<tr>
<th>TABLE 6.2.10 Percent Treatment D (Impervious)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
</tr>
<tr>
<td>Commercial*</td>
</tr>
<tr>
<td>Single Family Residential N=units/acre, N≤6</td>
</tr>
<tr>
<td>Multiple Unit Residential Detached*</td>
</tr>
<tr>
<td>Attached*</td>
</tr>
<tr>
<td>Industrial Light*</td>
</tr>
<tr>
<td>Heavy*</td>
</tr>
<tr>
<td>Parks, Cemeteries</td>
</tr>
<tr>
<td>Playgrounds</td>
</tr>
<tr>
<td>Schools</td>
</tr>
<tr>
<td>Collector & Arterial Streets</td>
</tr>
</tbody>
</table>

*Includes local streets

*TABLE 6.2.10 does not provide areal percentages for land treatments A, B, and C. Use of TABLE 6.2.10 will require additional analysis to determine the appropriate areal percentages of these land treatments.
Section 6-2(A)(3) Abstractions

Initial abstraction is the precipitation depth that must be exceeded before direct runoff begins. Initial abstraction may be intercepted by vegetation, retained in surface depressions, or absorbed on the watershed surface. Initial abstractions are shown in Table 6.2.11.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Initial Abstraction (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.65</td>
</tr>
<tr>
<td>B</td>
<td>0.50</td>
</tr>
<tr>
<td>C</td>
<td>0.35</td>
</tr>
<tr>
<td>D</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Infiltration is the only significant abstraction after the initial abstraction. After initial abstraction is satisfied, treat infiltration as a constant loss rate as specified in Table 6.2.12.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Loss Rate (inches/hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.67</td>
</tr>
<tr>
<td>B</td>
<td>1.25</td>
</tr>
<tr>
<td>C</td>
<td>0.83</td>
</tr>
<tr>
<td>D</td>
<td>0.04*</td>
</tr>
</tbody>
</table>

*Treatment D infiltration rate is applicable from 0 to 3 hours; use uniform reduction from 3 to 6 hours, with no infiltration after 6 hours.

Runoff from a previous event can saturate a channel bed or pond bottom, rendering it minimally pervious for several days. Do not anticipate additional bed losses for design purposes.

Section 6-2(A)(4) Excess Precipitation & Volumetric Runoff

Excess precipitation, E, is the depth of precipitation remaining after abstractions are removed. Excess precipitation does not depend on watershed area.

Excess precipitation is determined by subtracting the initial abstraction and infiltration from the design storm hydrograph. Figure 6.2.4 illustrates the development of excess precipitation.
The 6-hour excess precipitation, E, by zone and treatment is summarized in **TABLE 6.2.13**.

TABLE 6.2.13 6-hour Excess Precipitation, ‘E’

<table>
<thead>
<tr>
<th>Zone</th>
<th>Land Treatment</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>100-YEAR EXCESS PARTICIPATION, E (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.55</td>
<td>0.73</td>
<td>0.95</td>
<td>2.24</td>
</tr>
<tr>
<td>2</td>
<td>0.62</td>
<td>0.80</td>
<td>1.03</td>
<td>2.33</td>
</tr>
<tr>
<td>3</td>
<td>0.67</td>
<td>0.86</td>
<td>1.09</td>
<td>2.58</td>
</tr>
<tr>
<td>4</td>
<td>0.76</td>
<td>0.95</td>
<td>1.20</td>
<td>3.34</td>
</tr>
<tr>
<td>2-YEAR EXCESS PARTICIPATION, E (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.01</td>
<td>0.13</td>
<td>0.92</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.02</td>
<td>0.16</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.05</td>
<td>0.19</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.28</td>
<td>0.87</td>
<td>1.39</td>
</tr>
<tr>
<td>10-YEAR EXCESS PARTICIPATION, E (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.11</td>
<td>0.26</td>
<td>0.43</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.30</td>
<td>0.48</td>
<td>1.51</td>
</tr>
<tr>
<td>3</td>
<td>0.18</td>
<td>0.34</td>
<td>0.52</td>
<td>1.64</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>0.41</td>
<td>0.59</td>
<td>2.15</td>
</tr>
</tbody>
</table>

To determine the volume of runoff:
1. Determine the area in each treatment, \(A_A, A_B, A_C, A_D\)
2. Compute the weighted excess precipitation, \(E\)
3. Multiply the weighted E by the watershed area.

EQUATION 6.2 \(V_{360} \) (as volume) = weighted E*(A\textsubscript{A} + A\textsubscript{B} + A\textsubscript{C} + A\textsubscript{D})

EXAMPLE 1

Find the 100-year \(V_{360} \) for 30 acres in zone 1. Eight acres are treatment A, 10 acres are treatment B, 5 acres are treatment C, and 7 acres are treatment D.

Weighted E = \(((8 \times 0.55) + (10 \times 0.73) + (5 \times 0.95) + (7 \times 2.24)) / 30 \)

= 1.071 inches

Volume = (1.071 * 30) / 12 = 2.68 acre-ft. = \(V_{360} \)

For ponds that hold water for longer than 6 hours, longer duration storms are required to establish runoff volumes. Since the additional precipitation is assumed to occur over a long period, the additional volume is based on the runoff from the impervious areas only.

For 24-hour storms:

EQUATION 6.3 \(V_{1440} = V_{360} + A\textsubscript{D} \ast (P_{1440} - P_{360}) / 12 \) in/ft

For 4-day storms:

EQUATION 6.4 \(V_{4DAYS} = V_{360} + A\textsubscript{D} \ast (P_{4DAYS} - P_{360}) / 12 \) in/ft

For 10-day storms:

EQUATION 6.5 \(V_{10DAYS} = V_{360} + A\textsubscript{D} \ast (P_{10DAYS} - P_{360}) / 12 \) in/ft

EXAMPLE 2

Find the 100-year 24-hour and 4-day runoff volume, \(V_{1440} \) and \(V_{4DAYS} \), for the area in **EXAMPLE 1**.

\(V_{360} = 2.68 \) acre-feet

\(V_{1440} = 2.68 + 7 \text{ ac} \ast (2.49 - 2.17) / 12 = 2.87 \) acre-feet

\(V_{4DAYS} = 2.68 + 7 \text{ ac} \ast (3.12 - 2.17) / 12 = 3.23 \) acre-feet
Section 6-2(A)(5) Peak Discharge Rate for Small Watersheds

The peak discharge rate is given in TABLE 6.2.14 for small watersheds, less than or equal to 40 acres, where the time of concentration is assumed to be 12 minutes.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Land Treatment</th>
<th>Zone Land Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>100-YEAR PEAK DISCHARGE (CSF/ACRE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.54</td>
<td>2.16</td>
</tr>
<tr>
<td>2</td>
<td>1.71</td>
<td>2.36</td>
</tr>
<tr>
<td>3</td>
<td>1.84</td>
<td>2.49</td>
</tr>
<tr>
<td>4</td>
<td>2.09</td>
<td>2.73</td>
</tr>
<tr>
<td>2-YEAR PEAK DISCHARGE (CSF/ACRE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.08</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.28</td>
</tr>
<tr>
<td>10-YEAR PEAK DISCHARGE (CSF/ACRE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.30</td>
<td>0.81</td>
</tr>
<tr>
<td>2</td>
<td>0.41</td>
<td>0.95</td>
</tr>
<tr>
<td>3</td>
<td>0.51</td>
<td>1.07</td>
</tr>
<tr>
<td>4</td>
<td>0.70</td>
<td>1.28</td>
</tr>
</tbody>
</table>

To determine the peak rate of discharge,
1. Determine the area in each treatment, \(A_A, A_B, A_C, A_D \).
2. Multiply the peak rate for each treatment by the respective areas and sum to compute the total \(Q_P \).

EQUATION 6.6

\[
\text{Total } Q_P = Q_{PA}A_A + Q_{PB}A_B + Q_{PC}A_C + Q_{PD}A_D
\]

EXAMPLE 3

Find 100-year \(Q_P \) for 14 acres in zone 1. The four land treatments are: 3 acres in treatment A, 5 acres in treatment B, 2 acres in treatment C and 4 acres in treatment D.

Total \(Q_P = (1.54 * 3) + (2.16 * 5) + (2.87 * 2) + (4.12 * 4) = 37.64 \text{ cfs} \)
Approximately the same results can be achieved by a Rational Method solution. The 0.2-hour (12-minute) peak intensities, I, are provided in TABLE 6.2.8, and Rational Method coefficients, C, are provided in TABLE 6.2.15.

EQUATION 6.7 \[\text{Total} \ Q_p = (C_A \cdot I \cdot A_A) + (C_B \cdot I \cdot A_B) + (C_C \cdot I \cdot A_C) + (C_D \cdot I \cdot A_D) \]

<table>
<thead>
<tr>
<th>TABLE 6.2.15 Coefficient C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone</td>
</tr>
<tr>
<td>100-YEAR COEFFICIENT</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>2-YEAR COEFFICIENT</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>10-YEAR COEFFICIENT</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

Note the quote from the ASCE Manual and Report on Engineering Practice No. 37 (1969): The commonly reported Rational C values “are applicable for storms to 5- to 10-yr. frequencies. Less frequent, higher intensity storms will require the use of higher coefficients because infiltration and other losses have a proportionally smaller effect on runoff.” Thus, higher C values realized under heavy precipitation might be expected.

EXAMPLE 4 Recompute **EXAMPLE 3** using the Rational Method

\[\begin{align*}
Q &= C \cdot I \cdot A \\
&= (0.27 \cdot 4.02 \cdot 3) + (0.43 \cdot 4.02 \cdot 5) + (0.61 \cdot 4.02 \cdot 2) + (0.93 \cdot 4.02 \cdot 4) \\
&= 37.13 \text{ cfs}
\end{align*} \]
Section 6-2(A)(6) Rational Method for Watersheds Larger than 40 Acres

Peak rates of discharge may be computed for watersheds larger than 40 acres by using the Rational Method Coefficients (Cs) from TABLE 6.2.15 and modifying the Intensity (in/hr) for a larger time of concentration (tc). This method may be used to establish peak flow rates for off-site flow areas when sizing channels, pipes, and road crossings. On-site areas should be divided into 40-acre or smaller sub-basins and should not use this procedure. For watersheds larger than 40 acres, the Rational Method should not be used to establish allowable historic flow rates since it will tend to give somewhat larger values than those computed by unit hydrograph procedures.

The procedures outlined in Part 6-2(B) should be used to compute the time of concentration (tc). Then the Intensity (in/hour) should be computed, using the time of concentration, tc, and linear interpolation between the intensities given in TABLE 6.2.14 to get the intensity corresponding to the tc calculated using the procedures in Part 6-2(B).

Do not use this formula for tc larger than 2.0 hours.
EXAMPLE 5

Find Q_p for a 100-year storm at a 120-acre watershed in zone 3, with a 2600 feet shallow concentrated flow upper subreach at 0.015 ft/ft slope and 1200 feet natural channel lower subreach at 0.02 ft/ft slope. The watershed is 50% treatment A, 20% treatment B, 10% treatment C and 20% treatment D.

Compute the time of concentration using TABLE 6.2.14 from Part 6-2(B) as follows:

With a reach length longer than 2000 feet, use $K = 3$ for the portion below the first 2000 feet.

Since total reach length $(2600 + 1200)$ is less than 4000 feet, use equations b-1 and b-2 from Part 6-2(B).

$$t_c = ((2000 / (10 * 2 * (0.015^{0.5}))) + (600 / (10 * 3 * (0.015^{0.5}))) + (1200 / (10 * 3 * (0.02^{0.5})))) / 60 = 21 \text{ min.}$$

Compute the Intensity, I, using linear interpolation between the 15 min and 30 min 100-year intensities of 4.40 and 2.96 in/hr from TABLE 6.2.14 as follows:

$$I = 4.40 - [21-15]/(30-15)*(4.40-2.96)] = 3.82 \text{ inches/hour}$$

Using equation EQUATION 6.7 and the percentage of treatment types:

When:

- $A_A = 120 * 0.50 = 60 \text{ acres}$
- $A_B = 120 * 0.20 = 24 \text{ acres}$
- $A_C = 120 * 0.10 = 12 \text{ inches}$
- $A_D = 120 * 0.20 = 24 \text{ acres}$

$$Q_p = (0.37 * 3.82 * 60) + (0.50 * 3.82 * 24) + (0.64 * 3.82 * 12) + (0.91 * 3.82 * 24) = 243.41 \text{ cfs}$$
Section 6-2(A)(7) Hydrograph for Small Watershed

Base time, t_B, for a small watershed hydrograph is,

$$EQUATION\ 6.8\quad t_B = (2.107 \ast E \ast \frac{A_D}{Q_P}) - (0.25 \ast \frac{A_D}{A_T})$$

Where t_B is in hours, E is the excess precipitation in inches (from TABLE 6.2.13), Q_P is the peak flow in cfs, A_D is the area in treatment D, and A_T is the total area in acres. Using the time of concentration, t_C (hours), the time to peak in hours is:

$$EQUATION\ 6.9\quad t_p = (0.7 \ast t_C) + \left(\frac{1.6 \ast \frac{A_D}{A_T}}{12}\right)$$

FIGURE 6.2.5 Time to Peak in 10-years
Part 6-2(B) Time of Concentration, Lag Time, and Time to Peak

After a brief heavy rain over a watershed, there is a delay before the runoff reaches its maximum. The length of time it takes for runoff from a watershed to reach an analysis point affects the peak runoff rate, with shorter times producing higher peak flow for a constant runoff volume. The velocity at which water can flow through a watershed and the length of flow path are used to determine the time factors. Time of concentration, lag time, and time to peak are three related watershed parameters that are used to determine peak rates of runoff.

Section 6-2(B)(1) Definitions

The three time parameters used are defined as follows:

1. **Time of concentration** (t_c) = time it takes for runoff to travel from the hydraulically most distant part of the watershed basin to the basin outlet or point of analysis
2. **Lag time** (L_g) = time from the center of unit rainfall excess to the time of the peak flow of the unit runoff hydrograph.
3. **Time to peak** (t_p) = time from the beginning of unit rainfall excess to the time of the peak flow of the unit runoff hydrograph.

The three time parameters can be computed using the procedures identified in this section. The peak discharge rates in TABLE 6.2.14 were computed using a time of concentration (t_c) of 0.2 hours. The procedures in Part 6-2(C) require the computation of time to peak (t_p) as specified herein.

Section 6-2(B)(2) Computation of Time of Concentration

Three (3) different equations are used to compute time of concentration (t_c) for larger watersheds. For sub-basin reach lengths shorter than 4000 feet, the SCS Upland Method is used. For sub-basin reach lengths longer than 12000 feet, the U.S. Department of the Interior (U.S.D.I.) Bureau of Reclamation lag time equation is used. For sub-basin reach lengths between 4000 and 12000 feet, a transition equation is used.

Consideration should be given to splitting large watersheds into smaller sub-basins with reach lengths less than 4000 feet. Smaller sub-basins will allow more accurate
modeling of channels and basin topography and should provide for greater modeling accuracy.

1. For sub-basin reach lengths less than 4000 feet, use the SCS Upland Method to compute time of concentration, \(t_c \) (hours), for the entire (pervious and impervious) watershed, with the sum of the travel times in the subreaches comprising the longest flow path to the watershed outlet.

\[
EQUATION \; 6.10 \quad t_c = \left(\frac{L_1}{V_1} + \frac{L_2}{V_2} + \ldots + \frac{L_n}{V_n} \right) / 3600
\]

and,

\[(L_1 + L_2 + \ldots + L_n) < 4000 \text{ feet}\]

where:

- \(t_c \) = time of concentration for the sub-basin, in hours. If \(t_c \) is computed to be less than 0.2 hours, use \(t_c = 0.2 \) hours.
- \(L_n \) = the subreach length for the \(n \)th subreach in feet
- \(V_n \) = subreach velocity for the \(n \)th subreach, in feet per second

The subreach velocity \(V_n \) is calculated using the following equation:

\[
EQUATION \; 6.11 \quad v_n = K (s \cdot 100)^{0.5} = 10K (s)^{0.5}
\]

where:

- \(K \) = conveyance factor, per TABLE 6.2.16, unitless
- \(s \) = slope, in feet/feet

<table>
<thead>
<tr>
<th>TABLE 6.2.16 Conveyance Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>0.7</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

* Sheet flow is flow over plane surfaces, with flow depths up to 0.1 feet. Sheet flow applies only to the upper 400 feet (maximum) of a sub-basin.

For composite reaches where the basin slope is not uniform, the composite basin conveyance condition, \(K \), can be computed using the following equation:
\textit{EQUATION 6.12}

\[K = \left(\frac{L}{\sqrt{s}} \right) / \left(\frac{L_1}{(K_1 \cdot \sqrt{s})} + \left(\frac{L_2}{\sqrt{s}} \right) / (L_2 / K_2 \cdot \sqrt{s}) + \ldots + \frac{L}{\sqrt{s}} / (L_n / K_n \cdot \sqrt{s}) \right) \]

\textbf{where:}

- \(L = L_1 + L_2 + \ldots + L_n \)

\textbf{and}

- \(s \) = overall slope of \(L \), in foot per foot

Slope is calculated using the following equation:

\textit{EQUATION 6.13 Slope of L}

\[s = \frac{(L_1 \cdot s_1 + L_2 \cdot s_2 + \ldots + Lx \cdot s_x)}{L} \]

2. For sub-basin reach lengths between 4000 and 12000 feet, compute the time of concentration, \(t_c \) (hours), for the entire watershed using the following equation:

\textit{EQUATION 6.14}

\[t_c = \left(\frac{(12000 - L)}{(72000 \cdot K \cdot s^{0.5})} + \left(\left(L - 4000 \right) \cdot K_n \cdot \left(L_{CA} / L \right)^{0.33} \right) / (552.2 \cdot s^{0.165}) \right) \]

\textbf{where:}

- \(K \) = Conveyance factor from \textit{TABLE 6.2.16}. For composite reaches, \(K \) is computed using the equation for \textit{EQUATION 6.12}.
- \(L \) = distance of longest watercourse, in feet.
- \(L_{CA} \) = distance along \(L \) from point of concentration to a point opposite centroid of drainage basin, in feet.
- \(s \) = overall slope of \(L \), in foot per foot calculated using \textit{EQUATION 6.13}.
- \(K_n \) = a basin factor based on an estimate of the average Manning’s \(n \) value, weighted by stream length, for the principal watercourses in the drainage basin. For the Albuquerque area, values of \(K_n \) may be estimated from \textit{TABLE 6.2.17}.

\textbf{TABLE 6.2.17 Lag Equation Basin Factors}

<table>
<thead>
<tr>
<th>(K_n)</th>
<th>Basin Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.042</td>
<td>Mountain Brush and Juniper</td>
</tr>
<tr>
<td>0.033</td>
<td>Desert Terrain (Desert Brush)</td>
</tr>
<tr>
<td>0.025</td>
<td>Low Density Urban (Minimum improvements to watershed channels)</td>
</tr>
<tr>
<td>0.021</td>
<td>Medium Density Urban (Flow in streets, storm sewers and improved channels)</td>
</tr>
<tr>
<td>0.016</td>
<td>High Density Urban (Concrete and rip-rap lined channels)</td>
</tr>
</tbody>
</table>

3. For sub-basin reach length greater than 12000 feet:

Compute the time of concentration, \(t_c \) (hours), for the entire watershed by first computing the lag time using the U.S.D.I. Bureau of Reclamation lag time equation as follows:
EQUATION 6.15
\[L_g = 26 \times K_N \times \left(\frac{L \times L_{CA}}{(5280^2 \times (s \times 5280)^{0.5})^{0.33}} \right) \]

where:
\(L_g \) = Lag time, in hours

The time of concentration, \(t_C \) (hours), is computed from the lag time, \(L_g \) (hours) using the following equation:

EQUATION 6.16
\[t_C = \frac{4}{3} \times L_g \]

Section 6-2(B)(3) Computation of National Resources Conservation Service (NRCS) Lag Time

Note that there are two different definitions of lag time:

1. The U.S.D.I. Bureau of Reclamation method used to determine \(t_C \) (hours) for basins longer than 12000 feet, described above and
2. The NRCS method used with the SCS Curve Number method of hydrograph computation, described in Part 6-2(C), which is calculated as follows:

EQUATION 6.17
\[L_g = 0.6 \times t_C \]

Section 6-2(B)(4) Computation of Time to Peak

For the procedures outlined in Part 6-2(C), the time to peak (\(t_P \)) is assumed to be a constant ratio of the time of concentration (\(t_C \)). The following equation is used to compute time to peak:

EQUATION 6.18
\[t_P = \frac{2}{3} \times t_C \]
EXAMPLE 6

Find the time of concentration (t_c) for a watershed with a 4000 feet desert terrain upper reach (shallow concentrated flow) at 0.015 ft/ft slope and a 3000 feet low density urban lower reach (streets and natural channels) at 0.02 ft/ft slope. The distance to the centroid point is 60% of the total reach length.

$$L = 4000 + 3000 = 7000 \text{ ft}$$

$$L_{CA} / L = 0.60$$

$$s = (0.015 * 4000 + 0.02 * 3000) / 7000 = 0.01714 \text{ foot per foot}$$

$$K_N = (0.033 * 4000 + 0.025 * 3000) / 7000 = 0.030$$

from

$$K = (7000 / (0.01714^{0.5})) / (((2000 / (2 * (0.015^{0.5}))) + (2000 / (3 * (0.015^{0.5})))) + (3000 / (3 * (0.020.5)))) = 2.59$$

$$t_c = ((12000 - 7000) / (72000 * 2.59 * 0.01714^{1/3})) + ((7000 - 4000) * 0.030 * 0.60^{2/3} / (552.2 * 0.01714^{0.65}))$$

$$= 0.2048 + 0.2694 = 0.4742 \text{ hours}$$

EXAMPLE 7

Find the time of concentration (t_c), lag time (L_G) and time to peak (t_p) for a watershed with an 8000 feet desert terrain upper reach at 0.015 ft/ft slope and a 6000 feet low density urban lower reach at 0.02 ft/ft slope. The distance to the centroid point is 60% of the total reach length.

$$L = 8000 + 6000 = 14000 \text{ feet}$$

$$L_{CA} = 0.60 * 14000 = 8400 \text{ feet}$$

use

$$s = (0.015 * 8000 + 0.02 * 6000) / 14000 = 0.01714 \text{ ft/ft}$$

$$K_N = (0.033 * 8000 + 0.025 * 6000) / 14000 = 0.030$$

use

$$L_G = 26 * 0.030 * ((14000 * 8400 / (52802 * (0.01714 * 5280)^{0.5})))^{0.33} = 0.596 \text{ hours}$$

$$t_c = (4/3) * 0.596 = 0.795 \text{ hours}$$

$$t_p = (2/3) * 0.795 = 0.530 \text{ hours}$$
Section 6-2(B)(5) Time of Concentration for Steep Slopes and Natural Channels

The procedures used to compute time of concentration \(t_c \), as described in Section 6-2(B)(2), may compute values that are too small to be sustained for natural channel conditions. In natural channels, flows become unstable when a Froude Number of 1.0 is approached. The procedures identified in Section 6-2(B)(2) may compute flow velocities for steep slopes that indicate supercritical flow conditions, even though such supercritical flows cannot be sustained for natural channels.

For steep slopes, natural channels will likely experience chute and pool conditions with a hydraulic jump occurring at the downstream end of chute areas or will experience a series of cascading flows with very steep drops interspersed with flatter channel sections.

For the purposes of this section, steep slopes are defined as those greater than 0.04 foot per foot. The procedures outlined in this section should not be used for the following conditions:

1. Slopes flatter than 0.04 foot per foot.
2. Channels with irrigated grass, rip-rap, soil cement, gabion, or concrete lining that cannot be clearly identified as natural or naturalistic.
3. The hydraulic design of channels or channel elements. The purpose of this section is to define procedures for hydrologic analysis only. The design of facilities adjacent to or within channels with chute and pool conditions cannot be analyzed with the simplified procedures identified herein. It may be necessary to design such facilities for the supercritical flows of chutes (for sediment transport, local scour, stable material size) and for the hydraulic jump of pool conditions (for maximum water surface elevation and flood protection).

The slope of steep natural watercourses should be adjusted to account for the effective slope that can be sustained. The slope correction procedures identified in the Mile High Flood District (formerly the Urban Drainage and Flood Control District [UDFCD] in Denver, Colorado) Urban Storm Drainage Criteria Manual (USDCM) in Figure 6-4, Slope correction for streams and vegetated channels in Volume 1, Chapter 6 Runoff (2018 edition) are applicable for the slope adjustment identified herein. In addition, channel conveyance factors \(K \) should be checked to make sure that appropriate equivalent Froude Numbers are maintained. The USDCM Figure 6-4 can be approximated by the following equation:

\[
EQUATION 6.19 \quad s' = 0.052467 + (0.063627 \times s) - 0.18197 \times e^{(-62.375 \times s)}
\]

where:

\(s = \) measured slope (foot per foot)
\(s' = \) adjusted slope (foot per foot)

The conveyance factors \(K \) for the upland method should be checked to make sure that appropriate Froude Numbers are maintained. To accomplish this, it is necessary to estimate the peak flow rate from the watershed. Using estimated conveyance factors \(K \) from Table B-1 and the procedures outlined in Part A, an estimated peak flow rate for the basin
(Q_P) can be computed. The following formulas are then used to compute conveyance factor adjustment:

EQUATION 6.20 \[K' = 0.302 \times s'^{-0.5} \times Q_P^{0.18} \]

EQUATION 6.21 \[K'' = 0.207 \times s'^{-0.5} \times Q_P^{0.18} \]

An adjusted conveyance factor (K) is then obtained based on the following:

- if \(K > K' \) then \(K = K' \)
- if \(K' > K > K'' \) then \(K = K \) (no adjustment)
- if \(K < K'' \) then \(K = K'' \)

Recompute \(Q_P \) based on the revised conveyance factor (K) using the procedures in **Part 6-2(B)** or **Part 6-2(C)** as appropriate. If the recomputed \(Q_P \) is within 10% of the \(Q_P \) used to compute \(K' \) and \(K'' \), the estimate is sufficiently accurate. If the recomputed \(Q_P \) is more than 10% from the \(Q_P \) used to compute \(K' \) and \(K'' \), repeat the process using the revised \(Q_P \).

The Lag Equation Basin Factors, \(K_n \), from, **TABLE 6.2.17** remain applicable when using equations **EQUATION 6.8** and **EQUATION 6.9** with the adjusted slope computed by the equation shown in **EQUATION 6.12**.
EXAMPLE 8

Compute the time of concentration (t_c) for a natural basin having a length of 4,000 feet and a uniform slope of 0.12 foot per foot. The basin is estimated to have a peak flow of 600 cfs using the procedures in Part 6-2(B).

$s = 0.12 \text{ foot per foot}$
$Q_P = 600 \text{ cfs}$

Compute the adjusted slope using EQUATION 6.19:

$s' = 0.052467 + 0.063627 \times 0.12 - 0.18197 \times (e^{-62.375 \times 0.12})$

$= 0.052764 + 0.007635 - 0.000102 = 0.0603 \text{ ft/ft}$

Compute conveyance factors from TABLE 6.2.16 and EQUATION 6.9:

$K = \frac{4000}{(300 / 0.7 + 1700 / 2.0 + 2000 / 3.0)} = 2.056$

From EQUATION 6.20 and EQUATION 6.21:

$K^' = 0.302 \times (0.0603^{0.5}) \times (600)^{0.18} = 3.89$
$K^" = 0.207 \times (0.0603^{0.5}) \times (600)^{0.18} = 2.66$

Since $K < K^"$ then use $K = 2.66$

From EQUATION 6.6 and b-2.

$V = 10 \times 2.66 \times (0.0603^{0.5}) = 6.53 \text{ ft/sec}$
$t_c = \frac{(4000 / 6.53)}{3600} = 0.170 \text{ hour (Use 0.200 hour min.)}$

The Q_P should then be recomputed using the revised t_c and the procedures in Part 6-2(A) or Part 6-2(C).

Section 6-2(B)(6) Channel Routing for Steep Slopes and Natural Channels

The procedures outlined to compute time of concentration for steep natural channels in Section 6-2(B)(5) are also applicable for hydrologic routing of hydrographs through channel segments. The restrictions that limit the procedure to only natural channels with slopes steeper than 0.04 foot per foot are also applicable here. The procedures are not applicable to the hydraulic design of channel structures.

EQUATION 6.12 can be used to obtain an adjusted slope for the channel segment. The Manning's roughness (n) for the channel should be checked to make sure that appropriate Froude Numbers are maintained. It is necessary to estimate the peak flow rate (Q_P) for the watershed channel segment to perform this check. An analysis without a Manning's roughness adjustment may be used for the initial estimate. The following formula is then used to compute the Manning's roughness adjustment:
EQUATION 6.22 \(n' = 0.122 \cdot s'^{(0.5)} \cdot Q_p^{(0.06)} \)

An adjusted Manning’s roughness \((n)\) is then obtained based on the following:
if \(n < n' \) then \(n = n' \)
if \(n \geq n' \) then \(n = n \) (no adjustment)

Recompute the \(Q_p \) based on the revised Manning’s roughness \((n)\). If the recomputed \(Q_p \) is within 30% of the \(Q_p \) used to compute \(n' \), the estimate is sufficiently accurate. If the recomputed \(Q_p \) is more than 30% from the \(Q_p \) used to compute \(n' \), repeat the process using the revised \(Q_p \).

EXAMPLE 9

A channel segment immediately downstream of the basin in EXAMPLE 8 has a slope of 0.08 foot per foot. The channel has an apparent Manning’s roughness of 0.035. Compute the equivalent channel slope and Manning’s roughness for use in hydrologic routing.

\(s = 0.08 \) foot per foot
\(Q_p = 600 \) cfs

\(s' = 0.052467 + 0.063627 \cdot 0.08 - 0.18197 \cdot e^{-62.375\cdot0.08}
= 0.052467 + 0.005090 - 0.001238 = 0.0563 \) ft/ft

Use equivalent slope = 0.0563 ft/ft (from EQUATION 6.22)

\(n' = 0.122 \cdot (0.0563)^{0.5} \cdot (600)^{0.06} = 0.0425 \)

Since \(n < n' \), then use \(n = 0.0425 \)

Part 6-2(C) Procedure for Small and Large Watersheds

A unit hydrograph procedure is used for major drainage area analysis and for sub-basins larger than 40 acres. The Part 6-2(C) procedure may also be used for small watersheds (40 acres or less) in place of the procedures specified in Part 6-2(A). AHYMO is the primary method of hydrograph computation using losses described in TABLE 6.2.11 and TABLE 6.2.12 for Land Treatments as described in TABLE 6.2.9 and a rainfall distribution with peak intensity 1.5 hours after the beginning of the storm. The SCS Curve Number method is also allowed using Curve Numbers provided in TABLE 6.2.9 with a 24-hour rainfall distribution based on NOAA Atlas 14 with the peak intensity at 12 hours. (Smoothing should not be applied to the NOAA Atlas 14 data points.) The unit hydrograph calculation increment is to be 0.01 hours or less for both the AHYMO and the SCS Curve Number methods.
Section 6-2(C)(1) Computer Program

The unit hydrograph calculations must be accomplished using computer programs that are acceptable to the City of Albuquerque. Consult the Users Manual for direction on how to use each program. Program data files must be included with applications to hydrology. A list of acceptable programs is available on the Planning Department’s Hydrology webpage along with requirements for procedures to be used and the format of the printout to be contained in the application for each program.

Section 6-2(C)(2) Precipitation Zones

The unit hydrograph procedure should not use precipitation zones from TABLE 6.2.7 or FIGURE 6.2.3 of Part 6-2(C). The precipitation amounts are obtained for a specific location near the center of the watershed being analyzed from the NOAA Atlas 14. Documentation should include the latitude, longitude, and elevation of the “Point Precipitation Frequency Estimates” and a map showing the location of the point. Program parameters are obtained based on basin characteristics and precipitation quantities.

Section 6-2(C)(3) Design Storm

The principal design storm for peak flow determination is the 100-year 24-hour event defined by the NOAA Atlas 14, Precipitation - Frequency Atlas of the United States, Vol. 1 Version 5 Semiarid Southwest or the most current version. Storms of other frequencies or durations are required for design or analysis of volume sensitive facilities to examine sediment transport and complex routing conditions. The following statement from the Federal Emergency Management Agency (FEMA) should be used to provide guidance when selecting storm duration:

"FEMA's position regarding the duration of rainfall is that the storm must extend for a period long enough to include all rainfall excess when the volume of the runoff hydrograph is an important consideration. This includes conditions when detention storage is involved, when sediment processes are a significant factor, and when combining and routing sub-basin hydrographs to obtain watershed runoff."

When evaluating uncontrolled watersheds larger than 5 square miles, the precipitation amounts may be reduced by multiplying the precipitation amounts by the "Percent of Point Precipitation" obtained from FIGURE 6.2.6. Uncontrolled watersheds mean those areas not controlled by dams, ponds, or partial diversions.
Part 6-2(D) Symbols and Bibliography

Section 6-2(D)(1) Definitions of Symbols

When using equations, follow this order of calculation: 1) parentheses, 2) functions (i.e. SIN or LOG), 3) exponents (i.e. power or square root), 4) multiplication or division, 5) addition or subtraction.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_A</td>
<td>area in land treatment A</td>
</tr>
<tr>
<td>A_B</td>
<td>area in land treatment B</td>
</tr>
<tr>
<td>A_C</td>
<td>area in land treatment C</td>
</tr>
<tr>
<td>A_D</td>
<td>area in land treatment D</td>
</tr>
<tr>
<td>A_T</td>
<td>total area in sub-basin</td>
</tr>
<tr>
<td>Ac</td>
<td>Ft acre feet</td>
</tr>
<tr>
<td>C</td>
<td>Rational Method coefficient</td>
</tr>
<tr>
<td>C_A</td>
<td>Rational Method coefficient for treatment A</td>
</tr>
<tr>
<td>C_B</td>
<td>Rational Method coefficient for treatment B</td>
</tr>
<tr>
<td>C_C</td>
<td>Rational Method coefficient for treatment C</td>
</tr>
<tr>
<td>C_D</td>
<td>Rational Method coefficient for treatment D</td>
</tr>
<tr>
<td>cfs</td>
<td>cubic feet per second</td>
</tr>
<tr>
<td>CN</td>
<td>SCS Curve Number</td>
</tr>
<tr>
<td>D</td>
<td>duration in days</td>
</tr>
<tr>
<td>e</td>
<td>base of natural logarithm system = 2.71828</td>
</tr>
<tr>
<td>E</td>
<td>excess precipitation</td>
</tr>
<tr>
<td>E_A</td>
<td>excess precipitation for treatment A</td>
</tr>
<tr>
<td>E_B</td>
<td>excess precipitation for treatment B</td>
</tr>
</tbody>
</table>
TABLE 6.2.18 Definitions of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{c}</td>
<td>excess precipitation for treatment C</td>
</tr>
<tr>
<td>E_{d}</td>
<td>excess precipitation for treatment D</td>
</tr>
<tr>
<td>EA</td>
<td>elevation adjustment factor for PMP60</td>
</tr>
<tr>
<td>Elev</td>
<td>elevation (feet)</td>
</tr>
<tr>
<td>Ft</td>
<td>feet</td>
</tr>
<tr>
<td>ft/sec</td>
<td>feet per second</td>
</tr>
<tr>
<td>hr</td>
<td>hour</td>
</tr>
<tr>
<td>I</td>
<td>Rational Method intensity (inches/hour)</td>
</tr>
<tr>
<td>IA</td>
<td>initial abstraction (inches)</td>
</tr>
<tr>
<td>INF</td>
<td>infiltration (inches/hour)</td>
</tr>
<tr>
<td>K</td>
<td>conveyance factor for SCS Upland Method</td>
</tr>
<tr>
<td>k</td>
<td>recession coefficient for AHYMO program</td>
</tr>
<tr>
<td>K_{N}</td>
<td>basin factor for lag time equation</td>
</tr>
<tr>
<td>K_{L}</td>
<td>conveyance factor for watershed subreach</td>
</tr>
<tr>
<td>k/tp_{A}</td>
<td>k divided by tp for treatment A</td>
</tr>
<tr>
<td>k/tp_{B}</td>
<td>k divided by tp for treatment B</td>
</tr>
<tr>
<td>k/tp_{C}</td>
<td>k divided by tp for treatment C</td>
</tr>
<tr>
<td>k/tp_{D}</td>
<td>k divided by tp for treatment D</td>
</tr>
<tr>
<td>k/tp_{40}</td>
<td>k divided by tp for 40 acres or smaller area</td>
</tr>
<tr>
<td>k/tp_{200}</td>
<td>k divided by tp for 200 acres or larger area</td>
</tr>
<tr>
<td>L</td>
<td>length of subreach (feet)</td>
</tr>
<tr>
<td>L_{CA}</td>
<td>distance to centroid of drainage basin (feet)</td>
</tr>
<tr>
<td>L_{G}</td>
<td>lag time (hours)</td>
</tr>
<tr>
<td>L_{L}</td>
<td>length of watershed subreach</td>
</tr>
<tr>
<td>In</td>
<td>natural logarithm (base e)</td>
</tr>
<tr>
<td>log$_{10}$</td>
<td>base 10 logarithm</td>
</tr>
<tr>
<td>mi2</td>
<td>square mile(s)</td>
</tr>
<tr>
<td>n</td>
<td>Manning’s roughness coefficient</td>
</tr>
<tr>
<td>P_{12}</td>
<td>12-minute precipitation</td>
</tr>
<tr>
<td>P_{60}</td>
<td>60-minute precipitation at 100-year storm</td>
</tr>
<tr>
<td>P_{60-2}</td>
<td>60-minute precipitation at 2-year storm</td>
</tr>
<tr>
<td>$P_{60-year}$</td>
<td>60-minute precipitation at “year” storm</td>
</tr>
<tr>
<td>P_{360}</td>
<td>360-minute precipitation at 100-year storm</td>
</tr>
<tr>
<td>P_{360-2}</td>
<td>360-minute precipitation at 2-year storm</td>
</tr>
<tr>
<td>P_{360-10}</td>
<td>360-minute precipitation at 10-year storm</td>
</tr>
<tr>
<td>P_{1440}</td>
<td>1440-minute (24-hr) precipitation, 100-year storm</td>
</tr>
<tr>
<td>P_{1440-2}</td>
<td>1440-minute (24-hr) precipitation at 2-year storm</td>
</tr>
<tr>
<td>P_{D}</td>
<td>precipitation for “D*-days duration</td>
</tr>
<tr>
<td>P_{N-100}</td>
<td>“n*-minute precipitation at 100-year storm</td>
</tr>
</tbody>
</table>
TABLE 6.2.18 Definitions of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>N-YEAR</sub></td>
<td>"n"-minute precipitation at "year" storm</td>
</tr>
<tr>
<td>P<sub>t</sub></td>
<td>precipitation at any time, t</td>
</tr>
<tr>
<td>Q<sub>p</sub></td>
<td>peak discharge (cfs)</td>
</tr>
<tr>
<td>Q<sub>PA</sub></td>
<td>peak discharge rate (cfs/acre) for treatment A</td>
</tr>
<tr>
<td>Q<sub>PB</sub></td>
<td>peak discharge rate (cfs/acre) for treatment B</td>
</tr>
<tr>
<td>Q<sub>PC</sub></td>
<td>peak discharge rate (cfs/acre) for treatment C</td>
</tr>
<tr>
<td>Q<sub>PD</sub></td>
<td>peak discharge rate (cfs/acre) for treatment D</td>
</tr>
<tr>
<td>s</td>
<td>slope of sub-reach in foot per foot</td>
</tr>
<tr>
<td>t</td>
<td>time in minutes</td>
</tr>
<tr>
<td>t<sub>B</sub></td>
<td>base time for small watershed hydrograph</td>
</tr>
<tr>
<td>t<sub>C</sub></td>
<td>time of concentration (hours)</td>
</tr>
<tr>
<td>t<sub>p</sub></td>
<td>time to peak (hours)</td>
</tr>
<tr>
<td>v</td>
<td>velocity of flow in watershed (feet/sec)</td>
</tr>
<tr>
<td>v<sub>x</sub></td>
<td>velocity of flow in watershed subreach</td>
</tr>
<tr>
<td>V<sub>360</sub></td>
<td>runoff volume for 360-minute storm</td>
</tr>
<tr>
<td>V<sub>1440</sub></td>
<td>runoff volume for 1440-minute storm</td>
</tr>
<tr>
<td>V<sub>4days</sub></td>
<td>runoff volume for 4-day storm</td>
</tr>
<tr>
<td>V<sub>10days</sub></td>
<td>runoff volume for 10-day storm</td>
</tr>
<tr>
<td>y<sup>x</sup></td>
<td>y to the x power</td>
</tr>
<tr>
<td>+</td>
<td>addition operator</td>
</tr>
<tr>
<td>-</td>
<td>subtraction operator</td>
</tr>
<tr>
<td>*</td>
<td>multiplication operator</td>
</tr>
<tr>
<td>/</td>
<td>division operator</td>
</tr>
<tr>
<td>√</td>
<td>square root operator</td>
</tr>
</tbody>
</table>

Section 6-2(D)(2) Bibliography

ARTICLE 6-3 SITE DEVELOPMENT

It is beneficial to consider the following items when developing a site:
1. Flood Zone (i.e. Special Flood Hazard Area): May affect finished floor elevation and locations of structures and increase permit requirements. See Article 6-6.
2. Downstream Capacity: May require on-site ponding. See Article 6-7.
3. Off-site Flows: Are generally accepted and conveyed through the site. See Article 6-7.
4. Applicable approved drainage reports and plans: Provide previous approvals for downstream capacity and off-site flows. See Article 6-7.
5. Current Topography: Provides accurate depiction of existing conditions.
6. Encumbrances (e.g. utility corridors and easements): May restrict development.

ARTICLE 6-4 GRADING AND EROSION CRITERIA

Part 6-4(A) Slope Criteria

Earth slopes shall conform to the following criteria:
1. For slopes 3.0 feet high or less, maximum slope should not exceed 2:1 (horizontal to vertical)
2. For slopes greater than 3.0 feet high, maximum slope should not exceed 3:1 (horizontal to vertical) unless stabilized from slope failure through means approved by the City Engineer. Steeper slopes may be approved subject to a geotechnical recommendation with City Engineer concurrence.
3. All slopes shall be protected from erosion, especially when subjected to upland flows.

Part 6-4(B) Grading near the Property Line

Particular attention must be given to grading (either cut or fill) near property lines. Care should be taken to ensure that existing foundations, retaining walls, stable slopes, and other structures are not endangered and that the adjacent property is not damaged or its use constrained due to grading at or near the property line.

Part 6-4(C) Grading in and Adjacent to Major Facilities

No grading, excavation, or fill may take place in or adjacent to any watercourse defined as a major facility (30 cfs for arroyos and 2 acre-ft for detention basins) without an approved grading and drainage plan.
Construction activities within major facilities shall provide for the safe passage of the 10-year design flow during the months of July, August, and September.

Part 6-4(D) Grading in and Adjacent to Major Public Open Space

1. Cut and fill and width disturbance to slopes and vegetation shall be minimized and balanced against the need to provide for bikeways or other amenities within the right-of-way.
2. Materials shall be used that blend with the adjacent landscape of the Major Public Open Space in color and texture. Natural materials are generally preferable to man-made materials.
3. No grading is allowed within Major Public Open Space areas with 9% or greater slopes except as required for roads, trails, and utilities.
 a. Temporary construction barricades, or 20-foot construction setback, are required from Major Public Open Space areas with 9% or greater slopes.
 b. If damage due to construction occurs on the Major Public Open Space side of the property line, it shall be mitigated at the expense of the property owner.
4. Corridors for construction projects shall be located to avoid impacts and destruction of petroglyphs or other archaeological sites and environmentally sensitive areas previously identified.
5. Areas that are damaged or altered shall be restored through replacement of boulders to approximate the original location, angle and surface exposure. Revegetation to approximate original cover with appropriate native or naturalized plants is required within 90 days of project completion.
6. The City shall be responsible for restoring existing damaged areas within Major Public Open Space. The property owner shall be responsible for restoring damaged areas on lands accepted by the City to meet open space requirements. If the land is to be deeded to the City, restoration shall occur prior to title transfer. If the land remains private open space, restoration and maintenance shall be an ongoing responsibility of the property owner.

Part 6-4(E) Means of Erosion Control

The means of erosion control shall be specified on the grading plan. Steeper slopes require a larger rock. The following are recommended erosion control for slopes without upland flows:
1. 3:1 to 4:1 - 3/4” or larger rocks
2. 2.5:1 to 3:1 - 1.5” angular rock
3. 2:1 to 2.5:1 - 4” minimum angular hand-placed with no landscape fabric
4. 1.5:1 to 2:1 - 6” or larger angular stone hand placed with no landscape fabric.

Slopes steeper than 1.5:1 may be allowed with a design acceptable to the City Engineer.

For slopes steeper than 5:1 with upland flows, the velocity and flow rate should be considered when designing the erosion protection for the slope.
Part 6-4(F) Levees and Berms

Section 6-4(F)(1) Definitions

1. **A levee**: As defined by FEMA, a man-made structure, usually an earthen embankment, designed and constructed in accordance with sound engineering practices to contain, control, or divert the flow of water. Levees in general are used to contain flows from the river or major water course where the grade outside the levee is lower than the 100-year 6-hour water surface elevation.

2. **A berm**: A linear earth structure designed to direct or retain/detain stormwater. The height is measured from the uphill side. See Article 6-11 for berms used to retain/detain stormwater.

Section 6-4(F)(2) Design Criteria

All levees shall be designed to standards published by the U.S. Army Corps of Engineers and meet FEMA freeboard requirements. Any berm or levee whose purpose is to divert or convey runoff in a major arroyo (30 cubic feet per second (cfs) or greater) shall be specially designed on a case-by-case basis and shall meet or exceed the guidelines listed herein.

6-4(F)(2)(i) Cross Section

1. The top width should have a minimum width equal to the height of the berm. Construction and maintenance equipment should be considered when considering the top width. The minimum top width is 4 feet.

2. Berms 4 feet and higher must be provided with a structural keyway with bottom width equal to the top width and depth equal to at least half the height, but not less than 2 feet and side slopes not steeper than 2:1 (horizontal to vertical).

3. Unarmored faces of berms must have side slopes not steeper than 3:1 (horizontal to vertical).

4. Safety issues should always be considered when designing slopes.

5. The following design criteria should be followed for high velocities:
 a. For velocities 5 fps or greater, an engineered means of erosion protection is required for bank protection.
 b. Erosion protection may be required for velocities less than 5 fps.
 c. Rip-rap protected side slopes shall not be steeper than 2:1 (horizontal to vertical). Method of rip-rap installation per engineer.
 d. Concrete-faced berms may be used on side slopes greater than 2:1 (horizontal to vertical).
6-4(F)(2)(ii) Freeboard

Berms and levees must be provided with freeboard for the 100-year design storm based on the following guidelines:

1. For flow depths less than 2.0 feet, minimum freeboard is 1.0 feet.
2. For flow depths greater than 2.0 feet, minimum freeboard is 2.0 feet.

Section 6-4(F)(3) Earthwork for Berms

All earthen berms and levees shall be constructed of high-quality fill material free of debris, organic matter, frozen matter, and stones larger than 6 inches in any dimension. The key trench shall be scarified to a depth of 6 inches to ensure bonding with the fill material. Lifts shall not exceed 12 inches of loose material before compaction. The material in each lift shall contain optimum moisture content (-1% to +3% or per a geotechnical report certified by a professional engineer licensed in the State of New Mexico) and shall be compacted to at least 95% density as determined by American Society for Testing and Materials (ASTM) standard test method ASTM D 1557.

Section 6-4(F)(4) Certification

All berms 4 feet and higher shall be inspected during construction and certified by a professional engineer registered in the State of New Mexico as to their substantial compliance to the approved plans and specifications.

Article 6-5 Valley Drainage Criteria

Special considerations are appropriate in the Rio Grande valley due to the flatness of the area and limited storm drain capacity. The valley is defined as the area bounded by Broadway Blvd./Edith Blvd. on the east, the Rio Grande on the west, and the City limits on the north and south.
Part 6-5(A) Single-lot Residential Development and Additions

For lots less than 1 acre, water harvesting on the lot is required. The water harvesting volume goal is to capture ½ inch of runoff from impervious areas on the site.
1. Roof flows should be directed to the water harvesting area(s).
2. Runoff should not adversely impact adjacent properties.
3. The finished pad elevation is recommended to be a minimum of 18 inches above the edge of pavement or roadway.

Part 6-5(B) Residential Subdivisions

Property that will be subdivided may require a drainage submittal for DRB approval. The drainage submittal shall categorize the downstream capacity per all of the following:
1. Discharge from the site will be limited to proven downstream capacity.
2. If the site has limited downstream capacity, the site shall retain the runoff from the 100-yr 6-hour storm on lots or in a subdivision pond.
3. If the site has no downstream capacity, the subdivision shall retain the 100-yr 10-day storm.

Part 6-5(C) Non-single-family Residential Development and Commercial Development

These types of developments will be subject to the following allowable stormwater discharge rates:
1. 2.75 cfs/acre or the site must retain the first ½ inch of runoff or the design standard volume as defined in the City’s Municipal Separate Storm Sewer System (MS-4) permit from the U.S. Environmental Protection Agency, whichever is greater. See Article 6-13 Drainage Right-of-Way and Easements.
2. If downstream capacity is known to be more limited, the allowable discharge may be less.

Part 6-5(D) Flat Grading Scheme for Residential Subdivisions

A flat grading scheme is considered a ponding condition and may be allowed in flat areas such as the Rio Grande Valley area of the City and under the following conditions:
1. There is no outfall or insufficient downstream conveyance for the site.
2. The site must be flat or graded flat.
3. The maximum percent impervious of the lot and the contributing area may not be greater than 45%.
4. Finished pad elevation shall be a minimum of 1 foot above the 100-year 10-day stormwater surface elevation.
5. The flow between the front yard and back yard cannot be obstructed. The stormwater must be allowed to equalize to the same level between the front yard and back yard.

6. A permanent perimeter wall or barrier around the development is required to contain the 100-year 10-day storm developed runoff.

7. The high point of all internal streets must be four inches above the 100-year 10-day stormwater surface elevation.
ARTICLE 6-6 DEVELOPING IN OR ADJACENT TO A FLOOD ZONE

The City of Albuquerque participates in the National Flood Insurance Program (NFIP); therefore, development and construction activities in a mapped flood zone (i.e. Special Flood Hazard Area or SFHA) must follow the requirements of the NFIP and the Code of Federal Regulations 44 CFR Parts 59, 60, 65, and 70.

Part 6-6(A) Grading

Grading will not be allowed within a FEMA flood zone without an approved grading and drainage plan and a floodplain development permit.

A Letter of Map Revision (LOMR) will be required when development changes a mapped flood zone. The City Engineer may waive the LOMR requirement for projects involving 1 acre or less.

Part 6-6(B) Compensatory Volume

1. Compensatory volume (AH and AE Zones) is a volume that is provided in the proposed condition that mitigates the displaced volume associated with development. This is most important in AH zones (areas of ponding 1 to 3 feet deep) and ponding AE zones.

2. In an AH or ponding AE Zone, the drainage plan is to state the amount of displaced volume in the mapped SFHA and show where this volume is to be accommodated in the proposed condition.

Part 6-6(C) Determination of Base Flood Elevation (BFE) in an AO Zone

When developing adjacent to or in an AO Zone, the cross-sectional area of the flow path is to be preserved. This is to be demonstrated in the drainage plan.

If flooding is conveyed by the street, provide the highest top of curb or crown along the property line and add the AO Zone depth (e.g AO 1) to the elevations of the top of curb or crown, whichever is higher.

If the entire property is inundated and the flow is not conveyed by the street, calculate an average grade for the site and add the AO zone depth to the average grade.

If the property is partially inundated and the street does not convey the flow, add the AO Zone depth to the lowest elevation.

Part 6-6(D) A Zone

For development adjacent to or in an unnumbered A Zone, the base flood elevation (BFE) will be determined by best available data. If no data are available, the BFE is considered to be 2 feet above the highest adjacent grade.
Part 6-6(E) Floodplain Development Permit

A floodplain development permit is required for any construction in a FEMA mapped SFHA. This requirement may be waived if the work is minor (e.g. driveway) and will not result in a change to the water surface elevation or flow path.

Part 6-6(F) Letters of Map Revision (LOMR)

Map changes come in the form of Letters of Map Revision (LOMR), Letters of Map Amendment (LOMA), Letters of Map Amendment based on Fill (LOMR-F) and conditional LOMR and LOMR-F (CLOMR, CLOMR-F)

1. A LOMR, if approved by FEMA, will change/remove the mapped SFHA from the Flood Insurance Rate Map (FIRM).
2. A LOMA, if approved by FEMA, will not change the FIRM, but will remove the structure or property from the SFHA for insurance purposes.
3. A LOMR-F, if approved by FEMA, will not change the FIRM, but will remove the structure or property from the SFHA for insurance purposes. If fill was imported to raise the structure above the Base Flood Elevation (BFE), the LOMR-F and not the LOMA is to be submitted to FEMA.
4. A conditional map change (CLOMR, CLOMR-F) is submitted to FEMA prior to grading/building to obtain their approval or receive comments on the proposed project. A conditional map change is always recommended as it shortens the review time upon the completion of the project and minimizes unexpected review responses from FEMA. CLOMR and CLOMR-Fs must demonstrate compliance with the Endangered Species Act.

For more information on the above-mentioned letters of map change, refer to FEMA's Flood Map Service Center webpage.

Part 6-6(G) Project Requirements

1. If the project proposes any grading in a regulated floodway, an approved CLOMR is required prior to beginning grading operations or receiving project approval at the Development Review Board or prior to Building Permit approval.
2. The lowest finished floor elevation is to be a minimum of 1 foot above the Base Flood Elevation (BFE).
3. An elevation certificate is required to be submitted to the Floodplain Administrator and deemed acceptable prior to obtaining a Certificate of Occupancy for the building. It is advised to follow-up with a LOMR-F or LOMA to remove the building from the SFHA.
ARTICLE 6-7 DOWNSTREAM CAPACITY AND OFF-SITE FLOWS

Downstream capacity and off-site flows are the most important elements of a successful drainage report/plan. The engineer is expected to research adjacent projects, as-built storm drain construction plans and Drainage Master Plans to correctly identify downstream capacity. See Article 6-5 Valley Drainage Criteria if the project is in the Rio Grande valley.

Previously approved Drainage Master Plans can be relied upon as long as the basin conditions have not changed.

The engineer is also expected to perform a site visit, review topography and review adjacent drainage reports/plans to accurately identify off-site flows.

Part 6-7(A) Downstream Capacity

The drainage report/plan shall accurately state allowable downstream capacity. For small redevelopment projects (less than 0.5 acres) not located in the Rio Grande valley, proposed flows that do not exceed historic flows are most likely acceptable. Some small sites may have a history in which proposed flows will have to be less than historic flows.

Part 6-7(B) Off-site Flows

The drainage report/plan is to show the location and to quantify off-site flows. In general, sites are to accept off-site flows and convey them safely to an acceptable outfall. A site may not have to accept off-site flows if a previously approved plan shows the outfall adjacent to the site and flows can be safely conveyed to an acceptable outfall.

Part 6-7(C) Historic Flow Path through Adjacent Private Property

If the only reasonable outfall for a proposed development is a historic flow path through an adjacent private property, the historic flow characteristics and path must be maintained.
ARTICLE 6-8 ENGINEERED CHANNELS AND NATURAL ARROYOS

Part 6-8(A) General Hydraulic Criteria

In general, all open channels should be designed with the tops of the walls or levees at or below the adjacent ground to allow for interception of surface flows. If it is unavoidable to construct the channel without creating a pocket, a means of draining the pocket must be provided on the drawings. All local drainage should be completely controlled. External flows must enter the channel at designated locations and through designated inlets unless specifically otherwise authorized by the City Engineer.

Part 6-8(B) Sharp Curves

In making preliminary layouts for the routing of proposed channels, it is desirable to avoid sharp curvatures, reversed curvatures, and closely-spaced series of curves. If this is unavoidable, the design considerations below must be followed to reduce superelevations and to eliminate initial and compounded wave disturbances.

Part 6-8(C) Maximum Froude Number

It is generally desirable to design a channel for a Froude number of just under 2.0. In some areas of the city, this is not always possible because of steep terrain. If the Froude number exceeds 2.0, any small disturbance to the water surface is amplified in the course of time, and the flow tends to proceed as a series of “roll waves.” Refer to sections below for criteria to design a channel with a Froude number that exceeds 2.0.

In the design of a channel, if the depth is found to produce a Froude number between 0.7 and 1.3 for any significant length of reach, the shape or slope of the channel should be altered to secure a stable flow condition. All analyses should be performed for the 10-year and 100-year design discharges.

Part 6-8(D) Water Surface Profile Calculations

Water surface profile calculations must be calculated using the Bernoulli energy equation combined with the momentum equation for analyzing confluences and functions.
Section 6-8(D)(1) Determination of Controlling Water Surface Elevation

The following are generally control points for the calculation of the water surface profile:

1. Where the channel slope changes from mild to steep or critical, the depth at the grade break is critical depth.
2. Where the channel slope changes from critical to steep, the depth at the grade break is critical depth.
3. Where a discharging channel or conduit is on a mild slope, the water surface is generally controlled by the outlet.
4. When a channel on a steep slope discharges into a facility that has a water surface depth greater than the normal depth of the channel, calculate pressure plus momentum for normal depth and compare it to the pressure plus momentum for the water surface depth at the outlet according to the equation, $P_n + M_n \approx P_o + M_o$.
 a. If $P_n + M_n > P_o + M_o$, this indicates upstream control with a hydraulic jump at the outlet.
 b. If $P_n + M_n < P_o + M_o$, this indicates outlet control with a hydraulic jump probably occurring upstream.
 c. Where the water surface of the outlet is below the water surface in the channel or conduit, control is upstream and the outflow will have the form of a hydraulic drop.

When there are a series of control points, the one located farthest upstream is used as a starting point for water surface calculation.

Section 6-8(D)(2) Direction of Calculation

Calculations proceed upstream when the depth of flow is greater than critical depth and proceed downstream when the depth of flow is less than critical depth.

Section 6-8(D)(3) Head Losses

6-8(D)(3)(i) Friction Loss

Friction losses in open channels shall be calculated by an accepted form of the Manning equation. The Manning equation is commonly expressed as follows:

\[EQUATION \ 6.23 \quad Q = \left(1.486/n\right) A \ R^{1/3} S_f^{1/2} \]

where:

- Q = Flow rate, in c.f.s.
- n = Roughness coefficient
- A = Area of water normal to flow, in ft.²
- R = Hydraulic radius
- S_f = Friction slope

when arranged into a more useful form:

\[S_f = \frac{2gn^2}{2.21((V^2/2g)/R^{4/3})} \]
The loss of head due to friction throughout the length of reach involved (L) is calculated by:

$$ h_f = S_f L $$

6-8(D)(3)(ii) Junction Loss

Junction losses will be evaluated by the pressure plus momentum equation and must conform to closed conduit angle of confluence criteria in Section 6-2(B)(6). Refer to Part 6-8(F) Miscellaneous Hydraulic Calculations later in this section.

Section 6-8(D)(4) Channel Inlets

6-8(D)(4)(i) Side Channels

Flow rates of 25% or more of the main channel flow must be introduced to the main channel by a side channel hydraulically similar to the main channel. The centerline radius of the side channel may not be less than the quantity \((QV/100)\) in feet.

Velocity and depth of the flows in the side channel when introduced into the main channel must be matched to within 1 foot of velocity head and to within 20% of the flow depth for both the 10-year and 100-year design discharges and the four combinations of side inlet and main channel flows that result. Energy and momentum balance type calculations must be provided to support all designs involving side channels.

6-8(D)(4)(ii) Surface Inlets

When the main channel is relatively narrow and when the peak discharge of side inflow is in the range between 3% and 6% of the main channel discharge, high waves are usually produced by the side inflow and are reflected downstream for a long distance, thus requiring additional wall height to preclude overtopping of the channel walls. This condition is amplified when the side inflow is at a greater velocity than the main channel. To eliminate these wave disturbances, the Los Angeles District of the U.S. Corps of Engineers has developed a side channel spillway inlet that the City or AMAFCA may require when one of their facilities is the outlet. This type of structure should be considered for City channels if high waves above the normal water surface cannot be tolerated. See Subsection 6-8(D)(iii)(a) Transitions and Section 6-8(F)(3) Side Channel Weirs for the criteria and procedure.

Surface-type inlets shall be constructed of concrete with a minimum thickness of 6 inches and shall be reinforced with the same steel as 6-inch concrete lining. The upstream end of the surface inlet shall be provided with a concrete cutoff wall with a minimum depth of 3 feet, and the downstream end of the inlet shall be connected to the channel lining by an isolation joint. Side slopes of a surface inlet shall be constructed at slopes no greater than 1:10 (vertical to horizontal) to allow vehicular passage across the inlet where a service road is required.
Drainage ditches or swales immediately upstream of a surface inlet shall be provided with erosion control consisting of concrete lining, rock rip-rap, or other non-erosive material.

Surface inlets shall enter the channel at a maximum of 90 degrees to the channel centerline; they may not point upstream.

6-8(D)(4)(iii) Direct Pipe to Channel

Junctions involving direct pipe connection to a channel must conform to criteria in Part 6-10(E) Closed Conduit Pipe Size and Slope. Additionally, pipe and box culvert inlets to channels shall be isolated by expansion joints. Continuously reinforced channels shall be designed to accommodate any extra stress resulting from these discontinuities. *Hydraulic Design of Flood Control Channels, U.S. Army Corps of Engineers Engineer Manual (EM) 1110-2-1061, Paragraph 18(h), has additional design criteria.*

6-8(D)(4)(iii)(a) Transitions

1. Subcritical Flow
 a. For subcritical velocities less than 12 feet per second (ft/sec), the angle of convergence or divergence between the centerline of the channel and the wall must not exceed 12 degrees 30 minutes. The length of the transition (L) is determined from the following equation:

 \[L > 2.5 \Delta B \]

 \[EQUATION 6.24 \]

 b. For subcritical velocities equal to or greater than 12 ft/sec, the angle of convergence or divergence between the centerline of the channel and the wall must not exceed 5 degrees 45 minutes. The length (L) is determined from the following equation:

 \[L > 5.0 \Delta B \]

 \[EQUATION 6.25 \]

 c. Head losses for transitions with converging walls in subcritical flow conditions can be determined by using either the P + M method or the Thompson equation. See *EQUATION 6.45*. For transitions, both methods are applicable in all cases and will give the same results.

2. Supercritical Flow
 a. Divergent Walls

 The angle of divergence between the centerline of the channel and the wall must not exceed 5 degrees 45 minutes or \(\tan^{-1}(F/3) \), whichever is smaller. The length of the transition (L) is the longest length determined from the following equations:

 \[L > 5.0 \Delta B \]

 \[EQUATION 6.26 \]

 \[L > 1.5 \Delta B \times F \]

 \[EQUATION 6.27 \]

 where:
 \(F \) = Upstream Froude number based on depth of flow
 \(\Delta B \) = The difference in channel width at the water surface
b. Convergent Walls
Converging walls should be avoided when designing channels in supercritical flow; however, if this is impractical, the converging transition will be designed to minimize wave action. The walls of the transition should be straight.

3. Transitions Between Channel Treatment Types
a. Earthen Channel to Concrete Lining Transition
i. The mouth of the transition should match the earthen channel section as closely as practicable. Wing dikes and/or other structures must be provided to positively direct all flows to the transition entrance.
ii. The upstream end of the concrete lined transition will be provided with a cutoff wall having a depth of 1.5 times the design flow depth, but at least 3.0 feet and extending the full width of the concrete section. Erosion protection directly upstream of the concrete transition consisting of grouted or dumped rock rip-rap at least 12 feet in length and extending full width of the channel section must be provided. Grouted rip-rap must be at least 12 inches thick and tied to the concrete lining and cutoff wall. Dumped rip-rap must be properly sized, graded and projected with gravel filter blankets.
iii. The maximum allowable rate of bottom width transition is 1 to 7.5 maximum. Grout, dumped, or wire-tied material may also be used if approved on a case-by-case basis by the City Engineer. Grouted and wire-tied materials require gravel filters as well.

b. Concrete Lining to Earthen Channel Transition
i. The transition from concrete lined channels to earthen channels will include an energy dissipator as necessary to release the designed flows to the earthen channel at a relatively non-erosive condition.
ii. Since energy dissipator structures are dependent on individual site and hydraulic conditions, detailed criteria for their design is included in the section Criteria for Hydraulic Design of Closed Conduits. Minimum requirements are included herein for the concrete to earthen channel transition.
iii. On this basis, the following minimum standards govern the design of concrete to earthen channel transitions.

<table>
<thead>
<tr>
<th>TABLE 6.8.19 Maximum Rate of Bottom Width Transitions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Velocity</td>
<td></td>
</tr>
<tr>
<td>0 - 15 f.p.s</td>
<td>1:10</td>
</tr>
<tr>
<td>16 - 30 ft/sec</td>
<td>1:15</td>
</tr>
<tr>
<td>31 - 40 ft/sec</td>
<td>1:20</td>
</tr>
</tbody>
</table>

iv. The downstream end of the concrete transition structure will be provided with a cutoff wall having a minimum depth of 4 feet and extending the full width of the concrete section.
v. Directly downstream of the concrete transition structure erosion protection consisting of rough, exposed surface, grouted rock rip-rap shall be provided along the full width of the channel section. The grouted rock rip-rap should be a minimum of 12 inches thick and tied to concrete structure and the cutoff wall. Grout, dumped, or wire-tied material may also be used if approved on a case-by-case basis by the
City Engineer. Grouted and wire-tied material require gravel filters as well.

Section 6-8(D)(5) Bank Protection

All berms and levees expected to convey or divert 30 cfs or more in the event of the 100-year design discharge must be provided with bank protection according to the following guidelines:
1. Bank protection must be provided wherever design velocities exceed 5 feet/second.
2. Bank protection must be provided on the outside of curves from the beginning of curvature, through the curve and for a distance equal to 5 times the flow velocity in feet downstream from the point of tangency.
3. When required, bank protection must be provided to 2 feet above the design flow depth plus additional depth as required (e.g. superelevation, waves at confluences, hydraulic jumps, etc.).
4. Bank protection must extend downward on a projection of the bank slope, to a minimum depth equal to 1.5 times the design flow depth, but never less than 3.0 feet. Bank protection for major arroyos shall be accompanied by a City Engineer approved sediment transport analysis.

Section 6-8(D)(6) Piers

The effect of piers on open channel design must be considered at bridge crossings and where an open channel or box conduit that is not flowing full discharges into a length of multi-barreled box. This effect is especially important when flow is supercritical and when transported debris impinges on the piers.

The total pier width includes an added width for design purposes to account for debris. Inasmuch as the debris width to be used in design will vary with each particular situation, contact the City Engineer during the preliminary design stages of a project for a determination of the appropriate width.
Streamline piers should be used when heavy debris flow is anticipated. Refer to Article 6-9 Street Hydraulics for design data regarding streamline piers.

The water surface elevations at the upstream end of the piers is determined by equating pressure plus momentum. The water surface profile within the pier reach is determined by the Bernoulli equation. The water surface elevations at the downstream end of the piers may be determined by applying either the pressure plus momentum equation or the Bernoulli equation.

Section 6-8(D)(7) Curving Alignments

6-8(D)(7)(i) Superelevation

Superelevation is the maximum rise in water surface at the outer wall above the mean depth of flow in an equivalent straight reach, caused by centrifugal force in a curving alignment.

1 Berms, dams, levees, and diversions of certain magnitudes and nature may fall within the jurisdiction of the State Engineer of the State of New Mexico. The design professional is expected to be aware of and comply with regulations promulgated by that jurisdiction.
6-8(D)(7)(i)(a) Rectangular Channels

For subcritical velocity, or for supercritical velocity where a stable transverse slope has been attained by an upstream easement curve, the superelevation (S) can be calculated from the following equation:

\[EQUATION \ 6.28 \quad S = \frac{V^2 b}{2g r} \]

For supercritical velocity in the absence of an upstream easement curve, the superelevation (S) is given by the following equation:

\[EQUATION \ 6.29 \quad S = \frac{V^2 b}{2g r} \]

where:
\[V = \text{velocity of the flow cross section, in ft/sec} \]
\[b = \text{Width of the channel, in ft.} \]
\[g = \text{Acceleration due to gravity} \]
\[r = \text{Radius of channel centerline curve, in ft.} \]
\[X = \text{Distance from start of circular curve to point of first S in ft.} \]
\[D = \text{Depth of flow for an equivalent straight reach} \]
\[\beta = \text{Wave front angle} \]

where:
\[X = \left(\frac{\pi b V}{12 g D} \right) = 0.16 V D^{\frac{1}{2}} = 0.908 b \sin \beta \]
\[\sin \beta = \frac{g (D)^{\frac{1}{2}}}{V} = 1/F \]

"S" will not be uniform around the bend but will have maximum and minimum zones that persist for a considerable distance into the downstream tangent.

6-8(D)(7)(i)(b) Trapezoidal Channels

For subcritical velocity, the superelevation (S) can be calculated from the following equation:

\[EQUATION \ 6.30 \quad S = \frac{1.15 V^2 (b + 2 z D)}{2 g r} \]

where:
\[z = \cotangent \text{ of bank slope} \]
\[b = \text{channel bottom width, in ft.} \]

For supercritical velocity, curving alignments shall have easement curves with a superelevation (S) given by the following equation:

\[EQUATION \ 6.31 \quad S = \frac{1.3 V^2 (b + 2 z D)}{2 g r} \]

6-8(D)(7)(i)(c) Unlined Channels

Unlined channels will be considered trapezoidal insofar as superelevation calculations are concerned; however, this does not apply to the calculation of cross-sectional areas of stream or channels.
6-8(D)(7)(ii) Easement Curves

Easement curves are alignment transition curves, employed upstream and downstream of circular curves, when supercritical flow exists in open channels. The purpose of the easement curve is to alter the transverse slope of the water surface and keep the water prism in constant static equilibrium against centrifugal force throughout the entire length of the easement curve and central circular curves, thus achieving minimum heights of superelevation with avoidance of cross-wave disturbances.

Circular easement curves are recommended in lieu of spiral transition curves for each of design and construction. Very little hydraulic advantage is gained by the use of the spiral. The circular easement curve consists of curved sections upstream and downstream of the main curve having a radius (2R), twice the main curve radius (R).

6-8(D)(7)(ii)(a) Conditions Requiring Easement Curves

Any of the following conditions require easement curves:
1. When the freeboard above the superelevated water surface (as calculated without an easement curve) is less than 2 feet.
2. In reverse curves or on alignments where curves follow one another closely.
3. For any case where elimination of cross-wave disturbances is required. If easement curves are not used, additional freeboard downstream of the curve may be necessary.
4. In trapezoidal channels for all cases of supercritical velocity.

6-8(D)(7)(ii)(b) Length of Easement Curve

FIGURE 6.8.8 Easement Curve
For rectangular channels, the length of easement curve (L_e) is given by the following equation:

$$EQUATION \ 6.32 \ L_e = 2X = 0.32bV/D^{0.5}$$

For trapezoidal and associated channel types, the length of easement curve (L_e) can be calculated as follows:

$$EQUATION \ 6.33 \ L_e = 0.32 \left(b + 2zD\right) V/D^{0.5}$$

Refer to the section on superelevation above for the definition of terms.

Section 6-8(D)(8) Freeboard

Freeboard is the additional wall height applied to a calculated water surface.

6-8(D)(8)(i) Rectangular Channels

1. For flow depths of 1.0 feet or less and average flow velocities less than 35 ft/sec, add 1.0 feet.
2. For flow depths of 1.0 feet or less and average flow velocities greater than 35 ft/sec, add 1.5 feet.
3. For flow depths of greater than 1.0 feet and average flow velocities of less than 35 ft/sec, add 2.0 feet.
4. For flow depths of greater than 1.0 feet and average flow velocities of greater than 35 ft/sec, add 3.0 feet.
5. For supercritical flow where the depth is between DC and 0.80 DC, the wall height must be equal to the sequent depth, but not less than the heights required above. This condition should be avoided.
6. Freeboard requirements for concrete drainage easement channels shall be established by the City Engineer on a case-by-case basis.

6-8(D)(8)(ii) Trapezoidal Channels and Associated Types

Adequate channel freeboard above the designed water surface must be provided and shall not be less than the channel freeboard determined in the following 2 equations:

1. For flow rates of less than 100 c.f.s. and average flow velocity of less than 35 ft/sec:

$$EQUATION \ 6.34 \ \text{Freeboard (Feet)} = 1.0 + 0.025Vd^{1/3}$$

2. For flow rates of 100 c.f.s. or greater and average flow velocity of 35 ft/sec or greater:

$$EQUATION \ 6.35 \ \text{Freeboard (Feet)} = 0.7 \left(2.0 + 0.025Vd^{1/3}\right)$$

Freeboard will be in addition to any superelevation of the water surface, standing waves and/or other water surface disturbances. When the total expected height of disturbances is less than 0.5 feet, disregard their contribution.

2 Not used except with City Engineer approval.
Unlined portions of the drainage way may not be considered freeboard unless specifically approved by the City Engineer.

For supercritical flow where the specific energy is equal to or less than 1.2 of the specific energy at D_c, the wall height will be equal to the sequent depth but not less than the heights required above. This condition should be avoided.

6-8(D)(8)(iii) Roll Waves

Roll waves, sometimes known as slug flow, are intermittent surges on steep slopes that will occur when the Froude Number (F) is greater than 2.0 and the channel invert slope (S_0) is greater than the quotient 12 after dividing by the Reynolds Number. When roll waves do occur, it is important to estimate the maximum wave height at all points along the channel so that appropriate wall heights may be determined. Maximum wave height may be estimated based on the experimental results of roll waves by Richard R. Brock.

Part 6-8(E) Channel Design Criteria

Section 6-8(E)(1) Unlined Channels

An unlined earthen channel may be approved for use after full consideration has been given to the soil type, velocity of flow, desired life of the channel, economics, availability of materials, maintenance, and any other pertinent factors. Generally, an earthen channel is acceptable where erosion is not a factor and where mean velocity does not exceed 3 ft/sec. Old and well-seasoned channels will withstand higher velocities than will new ones, and, with other conditions the same, deeper channels will convey water at a higher velocity without erosion than will shallower ones. Additional information is provided in Article 6-9 Street Hydraulics.

Maximum side slopes are determined pursuant to an analysis of soil reports; however, in general, slopes should be 3:1 or flatter.

Section 6-8(E)(2) Composite Linings

If part of the channel cross section is unlined or the linings are composed of different materials, a weighted coefficient must be determined using the roughness factors for the materials.

Section 6-8(E)(3) Maximum Sidewall Slopes

The following sidewall slopes are generally the maximum values used for channels on at least one side of the concrete lined channel. The road should be sloped away from the channel, and roadway runoff carried in a controlled manner to the channel.
TABLE 6.8.20 Maximum Sidewall Slopes

<table>
<thead>
<tr>
<th>Lining Material</th>
<th>Maximum Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Cement</td>
<td>2:1</td>
</tr>
<tr>
<td>Portland Cement Concrete</td>
<td>2:1 (trapezoidal)</td>
</tr>
<tr>
<td>Grouted Rock Rip-Rap</td>
<td>2:1</td>
</tr>
<tr>
<td>Dumped Rock Rip-Rap</td>
<td>2:1</td>
</tr>
<tr>
<td>Earth Lined</td>
<td>3:1</td>
</tr>
<tr>
<td>Grass Lined (sodded)</td>
<td>4:1</td>
</tr>
</tbody>
</table>

Section 6-8(E)(4) Channel Maintenance and Access Road

A maintenance and access road having a minimum of 12 feet top width should be provided on at least 1 side of improved channels. In some cases, the City Engineer may require additional width. Channel maintenance and access roads shall, at a minimum, be surfaced with gravel base course. The thickness of said base course shall be 6 inches west of the Rio Grande and 4 inches east of the Rio Grande.

Turnouts shall be provided at intervals not more than ½ mile apart, and turnarounds must be provided at all dead ends of access roads.

Ingress and egress must be provided from public right-of-way and/or easements to the channel maintenance and access road.

Section 6-8(E)(5) Channel Access Ramps

Channel access ramps for vehicular use will be provided as necessary for complete access to the channel throughout its entire length. The maximum length of channel between ramps shall be ½ mile.

Ramps shall be constructed of reinforced concrete 8 inches thick and shall not have slopes greater than 17%. Ramps shall not enter the channel at angles greater than 15 degrees from a line parallel to the channel centerline.

Ramps will be constructed on the same side of the channel as the maintenance and access road. The maintenance and access road shall be offset around the ramp to provide for continuity of the road full length of the channel.

The downhill direction of the ramp should be oriented downstream.

Section 6-8(E)(6) Street Crossings

Street crossings or other drainage structures over a concrete lined channel should be of the all weather type (i.e. bridges or concrete box culverts). Crossing structures should conform to the channel shape so that they disturb the flow as little as possible.

The channel section should be continuous through crossing structures; however, when this is not practicable, hydraulic disturbance shall be minimized,
and crossing structures should be suitably isolated from the channel lining with appropriate joints.

Street crossing structures shall be capable of passing the 100-year frequency design storm flows.

Channel lining transitions at bridges and box culverts should conform to the provisions for transitions hereinafter provided. Drainage structures having a minimum clear height of 8 feet and being of sufficient width to pass maintenance vehicles may result in minimizing the number of required channel access ramps. Unless otherwise specifically authorized by the City Engineer, all crossing structures must have at least 6.0 feet of clear height.

Section 6-8(E)(7) Subdrainage

Concrete lined channels to be constructed in areas where the groundwater table is greater than 2 feet below the channel invert do not require weep holes or other subdrainage systems.

Where the groundwater table is within 2 feet or less of the channel bottom, special subdrainage systems shall be provided, as necessary, to relieve water pressures from behind the channel lining.

Section 6-8(E)(8) Channel Bed Width

For publicly maintained soft- or hard-bottomed channels, the minimum channel bed width is 10 feet.

Part 6-8(F) Miscellaneous Hydraulic Calculations

Section 6-8(F)(1) Hydraulic Jump

6-8(F)(1)(i) Location

If the water surface is computed until critical depth is reached from a downstream control and from an upstream control, a hydraulic jump will occur between these controls. The top of the jump will be located at the point where pressure and momentum, calculated for upper and lower stages, are equal.

6-8(F)(1)(ii) Length

The length of a jump is defined as the distance between the point where roller turbulence begins and water becomes white and foamy due to air entrainment and the point downstream where no return flow is observable.

1. For rectangular channels, the length of jump (L) for the range of Froude Numbers between 2 and 20, based on flow depth, is given by the following equation:
Section 6-8(F)(2) Trash Rack Head Loss

The head loss through a trash rack is commonly determined from the following equation:

\[h_{TR} = K_{TR} \left(\frac{V_n}{2g} \right) \]

\[K_{TR} = 1.45 - 0.45 \left(\frac{A_n}{A_g} \right) - \left(\frac{A_n}{A_g} \right)^2 \]

where:
- \(K_{TR} \) = Trash rack coefficient
- \(A_n \) = Net area through bars, in ft.\(^2\)
- \(A_g \) = Gross area of trash rack and supports (water area without trash rack in place), in ft.\(^2\)
- \(V_n \) = Average velocity through the rack openings \((A/A_n) \), ft/sec

For maximum head loss, assume that the rack is clogged, thereby reducing the value of \(A_n \) by 50%.

Section 6-8(F)(3) Side Channel Weirs

The City or AMAFCA may require a side channel spillway inlet for drains with an outlet into their facilities. The procedure developed by the U.S. Corps of Engineers for designing a side channel spillway is as follows:

1. Set the top of that part of the main channel wall at the location of the proposed spillway about 6 inches above the computed water surface level in the main channel.
2. Determine the length of spillway (L) required to discharge the design inflow of the side inlet by the following equation, in which the maximum value of \(H \) is not greater than 1½ feet.

EQUATION 6.36 \[L = 6.9 \left(D_2 - D_1 \right) \]

where:
- \(D_1 \) and \(D_2 \) are the sequent depths.

2. For trapezoidal channels, the length of jump (L) is given by the following equation:

EQUATION 6.37 \[L = 5D_2 \left(1 + 4 \left(\frac{t_2 - t_1}{t_1} \right)^{0.5} \right) \]

where:
- \(t_1 \) = width of water before jump
- \(t_2 \) = width of water after jump

<table>
<thead>
<tr>
<th>Side Slope</th>
<th>(L/(D_2-D_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:1</td>
<td>44.2</td>
</tr>
<tr>
<td>1:1</td>
<td>33.5</td>
</tr>
<tr>
<td>1/2:1</td>
<td>22.9</td>
</tr>
<tr>
<td>Vertical</td>
<td>6.9</td>
</tr>
</tbody>
</table>

TABLE 6.8.21 Length of a Jump

EQUATION 6.38 \[h_{TR} = K_{TR} \left(\frac{V_n}{2g} \right) \]

For maximum head loss, assume that the rack is clogged, thereby reducing the value of \(A_n \) by 50%.
EQUATION 6.40 \[L = \frac{Q}{CH^{1/2}} \]

where:
- \(Q \) = discharge of side inlet, in c.f.s.
- \(C \) = weir coefficient
- \(H \) = depth of water over the crest of the side inlet in feet

3. Determine the depth of flow in the approach side channel at the upstream end of the spillway.
4. Set the side channel invert elevation at the upstream end of the spillway at an elevation below the spillway crest a distance equal to the water depth as determined in Subsection 3 above, minus the assumed head on the spillway.
5. Set the side channel invert slope equal to the spillway and the main channel water-surface slopes.
6. Using trial and error, determine the width of the side channel required to maintain a constant depth of flow at several points downstream from the upstream end of the spillway. The discharge at each of these points is assumed to be the difference between the initial discharge and the amount spilled over the spillway as computed by \(CLH^{1/2} \), in which \(C \) is 3.087 and \(H \) is equal to the critical depth over the crest (neglecting the velocity of approach).
7. Plot the widths determined for the side channel on the channel plan and approximate a straight or curved line through them to locate the point of intersection of this line and the main channel wall.
8. If the length between the assumed point at the upstream end of the spillway and this intersection point is equal to the length determined in Subsection 2 above, the angle at the intersection indicates the required convergence for the side channel.
9. From the final layout, determine the width and recompute the water surface in the side channel for the final design. The discharge over each portion of the spillway is calculated by using the average head between the two points considered.

Part 6-8(G) Channel Treatment Selection Guidelines

Section 6-8(G)(1) General

The selection of a treatment type or combination of treatment types for a channel within the Albuquerque area should be based on a rational assessment of the needs of the community as they relate to:

Section 6-8(G)(2) Flood Control

The magnitude of the flood control requirements and the consequences of a system failure should be considered foremost in the treatment selection process.
Section 6-8(G)(3) Drainage

The existing and future land uses, the specific on- and off-site drainage treatments, and watershed topography should each be evaluated in terms of their impacts on the channel system. The unmitigated hydrologic effects of urbanization generally include higher peak runoff rates from small frequent storms, more frequent runoff events, cleaner runoff (with respect to sediment), and increased annual runoff volumes.

Section 6-8(G)(4) Maintenance

The selection of a channel treatment type should include analyses of both short- and long-term maintenance. While maintenance efforts will vary between treatment types, all facilities should be able to function through 1 runoff event with no maintenance, through 1 flood season with very little maintenance, and from season to season with regular, but minimal, maintenance requirements.

Section 6-8(G)(5) Rights-of-Way and Easements

The cost of land and the availability of rights-of-way or easements should be considered in the channel treatment selection process. Rights-of-way and easements should be appropriately located, aligned, and sized for the particular treatment type. Some treatment types may require significant construction easements, but much smaller permanent rights-of-way or easements. The likelihood of replacement or reconstruction should be considered when channel treatment selection is balanced against the configuration of permanent rights-of-way and easements.

Section 6-8(G)(6) Safety and Fence Requirements

The selection of a channel treatment type should be based on any special safety considerations dictated by adjacent or nearby land uses. Whenever a required channel treatment is not compatible with adjacent land uses, adequate safety hazard mitigation measures should be incorporated into the design and construction of the facilities. Channels with vertical walls of 30 inches or greater will require a barrier or fence. Minimum fence or barrier height shall be 42 inches.

Section 6-8(G)(7) Upstream and Downstream Channel Treatments

The treatment selection process for each channel reach should include an analysis of the impacts of existing and planned upstream and downstream treatment types on a proposed treatment type and in turn the effects of the proposed treatment on existing and planned upstream and downstream treatments.

Section 6-8(G)(8) Initial Cost and Life Expectancy

The initial construction costs of various channel treatment types is, and will always be, one of the most heavily weighted factors in the selection process; however, when viewed on a larger scale, maintenance and replacement costs can be more important to the total costs of providing adequate levels of protection over time, and therefore must be considered in the planning, design, and construction of channel treatment measures.
Section 6-8(G)(9) Joint Use Possibilities

The opportunities for including other uses, such as transportation and utility corridors, open space, or recreation in the design should be considered when selecting a treatment type and when establishing rights-of-way and easements. The inclusion of any other uses must be self-supporting financially and in no way impair or delay the implementation of the drainage and flood control function of the facilities.

Section 6-8(G)(10) Sediment Transport and Channel Stability

Moving water has the ability to transport sediment. The amount of sediment per unit of water that can be transported is related to flow depth, velocity, temperature, vertical and horizontal channel alignment, the amount of sediment available, the size and density of the sediment available, and many other minor but sometimes important parameters. A channel’s stability can be defined in terms of its ability to function properly during a flood event without serious aggradation and/or degradation and to continue to operate reliably without extraordinary maintenance and repairs. While channel stability problems are largely associated with earthen channels and channels lined with flexible materials, supercritical channels lined with concrete are not immune. Any time a downstream channel reach has a lower sediment capacity than some upstream reach, there is a potential for sediment accumulation.

Detailed qualitative analyses must be performed for any design requiring construction in a major arroyo.

Section 6-8(G)(11) Channel Stability

A stable earth-lined channel is defined for the purposes of design as one in which neither degradation or aggradation is occurring at such a rate that it causes a continuous and serious maintenance problem. Channel degradation can cause extensive damage to bridges and other crossing structures by undermining their foundations. Channel aggradation, on the other hand, results in reduced channel and crossing structure capacities and, therefore, an increased frequency of flooding.

<table>
<thead>
<tr>
<th>TABLE 6.8.22 Channel Stability Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>An increase or decrease in:</td>
</tr>
<tr>
<td>Effect in the channel:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Increase</td>
</tr>
<tr>
<td>Flow Rate</td>
</tr>
<tr>
<td>Flow Velocity</td>
</tr>
<tr>
<td>Flow Frequency</td>
</tr>
<tr>
<td>Flow Duration</td>
</tr>
<tr>
<td>Flow Depth</td>
</tr>
<tr>
<td>Sediment Reaching the Channel</td>
</tr>
<tr>
<td>Sediment Particle Size</td>
</tr>
<tr>
<td>Streambed Material Size</td>
</tr>
<tr>
<td>Channel Vegetation</td>
</tr>
</tbody>
</table>
Section 6-8(G)(12) **Channel Construction Details**

6-8(G)(12)(i) **Earthwork**

All of the following shall be compacted to at least 90% of maximum density as determined by standard test method ASTM D-1557 (modified Proctor):

1. The 12 inches of subgrade immediately beneath concrete lining (both channel bottom and side slopes).
2. Top 12 inches of maintenance road (either as subgrade or finished roadway if unsurfaced).
3. Top 12 inches of earth surface within 10 feet of concrete channel lip. It is particularly important to compact earth immediately adjacent to concrete lip. This area is sometimes overlooked when forms are removed.
4. All fill material.

6-8(G)(12)(ii) **Concrete Materials**

1. Cement type: ILA or I-IILA
2. Minimum cement content: 5.5 sacks/c.y.
3. Maximum water-cement ratio: 0.53 (6 gals. per sack)
4. Maximum aggregate size: 1½ inches
5. Air content range: 4-7%
6. Maximum slump: 3 inches
7. Minimum compressive strength (f_c): 3000 psi at 28 days
8. Class F Fly ash meeting the requirements of standard test method ASTM C618, proportioned in the mix at a 1:4 ratio of fly ash to cement weight.
9. Steel reinforcement grade 60 deformed bars. Wire mesh shall not be used.

6-8(G)(12)(iii) **Concrete Lining**

1. Bottom width: 10 feet minimum
2. Side Slopes: 1:2 (vertical to horizontal) maximum slope
3. Concrete lining thickness:
 a. All concrete lining shall have a minimum thickness of 6 inches.
 b. The lining shall be thickened to 7 inches on the channel bottom and the lower 18 inches of the side slope.
 c. When design velocity exceeds 30 ft/sec, the bottom section shall be thickened to 8 inches.

6-8(G)(12)(iv) **Concrete Finish**

The surface of the concrete lining shall be provided with a wood float finish. Precautions shall be taken to guard against excessive working or wetting of finish.

6-8(G)(12)(v) **Concrete Curing**

All concrete shall be cured by the application of liquid membrane-forming curing compound (white pigmented) immediately upon completion of the concrete finish.
6-8(G)(12)(vi) Steps

Ladder-type steps shall be installed at locations suitable for rescue operations along the channel but not farther than 700 feet apart on both sides of the channel. The bottom rung shall be placed approximately 12 inches vertically above channel invert.

6-8(G)(12)(vii) Joints

1. Insofar as feasible, channels should be continuously reinforced without transverse joints; however, expansion joints may be installed where new concrete lining is connected to a rigid structure or to existing concrete lining that is not continuously reinforced.
2. The preferred design avoids longitudinal joints; however, if included, longitudinal joints should be on side slope at least 1 foot vertically above channel invert.
3. All joints shall be designed to prevent differential displacement and shall be watertight.
4. Construction joints are normally appropriate at the end of a day’s run, where lining thickness changes, and any time concrete placement stops for more than 45 minutes.

6-8(G)(12)(viii) Reinforcing Steel for Continuously Reinforced Channels

1. Ratio of longitudinal steel area to concrete area
 \[\frac{A_{\text{long}}}{A_{c\text{long}}} > 0.005 \]
2. Ratio of transverse steel area to concrete area\(^3\)
 \[\frac{A_{\text{transv}}}{A_{c\text{transv}}} > 0.0025 \]
3. For steel placement, the temperature and shrinkage steel shall be placed in the top of the middle third of the slab, but at least 3 inches from the bottom of the slab. Longitudinal steel shall be on tip of the transverse steel.

ARTICLE 6-9 STREET HYDRAULICS

A secondary use of the street network is the conveyance of stormwater runoff. This secondary use must always be subsidiary to the primary function of streets, which is the safe conveyance of people and vehicles. The goals of street hydraulic design are all of the following:
1. To provide an economical means of transporting stormwater runoff.
2. To ensure that the safety and convenience of the public are preserved.
3. To prevent stormwater runoff, once collected by the street system, from leaving the street right-of-way except at specially designated locations.

\(^3\) In (1) and (2) above \(A_s\) = crosssectional area of steel in the direction indicated; \(A_c\) = crosssectional area of concrete in the direction indicated. Longitudinal = long.; transverse = transv.

\(^4\) Inspectors must ensure that this requirement is not violated by contractors during pouring operations.
Part 6-9(A) Street Hydraulic Design Criteria

Street hydraulic design shall meet all of the following criteria:

1. Manning’s roughness coefficient is 0.017.
2. The calculated hydraulic grade line (HGL) for the 100-year design discharge may not exceed curb height and the calculated energy grade line (EGL) shall be contained within the street right-of-way.
3. For a sump condition, the HGL for the 100-year storm may extend to the street right-of-way.
4. For storm events less than or equal to the 10-year design discharge one lane free of flowing or standing water in each traffic direction must be preserved on arterial streets.
5. The product of depth times velocity shall not exceed 6.5 in any location in any street in the event of a 10-year design storm (with velocity calculated as the average velocity measured in feet per second and depth measured at the gutter flowline in feet.)
6. Gutter pan slope should be accommodated in the street cross-section.
7. The street cross section should be shown graphically. T-intersections, radical slope changes and intersections are potential locations for hydraulic jumps when upstream slopes are steeper than critical slope.
8. The assumption of equal flow distribution between gutters on undivided streets and between street sections on divided streets is only valid where its validity can be demonstrated.

Part 6-9(B) Option to Drain the Street to the Median

For arterial streets with a median, the street cross-section may be changed to drain the street in the median rather than to the outside edges of the roadway.

Part 6-9(C) Effects of Hydraulic Jump or Superelevation

When conditions indicate that a hydraulic jump or the effects of superelevation will allow runoff to exceed street hydraulic design criteria, provisions must be made for treatment of the problem. The warping of street sections and the construction of deflector walls for these purposes is prohibited unless specifically authorized by the City Engineer.

Part 6-9(D) Intersection

Intersections and other radical changes in street cross section and slope require special consideration whenever the flow depth/street slope relationship results in flows occurring in the supercritical flow regime. The critical slope line shown on the street rating curves is used to determine on which side of critical depth the flow occurs and if slope or cross section changes will allow the flow to cross through critical depth from supercritical. If flow is likely to cross into
the subcritical flow range, the height and length of hydraulic jump must be demonstrated in the drainage report.

Part 6-9(E) Drainage Design Criteria in Street Design

Street design should meet all of the following drainage design criteria:

1. Nuisance flows will not be conveyed across arterial or collector streets on the surface by valley gutters or other means. Valley gutters conveyance of nuisance flows across major local streets is discouraged. Provisions for storm drainage inlets to meet this requirement must be included at all intersections of major streets (collector or above) as defined by the Long Range Roadway System Plan.

2. The use of quarter point crown (i.e. high point of crown at mid-lane on the high side of street) is preferred over the use of full side-hill street configuration to prevent sheet flow across pavement surfaces.

3. Transitional pavement surface approaches to intersections must be designed to contain nuisance flows within gutter lines; valley gutters must be provided to accommodate flows across intersections suitably, parallel to the major traffic carrying street.

4. Arterials, collectors, and streets providing the only access to subdivisions may not employ at-grade or dip section crossings of arroyos.

5. For local streets, valley gutters will be required to convey flows across the roadway.

6. Dip or overflow sections will only be allowed on local streets with the approval of the Traffic Engineer and the City Engineer.
 a. Dip or overflow sections may only be used where the depth of flow times the velocity of flow over the roadway including sidewalks will not exceed 6.5 for that portion of the 10-year storm runoff crossing over the street. Velocity is to be calculated as the velocity measured in feet per second, and the flow depth is to be measured in feet at the upstream edge of the roadway including the sidewalk.
 b. If dip sections are allowed, vertical alignment must satisfy the requirements in Chapter 7 Transportation Design for sight distances considering the design speed of the street in question.

Part 6-9(F) Inlet Placement and Design Criteria

Inlets should be placed to meet the street flow criteria discussed above. The size and type of inlets should be determined by physical requirements and by grate and flow capacities given in **FIGURE 6.9.9** and **FIGURE 6.2.3**. Criteria used, if other than those recommended in this section, must be cited and accompanied by appropriate calculations. Inlet spacing should be per **FIGURE 6.9.11**.
Section 6-9(F)(1) Standard Inlets

The selection of type, number, and spacing of inlets should be based on FIGURE 6.9.9 through FIGURE 6.9.11 and the following instructions. A bicycle safe grate should be used with Type "A" and Type "C" inlets.

City standard inlets Type "A," Type "B," and Type "C" are combination inlets with both curb opening and grates. Inlet Type "D" is a grate only inlet. Inlet grates tend to accumulate debris and clog. The curb opening both limits the accumulation of debris and offsets lost capacity due to clogging of the grate. Except for certain valley applications, combination inlets should be used. Due to main line clogging, grate only inlets should be used in valley applications where main line pipe diameters are 24 inches or less or where quarter full pipe velocities are less than 2.5 ft/sec.

Type "A" inlets should be used for single-basin applications and as the first basin in a battery of basins. The Type "A" inlet performs the function of sweeping debris of the street upstream of the grate and minimizing clogging. Type "A" inlets are used with standard 8-inch curb and gutter. The capacity is shown in FIGURE 6.9.9.

Type "B" inlets are generally placed downstream of and/or in conjunction with Type "A" inlets on streets other than arterials and collectors. This inlet type has potential to collect substantial runoff when the grate is clean. If Type "B" inlets are used alone, without a Type "A" within 150 feet upstream, the capacity shown in FIGURE 6.9.11 should be reduced by 15% due to clogging. Type "B" inlets are used with standard 8-inch curb and gutter. A bicycle-safe grate shall be used with a Type "B" inlet.

Type "C" inlets are generally placed downstream of and/or in conjunction with Type "A" inlets. If Type "C" inlets are used without a Type "A" within 150 feet upstream, the capacity shown in FIGURE 6.9.9 and FIGURE 6.2.3 should be reduced 15% for clogging. Type "C" inlets are used with standard 8-inch curb and gutter.

Type "D" inlets are generally used on streets with slope greater than 5%, in driveways and in certain valley areas as described above. Type "D" inlets can be used with either standard 8-inch curb and gutter or with mountable curb. The capacity shown in FIGURE 6.9.9 and FIGURE 6.2.3 should be reduced 15% for clogging.

The number of inlets to be connected in series should not exceed 2. If the connection of more than 2 catch basins in series is unavoidable, consideration should be given to designing a lateral drain.

The capacity of the lateral storm drain is to be considered when placing inlets as the grate capacity may be limited by the lateral storm drain.

If there is a conflict with an existing Type "A" or Type "C" inlet with a proposed plan, the following criteria should apply, as relevant:
1. The conversions of Type "A," Type "C," or Type "D" inlets will be allowed if a throated inlet is within 150 feet upstream.
2. If there is no throated inlet within 150 feet upstream, the conversions of Type "A," Type "C," or Type "D" inlets will be allowed if a throated inlet is added within 150 feet upstream.
3. The inlet may be removed and replaced with an inlet outside the conflict zone.
4. The inlet may be removed and replaced with a Type "Double D" inlet.

The engineer should verify there is adequate clearance for proposed driveways near inlets. If an apparent conflict exists, the proposed driveways near inlets should be shown on the grading plan and shall be shown on the DRC construction plans.

If there is a conflict with a Type "B" or cattle guard inlet, the inlet is to be removed and replaced outside the conflict zone.
FIGURE 6.9.9 Grate Capacities for Types "A," "C," and "D"
FIGURE 6.9.10 Grate Capacities for Types "Double A," "Double C," and "Double D"
FIGURE 6.9.11 Grating Capacities for Type "B"
Section 6-9(F)(2) Cattle-guard and Median Inlets

Standard drawings are available for cattle-guard and median inlets. Figures presented earlier in this section were for the capacity of Type "A," Type "C," and Type "D" inlets. The engineer shall provide calculations for capacity when proposing cattle-guard and median inlets. A bicycle safe grate shall be used with a cattle-guard inlet.

Section 6-9(F)(3) Publicly-Maintained Inlets to Be Located Within Street Rights-of-Way

Inlets will be located within street rights-of-way unless otherwise approved by the City Engineer. Inlets located outside of street rights-of-way require an easement that defines beneficiary and maintenance responsibilities.
Construction of inlets that will be located outside constructed streets to accommodate future street widenings is discouraged; however, the lateral storm drain stub shall be constructed past the permanent pavement section.

Inlets to be constructed off the paved portion of the roadway but within the street property lines must be made operable by grading the roadway to allow stormwater to flow to the inlet. The area around the inlet shall be adequately protected from erosion and sedimentation.

Section 6-9(F)(4) Inlets in a Sump Condition

Sump designs should normally be limited to local streets and only in those situations where terrain or grading considerations warrant their use. When specifying a sump inlet, the designer shall ensure that surrounding properties are protected from the occurrence of inlet and lateral clogging by demonstrating that 1 of the following emergency backup conditions exist:

1. The design storm peak flow rate will release to either a public right-of-way or public easement without rising above any adjacent structure pad elevations.
 a. When relying on public easements across private property for this option, the easement creating the encumbrance shall specify that the easement is a Public Drainage Easement and that no structural improvements that would interfere with conveyance or storage of water shall be allowed. Any surface modification within the drainage easement will require an encroachment agreement from the City.
 b. If the subdivision or street network design does not lend itself to releasing the drainage as stated above, it is acceptable to double the number of sump inlets. The additional inlets are an emergency overflow in case the inlet required to carry the peak flow is clogged.

2. Sufficient storage is available within a combination of public right-of-way and public easement to hold 100% of the design event volume, without inflicting damage to structures.

Part 6-9(G) Inlet Lateral and Connector Pipe Capacity

When designing inlets to capture stormwater from the street, the capacity of the lateral (pipe connecting inlet to main line) pipe and the capacity of connector (inlet to inlet) pipes must be determined. Calculations are to be included in the drainage report or plan.

The capacity can be shown with gravity flow calculated using Manning's equation (EQUATION 6.66) or by pressure flow calculated using an acceptable modelling program. The program must meet all of the following criteria to be accepted:

1. Be able to produce an illustration of the HGL and EGL.
2. Have the ability to include major and minor losses.
3. Meet technical requirements of this chapter. If requested by the City Engineer, the design engineer shall provide a description of how the model meets the requirements of this chapter.
Section 6-9(G)(1) Connector and Lateral Pipe Criteria

Connector and lateral pipes shall be provided that meet the following criteria:
1. The minimum diameter of connector and lateral pipes is 18 inches.
2. The horizontal alignment of lateral and connector pipes must not contain angle points or bends, unless approved by the City Engineer.
3. Lateral connections to the main line are preferred at manholes or junction structures. Exceptions to this criterion must be approved by the City Engineer. Lateral pipes connecting to a main line from both sides of a street (not using a manhole) should be offset 8 feet or more at the main line and require City Engineer approval.
4. The inlet spacing shall be a minimum of 30 feet center of downstream grate to center of upstream grate.
5. Catch basin connector pipes shall outlet at the downstream end of the catch basins, unless prevented by field conditions.

In this section, downstream refers to the direction of the gutter slope at the catch basin.

Section 6-9(G)(2) Consideration of Existing Drainage Systems During Construction

Existing drainage systems that are not required to carry any portion of the design Q of a proposed system may be designated to be abandoned in place upon completion of the proposed drain. Such existing drainage systems should not be sealed or removed before completion of the proposed system, if needed to carry off stormwater during the construction period. It is the designer’s responsibility to ascertain the necessity of maintaining existing drainage systems in place.

Existing street or sidewalk culverts may be designated to have the interfering portions removed and the inlets sealed, or the culverts may be kept in operation and connected to the storm drain or to the back of a proposed catch basin. If the culvert is to be connected, a structural detail should be provided. Refer to the City Engineer for instructions.

Existing street or sidewalk culverts that do not interfere with construction should be maintained in place.

If the existing culvert is located in or is required to drain a sump, the designer should make every effort to avoid removal of the culvert, especially in instances where the capacity of the proposed drain is less than that required for the correct design frequency.
ARTICLE 6-10 CRITERIA FOR HYDRAULIC DESIGN OF CLOSED CONDUITS

Part 6-10(A) General Hydraulic Criteria

Closed conduit sections (pipe, box or arch sections) will be designed as flowing full and, whenever possible, under pressure except when the following conditions exist:

1. In some areas of high sediment potential, there is a possibility of stoppage occurring in drains. In situations where sediment may be expected, the City Engineer must be consulted for a determination of the appropriate bulking factor.
2. In certain situations, open channel sections upstream of the proposed closed conduit may be adversely affected by backwater.

If the proposed conduit is to be designed for pressure conditions, the HGL shall not be higher than the ground or street surface, or encroach on the same in a reach where interception of surface flow is necessary; however, in those reaches where no surface flow will be intercepted, an HGL that encroaches on or is slightly higher than the ground or street surface will be acceptable provided that pressure manholes exist or will be constructed.

Part 6-10(B) Hydraulic Grade Line (HGL) Calculations

Section 6-10(B)(1) Determination of Control Water Surface Elevation

A conduit to be designed for pressure conditions may discharge into any of the following:

1. A body of water such as a detention reservoir.
2. A natural watercourse or arroyo.
3. An open channel, either improved or unimproved.
4. Another closed conduit.

The controlling water surface elevation at the point of discharge is commonly referred to as the control and, for pressure flow, is generally located at the downstream end of the conduit. If flow becomes unsealed, the control may be at the first grade break upstream of the point where unsealing occurs or, under certain conditions, may be farther upstream.

The following two (2) types of controls will ensure pressure flow at the outlet of a conduit on a mild slope.

1. Control elevation above the soffit elevation. In such situations, the control must conform to the following criteria:
 a. In the case of a conduit discharging into a detention facility, the control is the 10-year water surface reservoir elevation.
b. In the case of a conduit discharging into an open channel, the control is the 10-year design water surface elevation of the channel.

c. In the case of a conduit discharging into another conduit, the control is the design HGL elevation of the outlet conduit immediately upstream of the confluence.

2. Control elevation at or below the soffit elevation. The control is the soffit elevation at the point of discharge. This condition may occur in any one of the four situations described in the beginning of this Section 6-10(B)(1).

In case (a) or (b) above, the possibility of having flow out of manholes or inlets due to discharge elevations at the 100-year level must be investigated and appropriate steps taken to prevent its occurrence.

Part 6-10(C) Instructions for Hydraulic Calculations

Most procedures for calculating HGL profiles are based on the Bernoulli equation. This equation can be expressed as follows:

\[
\frac{V_1^2}{2g} + D_1 + S_o L = \frac{V_2^2}{2g} + D_2 + S_f L + h_{minor}
\]

where:

- \(D\) = Vertical distance from invert to HGL
- \(S_o\) = Invert slope
- \(L\) = Horizontal projected length of conduit
- \(S_f\) = Average friction slope between Sections 1 and 2
- \(V\) = Average velocity (g/A)
- \(h_{minor}\) = Minor head losses

Minor losses have been included in the Bernoulli equation because of their importance in calculating HGL profiles and are assumed to be uniformly distributed in the above figure.

The following equation results when specific energy (E) is substituted for the quantity \(V^2/2g + D\) in the above equation and the result rearranged:

\[
EQUATION 6.41 \quad L = \frac{E_2 - E_1}{S_o - S_f}
\]
The above is a simplification of a more complex equation and is convenient for locating the approximate point where pressure flow may become unsealed.

Section 6-10(C)(1) Head Losses

6-10(C)(1)(i) Friction Loss

Friction losses for closed conduits carrying stormwater, including pump station discharge lines, will be calculated from the Manning equation or a derivation thereof. The Manning equation is commonly expressed as follows:

\[
Q = \frac{1.486 A R^{2/3}}{n} S_f^{1/2}
\]

where:
- \(Q \) = Discharge, in c.f.s.
- \(n \) = Roughness coefficient
- \(A \) = Area of water normal to flow in ft.²
- \(R \) = Hydraulic radius
- \(S_f \) = Friction slope

When rearranged into a more useful form:

\[
S_f = \left[\frac{Q n}{1.486 A R^{2/3}}\right]^{2/3} = \left[\frac{Q}{K}\right]^2
\]

where:
- \(K = \frac{1.486 A R^{2/3}}{n} \)

The loss of head due to friction throughout the length of reach (L) is calculated as follows:

\[
h_r = S_f L = \left[\frac{Q}{K}\right]^2 L
\]

The value of \(K \) is dependent upon only 2 factors: (1) the geometrical shape of the flow cross section as expressed by the quantity \(A R^{2/3} \) and (2) the roughness coefficient \(n \). The values of \(n \) (i.e. Manning’s Roughness Coefficient) are shown in Table 6.16.26.

6-10(C)(1)(ii) Transition Loss

Transition losses shall be calculated from the equations shown below.

For a Contraction (increasing velocity):

\[
EQUATION 6.43 \quad H_f = K_e /2(V_2 - V_1)^2 /2g
\]

For an Expansion (decreasing velocity):

\[
EQUATION 6.44 \quad H_f = K_e (V_2 - V_1)^2 /2g
\]
These equations are applicable when no change in Q occurs and where the horizontal angle of divergence or convergence (\(\phi/2\)) between the two sections does not exceed 5 degrees 45 minutes.

FIGURE 6.10.14 Contractions

Deviations from the above criteria must be approved by the City Engineer. When such situations occur, the angle of divergence or convergence (\(\phi/2\)) may be greater than 5 degrees 45 minutes; however, when it is increased beyond 5 degrees 45 minutes, the above equation will give results for \(h_f\) that are too small, and the use of more accurate methods, such as the Gibson method should be used, wherein \(K_e = 3.50(\tan \phi/2)^{1.22}\).

6-10(C)(1)(iii) Junction Losses

In general, junction losses are calculated by equating pressure plus momentum through the confluences under consideration. This can be done by using either the P + M method or the Thompson equation. Both methods are applicable in all cases for pressure flow and will give the same results.

For the special case of pressure flow with \(A_1 = A_2\) and friction neglected,

\[
EQUATION \ 6.45 \ h_j = \frac{V_2^2}{2g} - \frac{V_1^2}{2g} - (2A_3/A_2) \left(\frac{V_3}{2g}\right) \cos \phi
\]

FIGURE 6.10.15 Junction Losses

6-10(C)(1)(iv) Manhole Loss

Manhole losses will be calculated from the equation shown below. Where a change in pipe size and/or change in Q occurs, the head loss will be calculated in accordance with Article 6-7 Downstream Capacity and Off-site Flows, and Article 6-8 Engineered Channels and Natural Arroyos, preceding.

\[
EQUATION \ 6.46 \ H_{mh} = 0.05(V^2/2g)
\]
6-10(C)(1)(v) Bend Loss

Bend losses should be included for all closed conduits, those flowing partially full as well as those flowing full. Bend losses will be calculated from the following equation:

\[
EQUATION\ 6.47 \quad H_b = K_b \left(\frac{V^2}{2g} \right)
\]

where:
\[
K_b = 0.20 \left(\frac{\alpha}{90^\circ} \right)^{0.5}
\]

where:
\[
\alpha = \text{central angle of bend in degrees}
\]

6-10(C)(1)(vi) Exit Loss

Exit loss is the loss when storm drains daylight into a pond or channel, which can be calculated using the following equation:

\[
EQUATION\ 6.48 \quad h_{exit} = 0.25 \left(\frac{V^2}{2g} \right)
\]

6-10(C)(1)(vii) Transition to Smaller Pipe Size

As a general rule, storm drains will be designed with sizes increasing in the downstream direction; however, when studies indicate that it may be advisable to decrease the size of a downstream section, the conduit may be decreased in size with the approval from the City Engineer.

Part 6-10(D) Design Requirements for Maintenance and Access

Section 6-10(D)(1) Manholes

6-10(D)(1)(i) Spacing

Manholes should be spaced at intervals of approximately 450 feet. Where the proposed conduit is less than 30 inches in diameter and the horizontal alignment has numerous bends or angle points, the manhole spacing should be reduced to approximately 300 feet.

The spacing requirements shown above apply regardless of design velocities. Deviations from the above criteria are subject to City Engineer approval.

6-10(D)(1)(ii) Location

Manholes should not be located in street intersections, especially when one or more streets are heavily traveled. In situations where the proposed conduit is to be aligned both in easement and in street right-of-way, manholes should be located in street right-of-way, wherever possible.

Manholes should be located as close to changes in grade as feasible when the following conditions exist:
1. When the upstream conduit has a steeper slope than the downstream conduit and the change in grade is greater than 10%, sediment tends to deposit at the point where the change in grade occurs.
2. When transitioning to a smaller downstream conduit due to an abruptly steeper slope downstream, sediment tends to accumulate at the point of transition.
3. When the design flow in a pipe flowing full has a velocity of 20 ft/sec or greater, or is supercritical in a partially full pipe, the total horizontal angle of divergence or convergence between the walls of the manhole and its centerline should not exceed 5°45’.

Section 6-10(D)(2) Pressure Manholes

A pressure manhole shaft and a pressure frame and cover will be installed in a pipe or box storm drain whenever the design water surface is more than 0.2 feet above the ground surface. Pressure manholes should only be used when a non-pressure manhole solution is unavoidable.

Section 6-10(D)(3) Special Manholes

Special 36-inch diameter manholes or vehicular access structures will be provided when required. The need for access structures will be determined by the City Engineer during the review of preliminary plans.

Section 6-10(D)(4) Deep Manholes

A manhole shaft safety ledge will be provided in all instances when the manhole shaft is 20 feet or greater in depth. Installation will be in accordance with City Engineer requirements.

Section 6-10(D)(5) Bends

Field fabricated bends are not allowed. Bends must be pre-manufactured and have access within 3 feet for pipes smaller than 36 inches and within 8 feet for larger pipes. Construction plans must specify the station, offset, elevation, and deflection angle of each bend. Specifications must be included with the drainage calculations submitted to hydrology prior to approval of the work order plans and the specifications must be on the plans. Bends must conform to manufacturer specifications as submitted.

Section 6-10(D)(6) Curvilinear Storm Drain

Curvilinear storm drains are allowed but should be avoided where possible. Only horizontal curves will be allowed, vertical curves are not allowed. Only one radius may be used between manholes so a manhole must be located at points of reverse curvature and/or compound curvature, but a tangent is allowed on both sides of a curve provided that other manhole spacing criteria is also adhered to. Minimum slopes shall be increased by 10% for curvilinear storm drains and no grade breaks will be allowed between manholes. Pipe and gasket manufacturer specifications clearly identifying pipe length, maximum deflection angle, and minimum radius must be included with the drainage calculations submitted to hydrology prior to approval of the work order plans and must be specified on the plans. Curvilinear storm drains must conform to manufacturer specifications as submitted.
Part 6-10(E) Closed Conduit Pipe Size and Slope

Section 6-10(E)(1) Minimum Pipe Size

In cases where the conduit may carry significant amounts of sediment (greater than 8%), the minimum diameter of main line conduit will be 36 inches. In situations where sediment may be expected, the City Engineer will be consulted to determine the applicability of sediment criteria.

Section 6-10(E)(2) Minimum Slope

Unless otherwise approved by the City Engineer, the minimum slope for main line conduit will be .004 (.40%). Minimum flow velocity for the 10-year design flow will be 3 ft/sec.

Part 6-10(F) Earthen Channels to Storm Drain Structures

An inlet structure will be provided for storm drains located in natural channels. The structure should generally consist of a headwall, wingwalls to protect the adjacent banks from erosion, and a paved inlet apron or rip-rap.

The apron slope should be limited to a maximum of 2:1. Wall heights should conform to the height of the water upstream of the inlet, and be adequate to protect both the fill over the drain and the embankments. Headwall and wingwall fencing and a protection barrier to prevent public entry will be provided.

If trash and debris are prevalent, barriers consisting of vertical 3-inch or 4-inch diameter steel pipe at 24 inches to 36 inches on centers should be embedded in concrete immediately upstream of the inlet apron. Trash rack designs must have City Engineer approval.

Part 6-10(G) Storm Drain Outlets to Public Earthen Arroyos and Ponds

When a storm drain outlets into an earthen arroyo, an outlet structure will be provided that prevents erosion and property damage. Fencing and a protection barrier will be provided where deemed necessary by the City Engineer.

The outlet structure shall have an end treatment and design that minimizes erosion. The design criteria in this Part 6-10(G) was adapted from Urban Storm Drainage Criteria Manual, Volume 2, from the Mile High Flood District, Denver, Colorado, revised 2017.
Section 6-10(G)(1) Urban Storm Drainage Criteria

Energy dissipation or stilling basin structures are required to minimize scour damage caused by high exit velocities and turbulence at conduit outlets. Similarly, culverts nearly always require special consideration at their outlets. Outlet structures can provide a high degree of energy dissipation and are generally effective even with relatively low tailwater control. Rock protection at conduit outlets is appropriate where moderate outlet conditions exist; however, there are many situations where rock basins are impractical. Reinforced concrete outlet structures are suitable for a wide variety of site conditions. In some cases, they are more economical than larger rock basins, particularly when long-term costs are considered.

All outlet structures must be designed to match the receiving stream conditions. The following steps to determine the appropriate details of an outlet structure include an analysis of the probable range of tailwater and bed conditions that can be anticipated, including degradation, aggradation, and local scour.

Hydraulic concepts and design criteria are provided in this section for an impact stilling basin and adaptation of a baffle chute to conduit outlets. Use of concrete is often more economical due to structure size or local availability of materials. Initial design selection should include consideration of a conduit outlet structure if any of the following situations exist:
1. high-energy dissipation efficiency is required where hydraulic conditions approach or exceed the limits for alternate designs;
2. low tailwater control is anticipated; or
3. site conditions, such as public use areas, where plunge pools and standing water are unacceptable because of safety and appearance, or at locations where space limitations direct the use of a concrete structure.

Longer conduits with large cross-sectional areas are designed for significant discharges and often with high velocities requiring special hydraulic design at their outlets. Here, dam outlet and spillway terminal structure technology is appropriate (U.S.D.I. Bureau of Reclamation 1987). Type II, III or IV stilling basins, submerged bucket with plunge basin energy dissipators and slotted-grating dissipators can be considered when appropriate to the site conditions. For instance, a plunge basin may have applicability where discharge is to a wet detention or retention pond.

6-10(G)(1)(i) Impact Stilling Basins

Most design standards for an impact stilling basin are based on the U.S.D.I. Bureau of Reclamation Type VI basin, often called “impact dissipator” or conduit “outlet stilling basin.” This basin is a relatively small structure that is very efficient in dissipating energy without the need of tailwater. The original hydraulic design reference by Biechly (1971) is based on model studies. Additional structural design details are provided by Aisenbrey, et al. (1974) and Peterka (1984).

The type VI basin was originally designed to operate continuously at the design flow rate; however, it is applicable for use under the varied flow conditions of stormwater runoff. The use of this outlet basin is limited only by structural and economic considerations.
Energy dissipation is accomplished through the turbulence created by the loss of momentum as flow entering the basin impacts a large overhanging baffle. At high flow, further dissipation is produced as water builds up behind the baffle to form a highly turbulent backwater zone. Flow is then redirected under the baffle to the open basin and out to the receiving channel. A check at the basin end reduces exit velocities by breaking up the flow across the basin floor and improves the stilling action at low to moderate flow rates.

The generalized, and slightly modified, U.S.D.I. Bureau of Reclamation Type IV Impact Basin design configuration is shown in FIGURE 6.10.16 (Figure HS-14 in USDCM, 2008 edition). This configuration consists of an open concrete box attached directly to the conduit outlet.
FIGURE 6.10.16 General Design Dimensions for U.S.D.I. Bureau of Reclamation Type VI Impact Sill Basin

The width, W, is a function of the Froude number and can be determined using FIGURE 6.10.17 (Figure HS-15 in USDCM, 2008 edition). The sidewalls are high enough to contain most of the splashing during high flows and slope down to form a transition to the receiving channel. The inlet pipe is vertically aligned with an overhanging L-shaped baffle such that the pipe invert is not lower than the bottom of the baffle. The end check height is equal to the height under
the baffle to produce tailwater in the basin. The alternate end transition (at 45 degrees) is recommended for grass-lined channels to reduce the downstream scour potential.

FIGURE 6.10.17 Basin Width Diagram for U.S.D.I. Bureau of Reclamation Type VI Impact Sill Basin

The impact basin can also be adapted to multiple pipe installations. Such modifications are discussed later in *Subsection 6-10(G)(1)(i)(b)*, but it should be noted that modifications to the design may affect the hydraulic performance of the structure. Model testing of designs that vary significantly from the standard is recommended.

6-10(G)(1)(i)(a) Modified Impact Basins for Smaller Outlets

For smaller pipe outlets a modified version of the U.S.D.I. Bureau of Reclamation Type IV Impact Basin is recommended. **FIGURE 6.10.18** (Figure HS-16a in USDCM, 2008 edition) provides a design layout for circular outlets ranging in size from 18-inches to 48-inches in diameter, and **FIGURE 6.10.19** (Figure HS-16b in USDCM, 2008 edition) provides a design layout for pipes 18-inches in diameter and smaller. The latter was added for primary use as
an outlet energy dissipator upstream of forebays of small extended detention basins, sand filters, and other structural best management practices (BMP) requiring energy dissipation at the end of the pipe delivering water to the BMP facility.
NOTE:
1. Design of reinforcing steel is the responsibility of the design engineer. Reinforce to withstand water earth pressures.
2. When discharging into channel and not forebay install Type M buried soil rip-rap for a distance of 3D downstream of structure.

FIGURE 6.10.18 Modified Impact Sill Basin for Conduits 18-48 Inches in Diameter

Elevation
Varieties to match slope
Adjust slopes to match top of forebay wall or berm

Plan

Profile

Finished Slope
Eliminate sills when discharging into forebay or into channel without a trickle channel.

Trickle channel when needed. Width varies per D/S design.

Buried Soil Rip-rap

Eliminate sills when discharging into forebay or into channel without a trickle channel.

Trickle channel or forebay invert

NOTE:
1. Design of reinforcing steel is the responsibility of the design engineer. Reinforce to withstand water earth pressures.
2. When discharging into channel and not forebay install Type M buried soil rip-rap for a distance of 3D downstream of structure.
Unlike the Type IV Impact Basin, the modified basins do not require sizing for flow under normal stormwater discharge velocities recommended for storm sewers in this manual; however, their use is limited to exit velocities of 18 ft/sec or less. For larger conduits and higher exit velocities, it is recommended that the standard Type IV Impact Basin be used instead.
6-10(G)(1)(i)(b) Multiple Conduit Installations

Where two or more conduits of different sizes outlet in proximity, a composite structure can be constructed to eliminate common walls. This can be somewhat awkward since each basin “cell” must be designed as an individual basin with different height, width, etc. Where possible, a more economical approach is to combine storm sewers underground at a manhole or vault and bring a single combined pipe to the outlet structure.

When using a Type IV impact basin for 2 side-by-side pipes of the same size, as shown in FIGURE 6.10.16 (Figure HS-14 in USDCM, 2008 edition), the two pipes may discharge into a single basin. If the basin’s design width of each pipe is W, the combined basin width for two pipes would be 1.5W. When the flow is different for the two conduits, the design width W is based on the pipe carrying the higher flow. For a modified impact basin, as shown in FIGURE 6.10.18 (Figure HS-16a in USDCM, 2008 edition), add 1/2D space between the pipes and to each outside pipe edge when two pipes discharge into the basin to determine the width of the headwall and extend the width of the impact wall to match the outside edges of the two pipes. The effect of mixing and turbulence of the combined flows in the basin has not been model tested as of this writing.

The remaining structure dimensions are based on the design width of a separate basin W. If the two pipes have different flow, the combined structure is based on the higher Froude number when designing the Type IV basins. Use of a handrail is recommended around the open basin areas where safety is a concern. Access control screens or grating where necessary are a separate design consideration. A hinged rack is an acceptable alternative.

6-10(G)(1)(i)(c) General Design Procedure for Type IV Impact Basin

1. Determine the design hydraulic cross-sectional area just inside the pipe, at the outlet. Determine the effective flow velocity, V, at the same location in the pipe. Assume D=(A_sect)^0.5 and compute the Froude number=V/(gD)^0.5.
2. The entrance pipe should be turned horizontally at least one pipe diameter equivalent length upstream from the outlet. For pipe slopes greater than 15 degrees, the horizontal length should be a minimum of two pipe diameters.
3. Determine the basin width, W, by entering the Froude number and effective flow depth into FIGURE 6.10.17 (Figure HS-15 in USDCM, 2008 edition). The remaining dimensions are proportional to the basin width according to FIGURE 6.10.16 (Figure HS-14 in USDCM, 2008 edition). The basin width should not be oversized since the basin is inherently oversized for less than design flows. Larger basins become less effective as the inflow can pass under the baffle.
4. Structure wall thickness, steel reinforcement, and anchor walls (underneath the flow) should be designed using accepted structural engineering methods. Note that the baffle thickness, tb, is a suggested minimum. It is not a hydraulic parameter or a substitute for structural analysis. Hydraulic forces on the overhanging baffle may be approximated by determination of the hydraulic jet force at the outlet:
\textit{Equation 6.49} \quad F_j = 1.94V_{\text{out}} Q_{\text{des}} \quad \text{(force in pounds)}

\textbf{where:}

- Q_{des} = maximum design discharge (cfs)
- V_{out} = velocity of the outlet jet (ft/sec)

5. Type “M” rock rip-rap should be provided in the receiving channel downstream of the concrete structure for a minimum distance equal to the basin width. The depth of rock should be equal to the check height or at least 2.0 feet. Rock may be buried to finished grades and planted as desired.

6. The alternate end check and wingwall shown in \textit{FIGURE 6.10.16} (Figure HS-14 in USDCM, 2008 edition) are recommended for all grass-lined/earthen channel applications to reduce the scour potential below the check wall.

7. Ideally, the low-flow invert matches the floor invert at the basin end and the main channel elevation is equal to the top of the check. For large basins where the check height, d, becomes greater than the low-flow depth, dimension d in \textit{FIGURE 6.10.16} (Figure HS-14 in USDCM, 2008 edition) may be reduced by no more than one-third. It should not be reduced to less than 2 feet. This implies that a deeper low-flow channel (1.5 to 2.0 feet) will be advantageous for these installations. Modification of the trickle floor depth may be required to ensure that water does not pond in the basin.

8. A check section should be constructed directly in front of the low-flow notech to break up bottom flow velocities. The length of this check section should overlap the with of the low flow and its dimension is shown in \textit{FIGURE 6.10.16} (Figure HS-14 in USDCM, 2008 edition).

\textit{6-10(G)(1)(ii) Pipe Outlet Rundowns}

\textit{6-10(G)(1)(ii)(a) Baffle Chute Rundown}

The baffle chute developed by the U.S.D.I. Bureau of Reclamation (1958) has also been adapted to use at pipe outlets. This structure is well-suited to situations with large conduit outfalls and at outfalls to channels in which some future degradation is anticipated. As mentioned in \textit{Part 6-10(F)}, that apron can be extended at a later time to account for channel degradation. This type of structure is only cost effective if a grade drop is necessary below the outfall elevation.

\textit{FIGURE 6.10.20} (Figure HS-17 in USDCM, 2008 edition) illustrates a general configuration for a baffled outlet application for a double box culvert outlet. In this general configuration, an expansion zone occurs just upstream of the approach depression. The depression depth is designed as required to reduce the flow velocity at the chute entrance. The remaining hydraulic design is the same as for a standard baffle chute using conditions at the crest to establish the design. The same crest modifications are applicable to allow drainage of the approach depression, to reduce the upstream backwater effects of the baffles, and to reduce the problems of debris accumulation and standing water at the upstream row of baffles.
Flow entering the chute should be well distributed laterally across the width of the chute. The velocity should be below critical velocity at the crest of the chute. To ensure low velocities at the upstream end, it may be necessary to provide a short energy dissipating pool. The sequent or conjugate depth in the approach basin should be sized to prevent jump sweep-out, but the basin length may be considerably less than a conventional hydraulic jump basin since its primary purpose is only to reduce the average entrance velocity. A basin length of twice the sequent depth will usually provide ample basin length. The end check of the pool may be used as the crest of the chute as shown in FIGURE 6.10.20 (Figure HS-17 in USDCM, 2008 edition).

6-10(G)(1)(ii)(b) Grouted Boulder Chute Rundown

Another option for rundowns at outlets of larger pipes is to use a grouted boulder rundown, illustrated in FIGURE 6.10.21 (Figure HS-18 in USDCM, 2008 edition). This type of rundown has been used successfully for several large storm sewers entering the South Platte River. It is critical that the details shown in FIGURE 6.10.21 (Figure HS-18 in USDCM, 2008 edition) be strictly followed. It is also critical that the grout and its placement in the spaces between the boulders closely adhere to the recommendations for grouted boulders in the City Standard Specifications.
If the exit velocities of the pipe exceed 12 ft/sec, an approach chute for the baffle chute rundown should be provided.

FIGURE 6.10.21 Grouted Boulder Rundown

Plan

- Concrete box or RCP
- Joint restraint
- Channel Bank
- Toe of slope
- Channel Bottom

Cross Section A-A

- Reveg entire disturbed slope with native seed
- Concrete cutoff wall
- Grout edge boulders to 1/2 Dr
- Slope to match existing bank (2:1 max)
- First row of boulders and grout level to be a min of 0.2’ below outlet invert
- Concrete headwall or fes
- Grout edge boulders on outside of chute to 1/4 of boulders
- Reveg of disturbed areas
- Layer of soil rip-rap
- Undisturbed subgrade
- Concrete headwall
- Concrete wingwall
- Top of Topmost Boulder
- Reveg of disturbed areas
- Layer of soil rip-rap
- Undisturbed subgrade
- Grout to 1/2 Boulders
- Edge Boulder
6-10(G)(1)(ii)(c) Low Tailwater Rip-rap Basins at Pipe Outlets

The design of low tailwater rip-rap basins for storm sewer pipe outlets and at some culvert outlets is necessary when the receiving or downstream channel may have little to no flow or tailwater when the pipe or culvert is in operation. Design criteria are provided in FIGURE 6.10.24 (Figure HS-19a in USDCM, 2008 edition) through FIGURE 6.10.27 (Figure HS-20c in USDCM, 2008 edition).

By providing a low tailwater basin at the end of a storm sewer conduit or culvert, the kinetic energy of the discharge is dissipated under controlled conditions without causing scour at the channel bottom. FIGURE 6.10.22 (Photograph HS-12 in USDCM, 2008 edition) shows a fairly large low tailwater basin.

Low tailwater basin design is described below. Low tailwater is defined as being equal to or less than 1/3 of the height of the storm sewer, that is:

EQUATION 6.50 \(Y_t \leq D/3 \) or \(Y_t \leq H/3 \)

where:
- \(Y_t \) = tailwater depth at design
- \(D \) = diameter of circular pipe (ft)
- \(H \) = height of rectangular pipe (ft)

1. Finding Flow Depth and Velocity of Storm Sewer Outlet Pipe
 a. The first step in the design of a scour protection basin at the outlet of a storm sewer is to find the depth and velocity of flow at the outlet. Pipe-full flow can be found using Manning’s equation (**EQUATION 6.66**). See Part 6-16(C).
 b. Then, the pipe-full velocity can be found using the continuity equation.

EQUATION 6.51 \(V_{full} = Q_{full} / A_{full} \)

 c. The normal depth of flow, \(d \), and the velocity in a conduit can be calculated using FIGURE 6.10.25 (Figure HS-20a in USDCM, 2008 edition) and FIGURE 6.10.26 (Figure HS-20b in USDCM, 2008 edition). Using the known design discharge, \(Q \), and the calculated pipe-full discharge, \(Q_{full} \), enter FIGURE 6.10.25 (Figure HS-20a in USDCM, 2008 edition) with the value of \(Q/Q_{full} \) and find \(d/D \) for a circular pipe of \(d/H \) for a rectangular pipe.
d. Compare the value of \(d/D \) (or \(d/H \)) with the one obtained from Figure 6.10.26 (Figure HS-20b in USDCM, 2008 edition) using the Froude parameter, \(Q/D^{2.5} \) or \(Q/(wH^{1/3}) \).

e. Choose the smaller of the two ratios \((d/D) \) or \((d/H) \) to calculate the flow depth at the end of pipe.

\[EQUATION \ 6.52 \ D = D(d/D) \text{ or } d = H(d/H) \]

f. Again, enter Figure 6.10.24 (Figure HS-19a in USDCM, 2008 edition) using the smaller \(d/D \) (or \(d/H \)) ratio to find the \(A/A_{full} \) ratio. Then,

\[EQUATION \ 6.53 \ A = (A/A_{full})A_{full} \]

g. Finally,

\[EQUATION \ 6.54 \ V = Q/A \]

where:
- \(A_{full} \) = cross sectional area of the pipe (ft²)
- \(A \) = area of the design flow in the end of the pipe (ft²)

2. Rip-rap Size
 a. For the design velocity, use Figure 6.10.27 (Figure HS-20c in USDCM, 2008 edition) to find the size and type of the rip-rap to use in the scour protection basin downstream of the pipe outlet (e.g. B18, H, M, or L). First calculate the rip-rap sizing design parameter, \(P_d \), namely,

\[EQUATION \ 6.55 \ P_d = (V^2 + gd)^{0.5} \]

where:
- \(V \) = design flow velocity at pipe outlet (ft/sec)
- \(g \) = acceleration due to gravity = 32.2 ft/sec²
- \(d \) = design depth of flow at pipe outlet (ft)

When the rip-rap sizing design parameter indicates conditions that place the design above the Type H rip-rap line in Figure 6.10.25 (Figure HS-20 in USDCM, 2008 edition), use B18, or larger, grouted boulders. An alternate to a grouted boulder or rip-rap basin is to use the standard U.S.D.I. Bureau of Reclamation Impact Basin VI or one of its modified versions.

b. After the rip-rap size has been selected, the minimum thickness of the rip-rap layer, \(T \), in feet, in the basin is set using the following equation:

\[EQUATION \ 6.56 \ T = 1.75D_{50} \]

where:
- \(D_{50} \) = the median size of the rip-rap

5 See Part 6-16(C) for Manning’s equation.
Rip-rap Type and Median Rock Size

<table>
<thead>
<tr>
<th>Rip-rap Type</th>
<th>D50- Median Rock Size (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>9</td>
</tr>
<tr>
<td>M</td>
<td>12</td>
</tr>
<tr>
<td>H</td>
<td>18</td>
</tr>
<tr>
<td>B18</td>
<td>18 (minimum dimension of grouted boulders)</td>
</tr>
</tbody>
</table>

3. **Basin Length**
 - The minimum length of the basin, \(L \), in **FIGURE 6.10.23** (Figure HS-20 in USDCM, 2008 edition), is defined as being the greater of the following:

 - **EQUATION 6.57** For circular pipe: \(L = 4D \) or \(L = (D)^{0.5}(V/2) \)
 - **EQUATION 6.58** For rectangular pipe: \(L = 4H \) or \(L = (H)^{0.5}(V/2) \)

 where:
 - \(L \) = basin length
 - \(H \) = height of rectangular conduit
 - \(V \) = design flow velocity at outlet
 - \(D \) = diameter of circular conduit

4. **Basin Width**
The minimum width, \(W \), of the basin downstream of the pipes flared end section is determined as follows:

 - **EQUATION 6.59** For circular pipe: \(W = 4D \)
 - **EQUATION 6.60** For rectangular pipe: \(W = w + 4H \)

 where:
 - \(W \) = basin width
 - \(D \) = diameter of circular conduit
 - \(W \) = width of rectangular conduit

5. **Other Design Requirements**
 - All slopes in the pre-shaped rip-rapped basin are 2H to 1V.
 - Provide pipe joint fasteners and a structural concrete cutoff wall at the end of the flared end section for a circular pipe or a headwall with wingwalls and a paved bottom between the walls, both with a cutoff wall that extends down to a depth calculated using the following equation:

 - **EQUATION 6.61** \(B = D/2 + T \) or \(B = H/2 + T \)

 when:
 - \(B \) = cutoff wall depth
 - \(D \) = diameter of circular conduit
 - \(T = 1.75D_{50} \)

 The rip-rap must be extended up the outlet embankment's slope to the mid-pipe level.
FIGURE 6.10.23 Low Trailwater Rip-rap Basins for Storm Sewer Pipe Outlets (HS-19)

Plan

![Plan Diagram]

Profile

![Profile Diagram]

NOTE: For rectangular conduits use a standard design for a headwall with wingwalls, paved bottom between the wingwalls, with an end cutoff wall extending to a minimum depth equal to \(B \).

FIGURE 6.10.24 Concrete Flared End Section with Cutoff Wall for All Pipe Outlets

Plan

![Plan Diagram]

Section at Centerline

![Section Diagram]

End View

![End View Diagram]
FIGURE 6.10.25 Low Trailwater Rip-rap Basins for Storm Sewer Pipe Outlets - Discharge and Flow Area Relationships for Circular and Rectangular Pipes

FIGURE 6.10.26 Low Trailwater Rip-rap Basins for Storm Sewer Pipe Outlets - Brink Depth Horizontal Pipe Outlet
6-10(G)(1)(iii) Culvert Outlets

Culvert outlets represent a persistent problem because of concentrated discharges and turbulence that are not fully controlled prior to the flow reaching the standard downstream channel configuration. Too often the designer’s efforts are focused on the culvert inlet and its sizing, but the outlet hydraulics receive only passing attention. Culvert design is not complete until adequate attention is paid to the outlet hydraulics and proper stilling of the discharge flows.

Culvert outlet energy dissipater and flow spreading may require special structures downstream of the culvert outlet to limit local scour, general stream degradation, and troublesome head cutting (i.e. general storm degradation). Some of the techniques described earlier in this section may be applied at culvert outlets or as indicated by downstream channel and/or tailwater conditions.

Local scour is typified by a scour hole at the pipe’s outlet. High exit velocities cause this, and the effects extend only a limited distance downstream. Coarse material scoured from the hole is deposited immediately downstream, often forming a low bar. Finer material is transported further downstream. The dimensions of the scour hole change due to sedimentation during low flows and the varying erosive effects of storm events. The scour hole is generally deepest during passage of the flow when there is minimal tailwater depth at the outlet and not necessarily when the flow is highest. Methods for predicting...
scour hole dimensions are found in U.S. Federal Highway Administration (FHWA) *Hydraulic Engineering Circular (HEC) No. 14, Third Edition* and need to be applied using a range of possible tailwater depth conditions during different design storms and flows.

General storm degradation, or head cutting, is a phenomenon independent of culvert performance. Natural causes produce a lowering of the streambed over time. The identification of a degrading stream is an essential part of the original site investigation; however, high-energy discharges from a culvert can often cause stream degradation for a limited distance downstream. Both scour and stream degradation can occur simultaneously at a culvert outlet.

While it is beyond the scope of the DPM to provide detailed information about all measures described in FHWA *HEC No. 14* to protect downstream channels or streams and control culvert outlet flow, the City encourages the proper application and appropriate design for each specific site.

FIGURE 6.10.28 Unprotected Culvert Outlets Cause Downstream Erosion

Section 6-10(G)(2) Additional Erosion Protection Criteria for Public Drainage Facilities

The facility is considered public if it is maintained by a public entity or has a public easement upon it for drainage. Both of the following criteria should be followed for public drainage facilities:

1. A filter fabric or gravel is to be used in all cases under the rip-rap.
2. The velocity leaving the energy dissipator/erosion protection shall be 5 ft/sec or less unless justified.

Section 6-10(G)(3) Private Storm Drain Outlets to On-site Basins or Swales

The following criteria are acceptable for privately maintained facilities where the storm drain is less than 18 inches in diameter. For private storm drains 18 inches and greater, refer to the sections for public facilities.

1. Erosion control should be provided for velocities 5 ft/sec or greater.
2. The pipe invert should be at or close to the invert of the receiving basin or swale.

Part 6-10(H) Protection and Debris Barriers

Section 6-10(H)(1) Protection Barriers

A protection barrier is a means of preventing people from entering storm drains. Protection barriers will be provided wherever necessary to prevent unauthorized access to storm drains. In some cases, the barrier may be one of the breakaway type. In other cases, the barrier may be a special design. It will be the designer’s responsibility to provide a protection barrier appropriate to each situation and to provide details on the construction drawings.

Section 6-10(H)(2) Debris Barriers

A debris barrier or deflector is a means of preventing large debris or trash, such as tree limbs, logs, boulders, weeds, and refuse, from entering a storm drain and plugging the conduit. The debris barrier should have openings wide enough to allow as much small debris as possible to pass through and yet narrow enough to protect the smallest conduit in the system downstream of the barrier.

One type that has been used effectively in the past is the debris rack. This type of debris barrier is usually formed by a line of posts, such as steel pipe filled with concrete or steel rails, across the line of flow to the inlet. It will be the designer’s responsibility to provide a debris barrier or deflector appropriate to the situation and acceptable to the City Engineer.

Section 6-10(H)(3) Debris Basins

Debris basins, check dams, and similar structures are a means of preventing mud, boulders, and debris held in suspension and carried along by storm runoff from depositing in storm drains. Debris basins constructed upstream of storm drain conduits, usually in arroyos, trap such material before it reaches the conduit. Debris basins must be cleaned out on a regular basis in order to continue to function effectively. Contact the City Engineer and State Engineer for criteria to design these structures.

Part 6-10(I) Closed Conduit Angle of Confluence

A connector pipe may be joined to the main line pipe at angles greater than 45 degrees up to a maximum of 90 degrees, provided that none of the conditions below exist. Under high velocity and high flow conditions, it is preferable for the angle of confluence to be 45 degrees or less. If any of the conditions below applies, the angle of confluence for connector pipes may not exceed 30 degrees. Connections must not be made to main line pipe that may create conditions of adverse flow in the connector pipes without approval from the City Engineer.
In general, the angle of confluence between main line and lateral must not exceed 45 degrees. Under any of the following conditions, the angle must not exceed 30 degrees:

1. Where the peak flow (Q) in the proposed lateral exceeds 10% of the main line peak flow.
2. Where the velocity of the peak flow in the proposed lateral is 20 ft/sec or greater.
3. Where the size of the proposed lateral is 60 inches or greater.
4. Where hydraulic calculations indicate excessive head losses may occur in the main line due to the confluence.

The above requirements may be waived only if calculations are submitted to the City Engineer showing that the use of a confluence angle larger than 30 degrees will not unduly increase head losses in the main line.

Part 6-10(J) Flapgates

A flapgate must be installed in all laterals with an outlet into a main line storm drain whenever the potential water surface level of the main line is higher than the surrounding area drained by the lateral.

The flapgate must be set back from the main line drain so that it will open freely and not interfere with the main line flow. A junction structure shall be constructed for this purpose in accordance with City Engineer standards.

Part 6-10(K) Rubber-Gasketed Pipe

Rubber-gasketed pipe will be used in all storm drain construction unless otherwise approved by the City Engineer.

Part 6-10(L) Junctions into Existing Storm Drain Main Lines

Junctions will only be allowed on mains storm drain lines that are greater than 42 inches. Junction locations cannot be more that 24 feet from the downstream manhole. The maximum lateral size is 24 inches. The City Engineer’s approval will be required for variances.
Part 6-10(M) Submittal Requirements

Section 6-10(M)(1) Hydraulic Model
1. If a Letter of Map Revision is to be submitted to FEMA, the model used must be on the list of approved models on FEMA’s website at the time of submittal, available here: https://www.fema.gov/hydraulic-numerical-models-meeting-minimum-requirement-national-flood-insurance-program
2. Electronic hydraulic models must meet the following criteria to be accepted:
 a. Be able to produce an illustration of the HGL and EGL.
 b. Have the ability to include major and minor losses.
 c. Meet technical requirements of this chapter. The engineer shall include a description of how the model meets the requirements of this chapter and should describe how losses were taken into account.
3. For the purposes of generating an infrastructure list, in lieu of submitting the results of an electronic model, the engineer may submit pipe capacity calculations based on gravity flow using Manning's equation (EQUATION 6.42).
4. An electronic model is required to design the storm drain for the construction plans.

Section 6-10(M)(2) Culverts
1. The City has adopted the FHWA Hydraulic Design of Highway Culverts, Hydraulic Design Series Number 5 (HDS 05), method for culvert design.
2. If a proprietary model is used to design a culvert, the engineer shall include a description of how the model is in compliance with the FHWA method.

ARTICLE 6-11 POND REQUIREMENTS

Part 6-11(A) Design Requirements
Some sites may require ponding due to limited downstream capacity. The downstream capacity will be identified in a previously approved drainage plan/report or identified in the drainage submittal. Ponds are of the following types:

Section 6-11(A)(1) Detention Ponds
A detention pond has an outfall pipe with an outflow rate less than the inflow rate. All detention ponds must be evacuated in 24 hours or less, except for the stormwater quality volume. See Article 6-12 for stormwater quality volume. The discharge from some ponds may be more limited by downstream constraints and take longer to evacuate. In these cases, approval of an evacuation time greater than 24 hours is required by the City Engineer. Ponds that take more than 6 hours to drain will be designed for a design storm equal to or exceeding the evacuation time.
Within a detention pond you can have a water quality pond. The water quality volume is excluded from the evacuation criteria as this volume is to infiltrate.

There are numerous software packages that can be used to calculate the pond volume. The input and output parameters and definitions are to be included with the drainage submittal.

The pond volume can also be calculated manually by discretizing the inflow hydrograph then subtracting the outflow hydrograph.

The minimum outfall size shall be 4 inches in diameter, width or depth. An outlet less than 4 inches in diameter, width or depth may be used if accompanied by a maintenance schedule on the City approved drainage submittal.

Detention ponds shall have a designated overflow point that indicates the flow direction if the pond overtops.

Section 6-11(A)(2) Retention Ponds

A retention pond retains stormwater to be infiltrated for the specified design storm. Depending on soil characteristics, the soil on the pond bottom may have to be amended or an infiltration system designed to evacuate the pond within 96 hours.

1. For sites that do not have an outfall, the pond volume will be based on a 100-year 10-day storm.
2. The retention ponds listed below are for sites that have limited downstream capacity, and should have a detention pond, but a detention pond cannot be designed since the outfall pipe could not daylight. Volumes listed below are in addition to the stormwater quality volume.
 a. For sites that drain to adjoining private property historically, wherein, the adjoining private property does not have an outfall; the pond shall be sized for the 100-year 24-hour storm. The adjoining property should not see a change in peak flow or total volume.
 b. For sites that drain to adjoining private property historically, wherein the adjoining private property has an outfall, the pond shall be sized for half the runoff from the 100-year 24-hour storm. The adjoining property should not see a change in peak flow.
 c. For sites that drain to a public facility, but have limited capacity, the pond shall be sized via the graphical method shown below.
3. Retention ponds shall have a designated overflow point that indicates the flow direction if the pond overtops.
Section 6-11(A)(3) Surge Ponds

A surge pond functions by ponding the flow in excess of the storm drain capacity. Therefore, lower flows by-pass the pond in the storm drain. Since stormwater quality cannot be addressed in a surge pond, its use is limited to a multi-use facility (e.g. park). Stormwater quality is to be addressed upstream or downstream of the pond prior to discharge to the Rio Grande River.

Section 6-11(A)(4) Stormwater Quality Ponds

Water quality ponds are addressed in Article 6-12.

Part 6-11(B) Infiltration Rate

If infiltration rate credit is to be used, it must be supported by a Double-ring Infiltrometer test per standard test method ASTM D3385 at the proposed pond bottom. The test results are to be certified by a licensed engineer. In lieu of the double-ring Infiltrometer test, the infiltration rate shall not exceed the rates specified in TABLE 6.2.13 per the soil type as described in TABLE 6.2.9 of Part 6-2(A).

Part 6-11(C) Ponds in Parking Areas

Unless otherwise approved by the City Engineer, all ponds in parking lots that affect parking areas must be detention ponds and the depth is not to exceed 8 inches in any portion of the parking space or parking stall.

Part 6-11(D) Fencing Around Ponds

Fencing or similar barricade that will prevent entry is required for private and public ponds where the water depth is 18 inches or greater unless side slopes are 3:1 (H:V) or flatter and the pond drains in 96 hours or less. Fence or barricade minimum height is to be 42 inches.
Part 6-11(E) Private Ponds to be Built to Public Pond Specifications

Private ponds (no Public water or Public Drainage Easement) are to be maintained by the property owner or the party specified on the plat or easement document. If the City finds the pond is not being maintained to the specifications in the drainage report/plan, the City may take over maintenance responsibility of the pond.

Since at a later date, maintenance of the pond may be taken over by the City, Private ponds 2.0 ac-ft and larger are required to be built per Public Pond specifications set forth later in this chapter.

The owner or party specified on the plat or easement document may be financially responsible to the City per Section 14-5-2-14 of the Drainage Control Ordinance (ROA 1994).

Part 6-11(F) Rock Void Space for Pond Volume

For underground storage systems the pore void spaces between the aggregate is available to store water. The allowed volume in the aggregate pore void space is 30%. The aggregate is to be natural or uncrushed and be protected from silt and sediment.

There is no pore space volume allowed for surface installations.

Part 6-11(G) Privately Maintained Ponds with a Public Drainage Easement

Privately maintained ponds that will detain or retain public water must have a public drainage easement and an Agreement and Covenant and be built to City of Albuquerque standards. Ponds exclusively constructed to meet the requirements of Article 6-12 are excluded.

Part 6-11(H) Ponds Maintained by the City

Section 6-11(H)(1) Access

Access shall be required for all City maintained ponds. Access shall be opposite the outlet if possible with a minimum width of 12 feet. Maximum access slope shall be 10:1 (6:1 if hard surfaced with soil cement or concrete treated base). Standard design tube or pipe gates shall be installed to restrict vehicle access. Gates shall be set back 50 feet from arterial or collector streets so equipment does not have to park in the street.
Section 6-11(H)(2) Spillways

Emergency spillways shall always be provided, be erosion resistant, and discharge to a public right-of-way, public drainage easement and/or historic flow path. An emergency spillway must safely convey the 100-year design flow entering the pond.

Section 6-11(H)(3) Outlets

1. Outlet structures shall be gravity flow, whenever feasible, and be located in a corner or accessible edge of the pond. Outlets shall be opposite of the pond access point if possible. Outlet pipe shall be a minimum of 12 inches in diameter with a slope such that when flowing at 1/4 full, velocity is 3 fps or greater.
2. The outlet should be surrounded by a stabilized grade pad appropriately sized for maintenance.
3. The invert of the pond outlet shall be above the required water quality volume as demonstrated in the drainage report. The pond outlet shall also provide a means to remove floatables and debris.

Section 6-11(H)(4) Pond Bottoms

1. Pond bottoms shall be designed to convey flows from the inlet to a stormwater pollution prevention feature (such as a pervious bottom area for infiltration) prior to discharging to the outlet.
2. Ease of maintenance shall be a consideration in all dams/detention basins.

Section 6-11(H)(5) Side Slope and Bottom Treatments

1. Vegetation will be accepted if seeded per the City of Albuquerque Standard Specifications for Public Works Construction (City Standard Specifications).
2. Aggregate or rip-rap may be used as an erosion control mulch for 3:1 and steeper slopes.
3. A geotechnical investigation and report may be required at the discretion of the City Engineer.

Section 6-11(H)(6) Minimum Pond Size

In order for a pond to be publicly maintained, it must be a minimum of 2 acre-feet.

Section 6-11(H)(7) Fencing

1. Ponds 18 inches or greater in depth will require fencing unless side slopes are 3:1 or flatter and the pond drains in 96 hours or less.
2. If fencing is required, the minimum height is 42 inches. All fencing shall conform with the City Standard Specifications.

Part 6-11(I) Temporary Public Ponds

1. Interim or temporary facilities shall be protected by a Public Drainage Easement and have an Agreement and Covenant for maintenance. These public drainage easements may cover a tract of land larger than that
needed for the final permanent facility in lieu of financial guarantees. An agreement and covenant by the developer will be required due to the temporary nature of the facility.

2. Retention pond volume will be based on a 100-year 10-day storm with no percolation credit given for volume reduction.

3. An emergency spillway must be provided that will safely convey the 100-year design flow entering the pond.

Part 6-11(J) Pond Evacuation Time

All ponds are to be evacuated within 96 hours to comply with State Engineer water rights and to minimize the habitat for mosquitoes.

If soil conditions or bedrock extend the evacuation time to greater than 96 hours, the property owner is to consult with the City Engineer and provide the results of this consultation to the City.

Part 6-11(K) Infiltration System Design

An infiltration system design should have the width or length dimensions, in plan view, greater than the depth dimension otherwise it is considered an injection well and a permit from the New Mexico Environment Department is required.

The infiltration system design should include a filter material to prevent fine material from entering the system.
ARTICLE 6-12 STORMWATER QUALITY AND LOW-IMPACT DEVELOPMENT

All new development and redevelopment projects shall apply best Management Practices (BMPs) to manage the stormwater quality volume (SWQV) by management on-site, or payment-in-lieu, or private off-site mitigation. BMPs remove pollutants from SWQV by first capturing the volume of the area draining to them, then either infiltrate the volume into the soil, or reuse the volume for irrigation, or treat the volume by extended filtration, or some combination thereof. Where practical, stormwater volumes in excess of the SWQV should bypass the BMP rather than being allowed to pass thru the BMP to prevent pollutants from being washed downstream. The BMP bypass shall be designed for the peak 100-year flow rate.

The stormwater quality volume new development sites are required to manage is the runoff from a 0.62 inch storm. The stormwater quality volume redevelopment sites are required to manage is the runoff from a 0.48 inch storm. A site is defined as a redevelopment site if the land was occupied by an artificial surface or by any structure intended for human occupation, including structures intended for commercial enterprise.

The methodology used in the U.S. Environmental Protection Agency (EPA) Report, *Estimating Predevelopment Hydrology in the Middle Rio Grande Watershed*, New Mexico, TetraTech, April 2014, EPA Publication Number 832-R-14-007, yields runoff values of 0.42 inches for the 90th percentile storm and using the same methodology but generated from HEC-HMS, 0.26 inches for the 80th percentile storm.

To calculate the required SWQV, multiply the impervious area draining to the BMP by 0.42 inches for new development sites and 0.26 inches for redevelopment sites. The calculations of both the required and the provided volume of each BMP must be shown on the Grading and Drainage Plan. Each BMP should be labeled on the Grading and Drainage Plan with the required SWQV and associated water surface elevation and the 100-year water surface elevation. Landscaping of surface BMPs is also required to be noted on the Grading and Drainage Plan.

For single-family subdivisions, stormwater quality ponds will not be allowed on individual lots. Instead, a centralized stormwater quality pond for the entire subdivision must be constructed for all impervious areas to include the houses, patios, sidewalks, driveways, and public or private streets, or a payment-in-lieu can be paid. The following equation can be used to determine the amount of impervious area for single-family subdivisions:

EQUATION 6.62 Impervious percentage = 7*√((N*N) = (5*N))

where:
N = units/acre

For all developments, a combination of on-site/off-site ponding and payment-in-lieu is allowed.
Part 6-12(A) Low Impact Development Strategies

This section outlines principles to apply Low Impact Development strategies to effectively design stormwater quality features to treat the stormwater quality volume as part of the development process.

1. **Consider stormwater quality needs early in the design process.** This will provide for stormwater capture and treatment throughout the site rather than “shoe-horning” the facility, resulting in a forced, constrained approach.

2. **Take advantage of the entire site when planning for stormwater treatment.** Spreading the runoff over a larger portion of the site can help to avoid less desirable treatment strategies that rely on underground capture and deep basins that can be difficult to maintain.

3. **Reduce runoff.** Drain impervious areas to landscape areas and minimize directly connected impervious areas. Reduce the amount of impervious areas (e.g. use porous pavement or gravel for low-use or emergency access) and select treatment techniques that promote infiltration.

4. **Integrate stormwater quality management and flood control, when practical.** If the site is required to detain runoff for flood control purposes, the facility used for flood control can be modified for stormwater quality by establishing the overflow elevation above the design standard volume.

5. **Landscape stormwater management facilities.** A stormwater management facility can be an attractive addition to the site, rather than just an unimproved dirt area. In addition, landscaping will minimize the potential for erosion and therefore minimize the amount of required maintenance.

6. **Consider surface conveyance as an alternative to pipes.**

7. **Design facilities for easier maintenance.** Fine soils may clog void spaces with time. The designer should consider a capture area for fine soils where stormwater enters the facility that can be easily replaced or maintained.

8. **Amend the soil** to allow for improved infiltration.

Part 6-12(B) Effective Strategies for Stormwater Treatment

There are a variety of methods to improve stormwater quality. Not all methods are appropriate for all development types. See **TABLE 6.12.23** for development types.
TABLE 6.12.23 Development Types

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Percentage Landscaping</th>
<th>Percentage Parking/Paving</th>
<th>Building Footprint</th>
<th>Parking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Urban</td>
<td>0-5%</td>
<td>0-5%</td>
<td>90-100%</td>
<td>On-Street, Structure</td>
</tr>
<tr>
<td>High-density Mixed Use</td>
<td>0-10%</td>
<td>0-15%</td>
<td>80-90%</td>
<td>On-Street, Structure, and Surface</td>
</tr>
<tr>
<td>Commercial/Industrial</td>
<td>5-15%</td>
<td>40-60%</td>
<td>25-50%</td>
<td>Surface</td>
</tr>
<tr>
<td>Low-density Mixed Use</td>
<td>10-25%</td>
<td>30-50%</td>
<td>25-60%</td>
<td>Surface</td>
</tr>
<tr>
<td>Residential</td>
<td>30-70%</td>
<td>5-20%</td>
<td>30-70%</td>
<td>Surface</td>
</tr>
<tr>
<td>Educational/Institutional</td>
<td>15-60%</td>
<td>10-25%</td>
<td>25-60%</td>
<td>Surface</td>
</tr>
<tr>
<td>Parks/Open Space</td>
<td>80-95%</td>
<td>5-15%</td>
<td>0-10%</td>
<td>Surface</td>
</tr>
</tbody>
</table>

The following methods can be used to improve stormwater quality:

Section 6-12(B)(1) Landscape Category

1. Depressed parking islands or planters with curb cut(s)

NOTE: If perforated pipe is used, the pipe is to be wrapped in landscape fabric.

FIGURE 6.12.30 Depressed Parking Island

- Collection/overflow facility at downstream end of swale to acceptable disposal point.
- 3-5" deep check dams @ 12' to 20' intervals or minimum 2 dams per swale.
- 3:1 max. side slope.
- Permeable filter fabric, optional.
- Min. 12" growing medium.
- 6" to 12" swale depth.
- Flow.
- For parking lots: 12"x12" clear flow area at cutouts.
2. Depressed landscape/bioretention areas

FIGURE 6.12.32 Depressed Bioretention Areas

- Stormwater flows into the basin
- Outlet control structure
- Underdrain is connected to outlet control structure and is capped in bioinfiltration design
- Water infiltrates into subgrade in bioinfiltration design

3. Landscape Conveyance-Bioswale

FIGURE 6.12.33 Landscape Conveyance-Bioswale

NOTE: Plants filter and transpire water, while enhancing the parking lot.

4. Infiltration Trench
 a. An infiltration trench is an effective means of capturing the design standard volume underground in the void space of the media (e.g., washed sand or rock). The actual porosity of the material should be specified on
the plans and used in the calculations to determine the volume of the voids and the material specifications should be included with the G&D submittal. Maximum porosity (void space) to be used is 30%. A replaceable filter material (e.g. pea gravel) shall be used to prevent the build-up of fine material in the trench.

b. Only the volume below the lowest overflow elevation is effectively captured, so trenches are most effective when constructed with a level top.

c. The bottom of the trench should be a minimum of 3 feet above the seasonally high groundwater table. The institute soil under the trench should have less than 20% fine soil passing the #200 sieve.

d. The minimum setback is 10 feet from property lines and building foundations, 50 feet from wells, and 35 feet from a septic system. See FIGURE 6.12.34.

e. The length should be greater than the depth so that the trench is not considered an injection well.

f. Impervious area construction must be completed and pervious areas stabilized before introducing stormwater into an infiltration BMP. See FIGURE 6.12.35.
g. The trench may be placed along the edge of pavement or under pervious pavers so that stormwater enters the trench through its surface. Alternately, the trench may be located under regular pavement so that stormwater enters through a perforated stormdrain pipe that distributes the water throughout the trench. Perforated pipes should have access points at both ends for ease of maintenance. See **FIGURE 6.12.36**.

FIGURE 6.12.36 Infiltration Trench with Aggregate and Pipe Under Parking Lot

h. The trench should be equipped with observation wells so that accumulations of pollutants in the trench can be inspected.

Section 6-12(B)(2) Paving Category

1. Pervious pavers, concrete, or asphalt
2. Open-cell structure with gravel
3. Gravel parking lots
4. Underground cisterns
Section 6-12(B)(3) Elevated Category

1. Planter boxes
2. Cisterns
3. Green/brown roofs

Section 6-12(B)(4) Streetscape Category

1. Landscape Area: The landscape area between the sidewalk and back of curb is to be depressed and covered in rock to prevent erosion. See City Standard Specifications for construction details.
2. Street Medians
 a. On arterial streets, the designer may choose to drain the street into the median. Since this is a change from the City Standard Specifications, approval from the City Engineer is required. The minimum median width is 8 feet. Check dams will be required in the median on streets with slopes greater than 2.5% to reduce velocity.
 b. The grate elevation is to be perched to allow the runoff from smaller storms to infiltrate.

Section 6-12(B)(5) Flood Control Category

The stormwater quality volume can be incorporated into a flood control facility by elevating the discharge point above the water surface elevation of the stormwater quality volume. In addition to managing the stormwater quality volume, flood control facilities shall remove trash and debris.

Retention ponds, also called wet ponds, do not have an outlet, so they cannot drain. Detention ponds, also called dry ponds, have an outlet at the bottom so that they can drain. The outlet of a BMP dry pond should be sized so that the average discharge rate will take 48 hours or more to drain the SWQV. Both wet and dry ponds should be maintained regularly to ensure that standing water is not present for more than 96 hours following a rain storm. A maintenance plan should include routine inspections and provisions for removing debris from the outlet structure of dry ponds and removing fine particles that can slow infiltration in the bottom of a wet pond.

All ponds should be designed to safely pass the 100-year flow rate without damaging either the pond or adjacent property. BMP ponds may be designed with additional volume to limit the amount of the 100-year discharge to downstream properties, or they may be just be designed for the SWQV. Either way, the minimum top of dam elevation should be above the depth of the 100-year peak flow rate plus freeboard. Whether a pond is just a BMP or a combined BMP and stormwater management pond, where practicable, stormwater runoff volume in excess of the SWQV should not flow through the BMP to avoid washing pollutants out of the BMP. One possible means of separating SWQV from 100-year volume is a splitter manhole (shown below), which must be engineered for each specific location. The conveyance to the BMP should be sized for a minimum of 1.5 cfs/acre flow rate, and the weir depth over the baffle should be designed for the peak 100-year flow rate. The weir depth should be accounted for in the HGL calculations upstream of the manhole. See FIGURE 6.12.40.
FIGURE 6.12.40 Splitter Manhole

All development types are to manage the stormwater quality volume with one or more of the methods listed in Part 6-12(A). TABLE 6.12.24 shows development types and the categories of methods most appropriate in each.
TABLE 6.12.24 Recommended Implementation Matrix

<table>
<thead>
<tr>
<th>Development Type</th>
<th>Landscape Category</th>
<th>Paving Category</th>
<th>Elevated Category</th>
<th>Streetscape Category</th>
<th>Flood Control Category</th>
<th>Off Site Mitigation Category</th>
<th>Payment-in-Lieu Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense Urban</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>High-density Mixed Use</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Commercial/Industrial</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Low-density Mixed Use</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Residential</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Educational/Institutional</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Parks/Open Space</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Part 6-12(C) Waiver from SWQV Management On-site

Private off-site mitigation and payment-in-lieu may only be considered if management on-site is waived in accordance with the following criteria and procedures.

1. Management on-site shall be waived by the City Engineer if the following conditions are met:
 a. Stormwater quality can be effectively controlled through private off-site mitigation or through an arrangement (approved by the City) to use a cooperator’s existing regional stormwater management infrastructure or facilities that are available to control stormwater quality.
 b. Any of the following conditions apply:
 i. The lot is too small to accommodate management on site while also accommodating the full plan of development.
 ii. The soil is not stable as demonstrated by a geotechnical report certified by a professional engineer licensed in the State of New Mexico.
 iii. The site use is inconsistent with the capture and reuse of stormwater.
 iv. Other physical conditions exist where compliance with on-site stormwater quality control leaves insufficient area.
 v. Public or private off-site facilities provide an opportunity to effectively accomplish the mitigation requirements of the Drainage Ordinance (Part 14-5-2 ROA 1994) as demonstrated on as-built construction drawings and an approved drainage report.
 vi. The developer constructs a project to replenish regional groundwater supplies at an off-site location.
A waiver to State water law or acquisition of water rights would be required in order to implement management on site.

2. The basis for requesting payment-in-lieu or private off-site mitigation is to be clearly demonstrated on the drainage plan.

Section 6-12(C)(1) Payment-in-lieu

In new development and redevelopment cases where the SWQV cannot be met through either management on-site or private off-site mitigation and that qualify for a waiver per Part 6-12(C), payment-in-lieu is required for the difference between the amount of SWQV met and the total required, except in two areas. Payment in lieu that would be otherwise owed is waived for new development or redevelopment in either of the following areas: (1) Metropolitan Redevelopment Areas or (2) within City limits as of 1959.

Metropolitan Redevelopment Areas are shown on the City’s Advanced Map Viewer, which is available here: https://www.cabq.gov/gis/advanced-map-viewer.

If a site does not qualify for a waiver of management on-site, then the developer may elect payment-in-lieu of providing the required management on-site.

The amount of payment-in-lieu is $6/cubic foot of impervious area for detached single-family residential projects and $8/cubic foot of impervious for all other projects.

The total required SWQV calculation must be included on the Grading and Drainage Plan along with calculation of the portion of the SWQV for which payment-in-lieu is requested. Payment shall be made at the following steps in the City’s review/decision process:

1. Multi-family Development: prior to the issuance of a Building Permit.
2. Commercial Development: prior to the issuance of a Building Permit.
3. Single-family Subdivision: prior to recording the Final Plat and prior to issuance of a work order.

Section 6-12(C)(2) Annual Adjustment of Fee

The fees shall be adjusted upward on every July 1 by multiplying the rates in effect on the prior July 1 by 100% of the percentage increase in the Consumer Price Index (CPI) for the 12-month period ending the preceding April. The fees shall remain the same in the event the CPI indicates a decrease. If the index ceases to be published on a monthly basis, the adjustment shall be based on the CPI for the most recent 12-month period. The CPI to be used shall be the Consumer Price Index – All Urban Consumers as published by the U.S. Department of Labor for the Albuquerque Metropolitan area.
Part 6-12(D) Land Uses that Require Additional Stormwater Controls

Section 6-12(D)(1) Automotive Repair and Parts Shops

These land uses include shops that repair any portion of a vehicle (e.g. automotive body shops or general automotive repair) and retail automotive parts stores that have parking for customers. The exterior impervious area of these land uses shall drain to a surface stormwater quality facility that will remove pollutants from the stormwater prior to discharge into the street or drainage facility.

Section 6-12(D)(2) Restaurants and Commercial Food Processing

These land uses shall provide a drain in the trash enclosure (i.e. dumpster) pad that drains to the sanitary sewer. On-site stormwater shall not drain onto the trash enclosure pad, and the pad shall be graded to the drain. A berm around the pad may be required to ensure that stormwater runoff from the site will not mix with stormwater falling on the trash enclosure pad.

Section 6-12(D)(3) Gas Stations/Fueling Facilities

These land uses shall provide treatment for the area at the gas pumps, which is usually the same area as the canopy. The drainage/wash water from this area shall enter an area inlet(s), then be treated by a sand filter or similar prior to discharge into the street or drainage facility.

Part 6-12(E) Post-Construction Maintenance and Responsibilities

The Grading and Drainage Plan must include a plan for inspecting and maintaining the BMPs. Maintenance of the BMPs is the responsibility of the owner of the property on which the BMP is located or, in the case of a single-family subdivision, maintenance is the responsibility of the lot owners in the subdivision being served. The owner of the property must assure maintenance of the BMP in an agreement recorded with the Bernalillo County Clerk prior to issuance of Permanent Certificate of Occupancy for commercial projects and prior to building permit approval for single-family residential projects as identified on the City-approved drainage submittal.

The City will conduct post-construction site inspections to ensure the stormwater quality features of a site are being maintained in accordance with the approved drainage submittal.
Part 6-12(F) Construction Site Responsibility
By Property Owner

All grading within the City of Albuquerque must be performed in a manner that prevents the movement of significant and damaging amounts of sediment onto adjacent property and public facilities by both water and wind, and minimizes the impacts to stormwater runoff quality.

To conform with EPA stormwater regulations, the property owner and general contractor must file an eNOI with the EPA for sites disturbing 1 acre or more of land, or is part of a larger common plan of development that will disturb greater than one acre of land, 14 days prior to commencing earth disturbing activities.

The property owner is to provide the certified Construction General Permit Electronic Notice of Intent (eNOI) documentation that contains the property owner name and contact information to the City a minimum of 14 days prior to earth disturbance and prior to obtaining a work order or approval of a building permit or any other permit (e.g. wall, foundation, etc.).

If the eNOI is a Low Erosivity Waiver by the contractor, then an Erosion and Sediment Control (ESC) permit is required from the City.

An ESC permit is also required for any of the following four special cases:
1. The site is identified as having a significant potential for erosion, based on observation or site characteristics including very steep (8% or greater) topography.
2. The site is known to contain contaminated soils.
3. The site is directly adjacent to receiving waters such as directly connected storm drains, directly connected concrete arroyos or the Rio Grande.
4. The site contains a building to be demolished that is 10,000 square feet or larger and was built or renovated prior to January 1, 1980.

The ESC permit is to be approved prior to the City approving a building permit or work order for the project.
1. The ESC permit can be issued for earth disturbance and for building permit individually or together. The ESC permit is the responsibility of the property owner.
2. All of the following approvals are required in advance of City approval of the ESC permit:
 a. Grading and Drainage Plan.
 c. Floodplain development permit, if construction activities will occur in a mapped flood plain (i.e. Special Flood Hazard Area).
3. BMPs identified on the ESC Plan are to be in place prior to earth disturbance and/or construction. If the ESC Plan is implemented in phases, the BMPs identified for that phase are to be in place prior to earth disturbance and/or construction for that phase.
4. A permit application is available online or at Development Review Services.
5. For sites that are part of a larger common plan of development, the last lot or pad site in the development will not need an ESC Plan if it is less than 0.45 acres.
Part 6-12(G) Construction Site Maintenance and Inspections

1. Sites are to be inspected by the property owner or designee for compliance with the Construction General Permit once every 14 days and after a precipitation event of ¼ inch or greater. Inspection results are to be documented on a report. Reports are to include applicable items from the Construction General Permit.
2. Self-inspection reports are to be provided to the City upon request.
3. The City will conduct inspections of construction sites for compliance with the EPA NPDES Construction General Permit and the Drainage Ordinance (Part 14-5-2 ROA 1994).
4. Sites located in priority areas will be inspected by the City more frequently. A site is located in a priority area if the site drains to a Waters of the U.S. without passing through a public detention or retention facility that removes sediment, debris, and floatables before entering the Rio Grande.

ARTICLE 6-13 DRAINAGE RIGHT-OF-WAY AND EASEMENTS

Part 6-13(A) Rights-of-Way

Whenever no beneficial use can be derived by an owner from continued retention of that land necessary for permanent drainage, flood control or erosion control facilities or when the facilities involve a major arroyo, the land required for the operation and maintenance of the facilities must be dedicated to AMAFCA or the City. Maintenance responsibility of the facilities must be clearly defined.

Part 6-13(B) Easements

Easements for drainage, flood control and erosion control facilities are acceptable (except where prohibited in Subsection 22.12.1 above) as long as a clear agreement exists as to other acceptable uses and that no other permanent facilities (e.g. non-drainage facilities) are constructed within them (including masonry fences and retaining walls but excluding pavement) without an agreement between the owner and the City, governing the permitted uses. Maintenance responsibility of the facilities must be clearly defined. Easements can be shown on a plat or be provided by a paper easement. Paper easements are processed through the Design Review and Construction Services section.
Part 6-13(C) **Configuration**

Rights-of-way and permanent easements required for drainage, flood control and erosion control facilities will conform to the following criteria:

Section 6-13(C)(1) Surface Facilities

The dedicated area should contain the entire facility including any slopes, maintenance roads, turn arounds or other necessary appurtenances. Easement width shall be sufficient to allow for maintenance activities. Public Easements must be a minimum of 10 feet wide.

Section 6-13(C)(2) Public Underground Facilities

Dedicated areas for Public underground facilities shall not be narrower than 20 feet for any drainage facility and must conform to the following formula, unless otherwise approved by the City Engineer:

\[
\text{\textit{EQUATION 6.63}} \quad W = 2 \times D_s + \text{pipe diameter or box culvert width} + 4 \text{ feet}
\]

where:

- \(W \) = dedicated width in feet
- \(D_s \) = depth to bottom of the structure (invert + thickness of the structure)

Outside dimensions must be used for pipe diameter and box culvert width. Other utilities shall not be permitted within the trench prism of the drainage facility.

Part 6-13(D) Drainage Right-of-Way and Public Drainage Easement Access

All newly constructed surface drainage facilities within a public right-of-way or public drainage easement must be blocked off at both ends to prevent unauthorized vehicular access with City Standard Tube Gate or removable bollards.

Part 6-13(E) Private Storm Drain Improvements within City Right-of-Way and/or Easements

Frequently, a drainage plan developed for a particular property involves either discharge directly into a public facility or across a portion of a public right-of-way to a public facility.

Examples include connections to the back of an existing storm inlet, construction of sidewalk culverts or a connection to a storm drain manhole or a channel. When such solutions are employed the construction of private
storm drain improvements within City right-of-way must comply with the following requirements:

1. The proposed improvement must be incorporated on the grading and drainage plan. This plan must include the design or City standards to be used and the location of the proposed construction in City right-of-way.

2. An excavation/construction permit will be required before beginning any work within City right-of-way. An approved copy of the grading and drainage plan must accompany the excavation/construction permit request.

3. All work to be performed within the public right-of-way or easement shall be constructed in accordance with City Standard Specifications.

4. Prior to construction, the contractor shall excavate and verify the horizontal and vertical locations of all constructions to identify a conflict. Should a conflict exist, the contractor shall notify the engineer so that the conflict can be resolved with a minimum of delay.

5. Backfill compaction shall be according to City Standard Specifications.

6. The facility is to be inspected and accepted by the City prior to obtaining a Permanent Certificate of Occupancy.

7. Maintenance of these facilities shall be the responsibility of the owner of the property served.

8. Subsections 1 through 7 listed above are to be placed as notes on the grading and drainage plan for approval by the Hydrology Section of the Development Review Services Division of the Planning Department.
ARTICLE 6-14 DRAINAGE AND STORMWATER QUALITY SUBMITTALS

Part 6-14(A) Introduction

A drainage and stormwater quality submittal is generally in the form of a Conceptual Grading and Drainage Plan, Drainage Report, Grading and Drainage Plan, Erosion and Sediment Control Plan, LOMR, CLOMR or LOMR-F. The following are definitions of these types of submittals:

Section 6-14(A)(1) Drainage Report

A Drainage Report is a comprehensive analysis of the drainage management, flood control, erosion control constraints on and impacts resulting from the proposed platting, development or construction of a particular project.

Section 6-14(A)(2) Conceptual Grading and Drainage Plan

The purposes of this plan are to check the compatibility of the proposed development within grading, drainage, floodplain, erosion control and stormwater quality as dictated by on-site physical features as well as adjacent properties, streets, alleys and channels. Unless otherwise approved by the City Engineer, a Conceptual Grading and Drainage Plan is required for EPC and DRB approval, but is lacking detail necessary to be used for construction.

Section 6-14(A)(3) Grading and Drainage Plan

A Grading and Drainage Plan is a comparatively short, yet comprehensive presentation for small, non-complex development submittals. Grading and Drainage Plans address both on-site and off-site drainage management, flood control, erosion control, and stormwater quality. An approved Grading and Drainage Plan is required prior to any of the following:
1. building permit (DPM Article 2-5).
2. grading permit (DPM Part 2-6(D)).
3. paving permit (DPM Part 2-6(D)).
4. SO-19 permit (DPM Part 2-7(J)).
5. floodplain development permit (DPM Part 2-6(B)).
6. work order (DPM Part 2-3(D)).

Section 6-14(A)(4) Erosion and Sediment Control Plan

An Erosion and Sediment Control (ESC) plan provides necessary information to prevent erosion and sediment deposition in city streets and drainage facilities during the construction phase of a project. Necessary information includes erosion and sediment control Best Management Practices (BMPs) as well as keyed notes. Typical BMPs include inlet protection, silt fence, mulch socks or wattles, erosion control mats, tackifier, and a stabilized construction entrance (i.e. track-out pad).
Section 6-14(A)(5) **LOMR, CLOMR and LOMR-F (LOMC) Submittals**

Documents that are submitted to FEMA to change a mapped SFHA or remove property or a structure from a SFHA are described in [DPM Article 6-6](#). A floodplain development permit is required prior to development in a Special Flood Hazard Area (SFHA). (See [DPM Part 2-6(B)](#).)

Section 6-14(A)(6) **Engineer's Certifications**

Engineer's Certifications are as-built grading plans and/or as-built grading and drainage plans that are required prior to release of financial guarantee for subdivisions and prior to release for Certificate of Occupancy for commercial developments. After all of the grading and drainage construction is complete the engineer certifies that it is complete and is in substantial compliance with the approved plan.

Section 6-14(A)(7) **Pad Certification**

A Pad Certification is an Engineer's Certification that can be submitted if a property owner desires to request Building Permit approval in a mass graded subdivision in advance of all infrastructure being completed/accepted or in cases where Hydrology requires verification of the pad elevation prior to Building Permit approval. Examples of this are SFHAs and SAD 228.

Section 6-14(A)(8) **Drainage and Erosion and Sediment Control Submittals per Requested Approval**

Table 6.14.25 provides a matrix to aid property owners and consultants to determine which form of drainage submittal to submit to the City based on the requested approval.6

6 An “X” in a box in the table indicates the submittal is required, unless a Subsection below corresponding to a numbered note on the table indicates otherwise.
TABLE 6.14.25 Drainage Submittals per Requested Approval

<table>
<thead>
<tr>
<th>Requested Approval</th>
<th>Conceptual Grading & Drainage Plan</th>
<th>Drainage Report</th>
<th>Conceptual Grading & Drainage Plan</th>
<th>Engineer Certification</th>
<th>Erosion & Sediment Control Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Plan – EPC</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Site Plan – DRB</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Subdivision (DRB)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Major: >10 lots or > 5 acres</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Minor: <10 lots or < 5 acres</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Building Permit</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SO-19</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Drainage Master Plan</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Work Order Construction Plans</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Release of Financial Guarantee/ Final Plat</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Construction in a Flood Zone(8)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Certificate of Occupancy</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1. A grading plan or drainage report may not be required to obtain approval. Schedule a pre-design meeting with Hydrology to determine if a drainage submittal is required.

2. All drainage calculations required by the DPM must be stamped and signed by a professional engineer registered in the State of New Mexico, and the calculations must either be on the Grading and Drainage Plan or in the Drainage Report. When computer software is used to do the calculations, printouts must either be on the plans or in the report, and digital copies of the input files must be included with the application. A report is encouraged for projects that use computer software to do the calculations.

3. Some single-family residential homes not located in a mass-graded subdivision may require a drainage submittal based on topography, Flood Hazard Zone designation, or site conditions.

4. The requirement to submit an engineer’s certification will be noted on the infrastructure list.

5. A drainage report may not be required for non-complex sites. Schedule a pre-design meeting with Hydrology to determine if a drainage report is required.
6. An Engineer’s Certification is required if an approved grading plan was required prior to earth disturbance, except for single family residential homes that are part of a mass graded subdivision.

7. See Part 6-12(F) for the criteria when an Erosion and Sediment Control Plan is required.

8. All projects in an SFHA require a floodplain development permit and most will require a submittal to FEMA.

9. A Pad Certification or an Engineer’s Certification is required prior to building permit for every single-family residential lot that requires an approved grading plan. A Pad Certification may be submitted for a portion of the lots in a subdivision in order to allow building permits on legally platted lots prior to completion of the whole subdivision. Pad certifications should contain all of the information normally shown on an Engineer’s Certification for Subdivision, per section Part 6-14(G), as well as all of the following:
 a. a list of the lots being certified.
 b. a certification that the lots have been graded and will drain in accordance with the approved plan, including all retaining walls.
 c. a certification that there are no construction materials or debris on the lots.
 d. a certification that the lots are served by the approved all-weather access.
 e. a certification that all of the downstream drainage infrastructure is completed and ready to receive drainage.

 The Pad Certification must be made on the approved grading and drainage plan. Lots not included in the certification must be crossed out.

Part 6-14(B) Drainage Submittal Criteria

Each submittal shall include all of the following information:

1. Project Name.
2. Name of Engineering Firm.
3. Engineer’s Seal (signed and dated).
4. Completed Drainage and Transportation Information Sheet, including relevant information listed in Section 6-14(B)(1) through Section 6-14(B)(9) below.

Section 6-14(B)(1) Executive Summary

1. Provide a brief yet comprehensive discussion of the following:
 a. General project location
 b. Development concept for the site
 c. Drainage concept for the site (include relevant numbers as appropriate)
 d. How off-site flows will be handled
 e. How on-site flows will be handled and discharged
 f. Downstream capacity and how determined
 g. Impacts on or requirements of other jurisdictions

7. **Section 6-14(B)(1) through Section 6-14(B)(9)** constitute an outline to guide the preparation of Drainage submittals. Some items may not be applicable, while other items may require a more in-depth treatment. A Pre-design Conference is recommended for projects where the scope may be difficult to define, the constraints and conditions somewhat unique, or the drainage solution non-traditional.

The allowable discharge from a particular project shall be determined based upon available downstream capacity as defined by the Drainage Ordinance (Part 14-5-2 ROA 1994). In certain cases, the allowable discharge shall be based upon the value(s) set forth in previously approved and/or adopted Drainage Management Plans, Drainage Plans, reports, or studies.
h. How stormwater quality volume will be managed

2. Identify all approvals being requested in conjunction with this submittal, such as:
 a. Zone Change
 b. Subdivision Plat
 c. Site Plan
 d. Building Permit
 e. Private Facility Drainage Permit
 f. Grading Permit
 g. Paving Permit
 h. DPM Waiver
 i. CLOMR, LOMR or LOMA

Section 6-14(B)(2) Introduction

1. Narrative description of project scope: Provide more detail than presented in the Executive Summary (combine with Executive Summary for non-complex projects).

2. Project requirements
 a. Description of and reference to required infrastructure and associated infrastructure list
 b. Platting and/or easements
 c. Approvals by and/or coordination with other Agencies and/or entities

3. Attachments (when applicable)
 a. Infrastructure List (draft, preliminary, amended, or approved)
 b. Preliminary or Final Plat
 c. Easement Documents
 d. Drainage Covenants
 e. Approval Letters

Section 6-14(B)(3) Project Description

1. Location
 a. Discuss relationship of the site to all of the following:
 i. Well-known landmarks.
 ii. Municipal limits.
 iii. City Zone Atlas page and reference.
 iv. Other jurisdictional boundaries.
 v. Previously approved Drainage Management Plans, Drainage Reports, Plans or studies including watersheds, basins, drainage-ways, etc. as defined therein.
 b. Zone Atlas page, or equivalent, with the site location identified.

2. Legal Description
 a. Identify the current legal description(s) of the land that comprises the site.
 b. Identify the proposed legal description(s), when applicable, of the land that comprises the site.
 c. Include a copy of existing and/or proposed platting as an attachment in cases where its inclusion will lend clarity or facilitate the review.

3. Flood Hazard Zone
 a. Identify proximity of site to a designated Flood Hazard Zone.
 b. Provide reference to the above referenced Flood Hazard Zone.
 c. Identify whether or not the site drains to or has an adverse impact upon a designated Flood Hazard Zone.
d. Include a copy of the relevant FEMA Flood Insurance Rate Map (FIRM) or Flood Boundary and Floodway Map with the site clearly identified along with all affected Flood Zones.

e. Identify portion of designated Flood Hazard Zone to be revised or amended when CLOMR, LOMR, or LOMA approval is requested.

Section 6-14(B)(4) Background Documents

1. Planning History
 a. Reference and discuss relevant Planning and Zoning actions, plans, or studies.
 b. Verify and/or demonstrate compatibility with the above actions, plans, and studies.

2. Drainage History and Related Documents
 a. Reference applicable Hydrology File, PWD (DRC) Project, and DRB Project numbers
 b. Describe the site location with respect to previously defined watersheds or drainage basins
 c. Reference and discuss relevant Drainage Management Plans, Drainage Plans, reports, and studies and their status
 d. Describe compatibility with or deviation from the above referenced Plans, Reports and Studies
 e. Provide copies of pertinent data from above referenced Plans, Reports and/or Studies when applicable

Section 6-14(B)(5) Existing Conditions

1. Site Investigation
 Describe by text or clearly show graphically all of the following:
 a. on-site drainage patterns
 b. on-site drainage facilities
 c. point(s) of discharge
 d. drainage basin(s) boundaries
 e. off-site drainage facilities
 f. off-site drainage patterns including off-site flow conditions
 g. condition and status of adjacent properties (e.g. developed, undeveloped, under construction, etc.)
 h. condition and status of adjacent right-of-way (e.g. developed, undeveloped, under construction, etc.)
 i. presence of any other relevant features

2. Site Evaluation
 a. Discussion of the significance and impacts of all of the following:
 i. on-site drainage facilities
 ii. off-site drainage facilities
 iii. point(s) of discharge
 iv. drainage basin(s) boundaries
 v. off-site flow conditions
 vi. proximity to designated flood hazard zone(s)
 vii. presence of any other relevant features or conditions that may impact or be impacted by the development of the property or project
 b. Form of Analysis
 i. Most situations - most submittals require both qualitative and quantitative analyses
Unique situations - for some cases, such as infill sites, a qualitative analysis by itself may be appropriate. Examples of appropriate qualitative analysis criteria are:

1. A comparison of the runoff generated by the proposed development to that generated by the overall drainage basin with respect to the impacts of the anticipated increase
2. Impacts on downstream flood plains
3. Potential off-site problems that may or may not be attributed to this development
4. Anticipated impact(s) and/or precedent to be set on the development of the remaining infill sites by following the same drainage concept

c. Downstream Capacity. The evaluation of downstream capacity shall include, but not be limited to, the following:

i. Assumptions
 1. Fully developed watershed
 2. Ability to accept and safely convey runoff generated from the 100-year design storm

ii. Hydraulic capacity
 1. Channel
 2. Crossing structure
 3. Storm inlet and/or entrance conditions
 4. Storm drain
 5. Street and/or alley

iii. Storage capacity
 1. Detention pond/reservoir
 2. Retention pond
 3. Flood zone

iv. Stability
 1. Channel/Arroyo
 2. Natural slope
 3. Cut/fill slope

Section 6-14(B)(6) Developed Conditions

1. On-site
 a. Discuss the following as applicable:
 i. Proposed development/construction
 ii. Impacts on existing drainage patterns
 iii. Impacts on existing drainage basins
 iv. Impacts on existing on-site facilities
 v. Identification of off-site flow conditions
 vi. Compatibility/compliance with previously approved and/or adopted Plans, Reports and Studies
 vii. Sediment bulking
 viii. Aggradation and/or degradation potential
 ix. Impacts on designated flood hazard zones (A Zones only)
 x. Required private drainage improvements
 xi. Required infrastructure
 xii. Required easements
 xiii. Phasing and future improvements
 xiv. Ownership, operation and maintenance responsibilities
 xv. Stormwater quality basins and corresponding facility
b. Evaluate and/or quantify the following:
 i. capacity and freeboard of existing on-site facilities
 ii. capacity and freeboard of proposed on-site facilities
 iii. impacts on designated flood hazard zones
 iv. impacts on existing drainage patterns and drainage basin boundaries
 v. impact of off-site flows on the proposed development
 vi. erosion potential and erosion setback requirements
 vii. phased system capacities and ability to function as a stand alone system
 viii. emergency overflow spillway conditions

2. Off-site
 a. Discuss the following:
 i. impacts on existing drainage basins and/or watersheds
 ii. impacts on existing off-site facilities and downstream capacity
 iii. compatibility/compliance with previously approved and/or adopted Plans, Reports and Studies
 iv. impacts on designated flood hazard zones
 v. required improvements
 vi. required easements
 vii. right-of-way dedications
 viii. phasing and future improvements
 ix. ownership, operation and maintenance responsibilities
 x. concurrence and/or approval from affected property owners for off-site grading or construction activities
 b. Evaluate and/or quantify the following:
 i. capacity of existing off-site facilities
 ii. capacity of proposed off-site facilities
 iii. impacts on downstream designated flood hazard zones
 iv. impacts on downstream drainage basins and/or watersheds
 v. downstream capacity

Section 6-14(B)(7) Grading Plan

1. Description
 a. Reference the Grading Plan when included as an attachment to the Drainage Submittal.
 b. Describe elements of the Plan and how those elements relate to the Existing and Developed Conditions sections of the submittal discussed above.
 c. Discuss and reference all other supporting drawings provided in support of the Drainage Submittal.

2. Content
 Refer to Grading Plan Checklist in Part 6-14(C).

Section 6-14(B)(8) Calculations

Describe the following:
1. Provide narrative description of the calculations performed to support the analyses and evaluations discussed above.
2. Discuss and reference calculations for existing, developed, and future hydrology.
3. Discuss and reference hydraulic calculations demonstrating capacity and/or adequacy of existing and proposed facilities.
4. Provide sample calculations, tables, charts, etc. as necessary to support the calculations and results discussed above.
5. Reference computer software, documents, circulars, manuals, etc. used to produce the calculations and results discussed above.

Section 6-14(B)(9) Conclusion

1. Summary of proposed drainage management strategy
2. Justification of rationale for discharge of developed runoff from site
3. Summary of proposed drainage improvements
4. Identification of DPM design waivers being requested
5. Identification of required Drainage Covenants
6. Identification of ownership and operation and maintenance responsibilities

Part 6-14(C) Grading Plan Checklist

The following checklist is intended only as a guide for preparing a Grading Plan to accompany a drainage report or plan. Some items may not be applicable to your particular project; some items may require more detail. A pre-design conference is recommended to define scope and project specific requirements.

Section 6-14(C)(1) General Information

1. Professional Engineer's stamp with signature and date.
2. Drafting Standards: See City Standard Specifications and DPM Chapter 4 Construction Plan Standards.
 a. North Arrow - see DPM Part 4-3(L)
 b. Scales - recommended engineer scales:
 i. 1" = 20' for sites less than 5 acres
 ii. 1" = 50' for sites 5 acres or more
 c. Legend - see DPM Part 4-3(K) Legend
 d. Plan drawings size: 24 x 36 inches
 e. Notes defining property line, asphalt paving, sidewalks, planting areas, ponding areas, project limits, and all other areas whose definition would increase clarity
3. Vicinity Map
4. Benchmark: location, description and elevation
 a. Albuquerque control survey vertical datum
 b. Permanently marked temporary benchmark on or very near site
5. Flood Hazard Boundary Map or Flood Insurance Rate Map (FIRM)
6. Legal Description

Section 6-14(C)(2) Existing Conditions

6-14(C)(2)(i) On-site

1. Existing Contours - vertical intervals for contour maps shall not exceed the following:
 a. One foot intervals for slopes under 1% with sufficient spot elevations at key points to adequately show the site's topography
 b. Two feet for slopes between 1% and 5%
 c. Five feet for slopes in excess of 5%
2. Spot elevations adequately showing conditions on-site.
3. Contours and spot elevations extending a minimum of 25 feet beyond property line.
4. Identification of all existing structures located on-site or on adjacent property extending a minimum of 25 feet beyond property line with particular attention to retaining and garden walls.
5. Identification of all existing drainage facilities located on-site or on adjacent property.
6. Pertinent elevation(s) of structures and facilities defined in A, B, and C above with NGVD 29 designation. NGVD 29 is the vertical system on which ACS monuments are currently based. In the future, ACS monuments should be field converted to NAVD 88 at which time NAVD shall become “equivalent.”
7. Indication of all existing easements and rights-of-way on or adjacent to the site with dimensions and purpose shown.
8. Existing City top of curb and flow line elevations with NGVD 29 designation, or equivalent.
9. The location of Special Flood Hazard Area Boundaries from the latest FEMA maps must be overlaid on the existing site map (enlarged to site plan scale), when applicable.
10. The topographic survey must be performed by a professional surveyor in accordance with the New Mexico Engineering and Surveying Practice Act as amended and any standards adopted by the State Board of Registration.

6-14(C)(2)(ii) Off-site

1. Contributing Area - delineation of off-site contributing watersheds and/or drainage basins on City of Albuquerque Ortho-Topo Area Maps or equivalent mapping at a preferred scale of 1" = 200’ or 1” = 500’, with watershed and basin designations that match those used in the hydrology calculations.
2. Existing easements and rights-of-way, including ownership and purpose.

Section 6-14(C)(3) Proposed Conditions

6-14(C)(3)(i) On-site

1. Proposed improvements superimposed onto the existing conditions.
2. Proposed grades adequately depicted by contours and/or spot elevations conforming with the following minimum criteria:
 a. Contours with vertical intervals for contour maps that shall not exceed the following:
 i. One foot intervals for slopes under 1% (with supplemental spot elevations as appropriate to adequately illustrate the proposed grading of the site).
 ii. Two feet for slopes between 1% and 5%.
 iii. Five feet for slopes in excess of 5%.
 b. Spot elevations supplied at all of the following:
 i. Key points and grade breaks.
 ii. Critical locations.
 iii. Pad elevations.
3. Indication of all proposed easements and rights-of-way on or adjacent to the site with dimensions and purpose identified.
4. City Engineer approved street and/or alley grades when site abuts a dedicated unpaved street or alley. In the event that approved grades are not available, provide preliminary street and/or alley grades.
5. Internal contributory drainage areas, including roof areas, outlined on plan.
6. Flow lines defined by arrows and spot elevations with NGVD 29 designation, or equivalent, as appropriate for clarity.
7. Pond(s) 100-year water surface elevation outlined and indicated on plan.
8. Finish building floor elevation(s) or pad elevation(s) with complete NGVD 29 designation, or equivalent, when applicable.
9. Elevations along property lines including relationship to adjacent top of curb.
10. Details of ponds, inverts, rundowns, curb cuts, water blocks, emergency spillways, retaining walls, pond outlets, safety fences, slopes, and all other significant drainage structures with contours, cross-sections and spot elevations. All cross-sections must be drawn to a standard engineering scale and adequately dimensioned.
11. Phasing.
12. Proposed construction of private storm drain improvements within public right-of-way and/or easement including identification of the public entity having ownership.
13. Proposed contours superimposed over existing contours adequately demonstrating changes in grade especially at the property line.
15. Specifications for the proposed grading and/or soil compaction.

6-14(C)(3)(ii) Off-site

1. Definition, location, and configuration of required drainage facilities.
2. Rights-of-way and easements needed to accommodate required drainage facilities.

Part 6-14(D) Erosion and Sediment Control Plan Checklist

Use this checklist to prepare an Erosion and Sediment Control (ESC) Plan. There are three types of approvals for an ESC plan: (1) ESC permit for grading, (2) ESC permit for building permit, and (3) work order construction plans. A Stormwater Quality Plan Information Sheet is to be submitted with each ESC plan submittal.
1. Checklist for ESC plans to obtain an ESC permit for grading:
 a. Site boundary.
 b. Disturbed area boundary
 c. Vicinity Map
 d. New Mexico Professional Engineer stamp and seal.
 e. Sediment barrier BMPs
 f. Erosion control BMPs
 g. Inlet protection
 h. Stabilized Construction entrance or exit (not located at drainage outfall unless there is no alternative due to site constraints)
 i. Sediment pond/berm for sites larger than 5 acres or steeper than 8%. The pond is to be sized to function for 1 inch of rainfall or less.
 j. BMP installation details.
k. Stabilization of tie-slopes and areas that will not be hard-scape or landscaped within 14 days, excluding building pads.
l. If a project is to be phased, show phasing and applicable BMPs/per phase.

2. Checklist for ESC plans to obtain an ESC permit for building permit approval:
 a. Items listed in Subsection 1 above.
 b. Construction Notes:
 i. When doing work in the City right-of-way (e.g. sidewalk, drive pads, utilities, etc.) prevent dirt from getting into the street. If dirt is present in the street, the street should be swept daily or prior to a rain event or contractor induced water event (e.g. curb cut or water test).
 ii. When installing utilities behind the curb, the excavated dirt should not be placed in the street.
 iii. When cutting the street for utilities include a note that the dirt shall be placed on the uphill side of the street cut and the area swept after the work is complete. A wattle or mulch sock may be placed at the toe of the excavated dirt pile if site constraints do not allow placing the excavated dirt on the uphill side of the street cut.

3. Checklist for ESC plans to be included in work order construction plans:
 a. Items listed in Subsection 1 above.
 b. Plan to show longitudinal street slope and street names.
 c. On streets where the longitudinal slope is steeper than 2.5%, wattles/mulch socks or j-hood silt fence shall be shown in the front yard swale or on the side of the street.
 d. Applicable notes from Subsection 2 above.

Part 6-14(E) Conceptual Grading and Drainage Plan Submittal Criteria

Conceptual Grading and drainage plans require less information than presented earlier in this section as they are not for construction and their function is to check the compatibility of the proposed development.

The following criteria are minimum requirements for this type of submittal.
1. Downstream capacity and how determined.
2. Quantified off-site flows if they are significant (greater than 5 cfs).
3. Flood zone status. If the site is in a SFHA, the engineer is to provide enough information on how the project will meet the requirements of the National Flood Insurance Program and Part 14-5-1 Flood Hazard Control (ROA 1994).
4. Existing and proposed topography on and adjacent to the site.
5. Developed flows and volumes.
6. Stormwater quality volume to be managed.
7. Plans stamped and clearly identified “Preliminary - Not For Construction.”
8. Public drainage infrastructure, if required, with sufficient information to allow the City Engineer to evaluate the infrastructure list.
Part 6-14(F) Engineer’s Certification for Non-Subdivisions

Use this checklist when certifying compliance with an approved drainage report or drainage plan for public, commercial, and multi-family residential buildings requiring a Certificate of Occupancy building permit or grading and paving projects. Engineer must revise the original drawing as approved with the following information that shall serve as minimum criteria for evaluation. This is merely a guide. The level of detail necessary for presentation and verification is a function of the specific plan being evaluated. The engineer’s certification must be approved prior to the release of the issuance of a Certificate of Occupancy, or acceptance (by the City) of the completed work.

1. Provide completed Stormwater Quality Plan Information Sheet.
2. Provide as-built finished floor and/or pad.
3. Provide as-built spot elevations on the property line and/or limits of phase development (points of significant grade changes) to demonstrate compliance with the approved drainage report or drainage plan.
4. Provide written acknowledgement of completed construction from the appropriate government agencies for construction within their right-of-ways and/or easements.
5. Outline the as-built drainage basin(s) (including roof areas) supported with sufficient spot elevations and roof drain locations.
6. Provide as-built elevations and dimensions for the following structures:
 a. Pond(s) (include as-built volume calculations)
 b. Pipe inlet(s) and outlet(s) (include as-built capacity calculations)
 c. Rundown(s) (including the required inlet dimensions)
 d. Spillway(s) (including the required outlet dimensions)
 e. Channel(s)
 f. Flowlines
 g. Erosion control and stormwater pollution prevention structure(s)
 h. Temporary drainage, erosion control and stormwater pollution prevention facilities required for phased development
 i. Retaining and/or garden wall(s)
 j. Other features critical to the drainage scheme.
7. Provide proof of professional certification:
 a. Engineer’s stamp dated and signed accompanied with a statement indicating substantial compliance with the approved drainage report and/or deficiencies with recommended corrections.
 b. The surveying associated with the certification must be performed by a professional engineer and/or surveyor in accordance with the “New Mexico Engineering and Surveying Practice Act” as amended and any standards adopted by the State Board of Registration.
Part 6-14(G) Engineer’s Certification for Subdivisions

Use this checklist when certifying compliance with an approved drainage report or drainage plan for subdivisions when required by the Development Review Board (DRB) for the release of financial guarantees associated with an executed Subdivision Improvement Agreement (SIA). Engineer must revise the DRB approved drawing with the following information, which shall serve as minimum criteria for evaluation. This is merely a guide. The level of detail necessary for presentation and verification is a function of the specific plan being evaluated. The engineer’s certification must be approved prior to the release of the SIA and/or financial guarantees.

1. Completed Drainage and Transportation Information Sheet.
2. As-Built Information:
 a. Pad elevations
 b. Top of Curb Elevations at critical locations
 c. Property corner elevations at each lot
 d. Horizontal and vertical data for storm drains (public and private)
 e. Horizontal and vertical data for retaining walls
3. As-Built Analysis
 a. Statement and verification that all grades inside the subdivision do not deviate by more than 18 inches of the DRB approved grades within 50 feet of the subdivision’s perimeter.
 b. Statement and verification of street, storm drain and channel hydraulic capacities.
 c. Statement and verification of pond capacities.
 d. Statement of as-built elevation tolerances with respect to the feature being analyzed.
4. Provide written acknowledgement of completed construction from the appropriate government agencies for construction within their right-of-ways and/or easements.
5. Clearly State the origin and Date(s) of As-Built Data
6. Supplemental Information
 a. Provide details as necessary to illustrate as-built conditions for instances in which the as-constructed work materially deviates from the as approved design.
 b. Provide calculations to demonstrate and/or verify that all deviations satisfy the intent of the approved design.
7. Professional Certification
 a. Engineer’s stamp dated and signed accompanied with a statement indicating substantial compliance with the approved drainage report and/or deficiencies with recommended corrections.
 b. The surveying associated with the certification must be performed by a professional engineer and/or surveyor in accordance with the “New Mexico Engineering and Surveying Practice Act” as amended and any standards adopted by the State Board of Registration.
Part 6-14(H) Required Certification Language

The following text shall appear on all Engineer Certifications.

DRAINAGE CERTIFICATION

I, ________________, NMPE ___, OF THE FIRM ________________, HEREBY CERTIFY THAT THIS PROJECT HAS BEEN GRADED AND WILL DRAIN IN SUBSTANTIAL COMPLIANCE WITH AND IN ACCORDANCE WITH THE DESIGN INTENT OF THE APPROVED PLAN DATED _______. THE RECORD INFORMATION EDITED ONTO THE ORIGINAL DESIGN DOCUMENT HAS BEEN OBTAINED BY ________________, NMPS ___, OF THE FIRM ________________. I FURTHER CERTIFY THAT I HAVE PERSONALLY VISITED THE PROJECT SITE ON _______ AND HAVE DETERMINED BY VISUAL INSPECTION THAT THE SURVEY DATA PROVIDED IS REPRESENTATIVE OF ACTUAL SITE CONDITIONS AND IS TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF. THIS CERTIFICATION IS SUBMITTED IN SUPPORT OF A REQUEST FOR ___________________________.

(DESCRIBE ANY EXCEPTIONS AND/OR QUALIFICATIONS HERE IN A SEPARATE PARAGRAPH)

(DESCRIBE ANY DEFICIENCIES AND/OR CORRECTIONS REQUIRED HERE IN A SEPARATE PARAGRAPH)

THE RECORD INFORMATION PRESENTED HEREON IS NOT NECESSARILY COMPLETE AND INTENDED ONLY TO VERIFY SUBSTANTIAL COMPLIANCE OF THE GRADING AND DRAINAGE ASPECTS OF THIS PROJECT. THOSE RELYING ON THIS RECORD DOCUMENT ARE ADVISED TO OBTAIN INDEPENDENT VERIFICATION OF ITS ACCURACY BEFORE USING IT FOR ANY OTHER PURPOSE.

XXXXXXXXXXXXXXX, NMPE XXXX
(SEAL)

DATE
ARTICLE 6-15 MAINTENANCE AND POST-CONSTRUCTION RESPONSIBILITY

All drainage control, flood control and erosion control facilities, both public and private, shall be regularly maintained. Accumulations of silt, trash, litter or stagnant water that create a health or safety hazard or that endanger the design function of the facility are not permitted. Excessive growth or accumulation of woody vegetation in channels and on dams and levees shall not be permitted. Active erosion due to wind or water associated with drainage control, flood control and erosion control facilities shall not be permitted. The City of Albuquerque may conduct inspections to ensure compliance with the City’s Drainage Ordinance (Part 14-5-2 ROA 1994), Stormwater Quality Ordinance, and the EPA MS4 Permit.

Part 6-15(A) Fenced & Gated Public Facilities

All newly constructed drainage facilities within a public right-of-way must be blocked off at both ends to prevent unauthorized vehicular access with City Standard Tube Gate or removable bollards. Fences must also conform to Section 6-8(G)(6) and Part 6-11(D). Details must be included on the plans unless a specific City Standard detail is referenced on the plan.

Part 6-15(B) Drainage Maintenance Plan

Every Grading and Drainage Plan that involves a privately maintained pond or underground stormwater quality facility must have a Drainage Maintenance Plan on the Grading and Drainage Plan and on the exhibit to the Maintenance Covenant if one is required.

Section 6-15(B)(1) Purpose

The purpose of the Maintenance Plan is to ensure all those involved in the maintenance and ongoing operation of the private drainage system understand its functionality and maintenance requirements in terms of supporting long-term performance to the design criteria to which it was designed. In addition, a Maintenance Plan delivered as part of a drainage submission serves the following additional purposes:

1. Confirms that the designer has taken maintenance into account within the design,
2. Provides a guide to the owner/operator as to what the maintenance requirements of the system are and how they can be met,
3. Provides a basis for estimating long term maintenance budgets,
4. A drainage Covenant will be required for any on-site pond, underground stormwater quality feature or privately maintained drainage facility on public property in accordance with Article 6-15.

The Maintenance Plan for the drainage system should be presented and discussed verbally with all those involved in inspecting and maintaining the drainage system.
Section 6-15(B)(2) Plan Outline

The Maintenance Plan must include:

a. Identification of responsible parties.

b. A description of the access to each surface and sub-surface pond or stormwater quality element for maintenance purposes.

c. A description of the method of safe and sustainable removal and disposal of waste periodically arising from the drainage system.

d. The maintenance schedule of work - itemizing the tasks to be undertaken and the frequency at which they should be performed so that acceptable long-term performance is achieved.

e. The method of monitoring sediment accumulation, including specific reference to a permanent marker installed in the pond to be used for such measurements.

f. If infiltration is used to justify a reduction in pond volume then provisions for inspection and maintenance must be specified in order to ensure the design infiltration rate is achieved. If the rate is not achieved then the pond volume should be increased to that required without any reduction for infiltration. The volume that the pond has been reduced by infiltration must be stated on the plan so that the pond size can be easily increased if the design infiltration rate is not achieved. The plan should include procedures for checking and documenting the infiltration rate on a regular basis to ensure that the accumulation of fine particles in the bottom of the pond does not decrease the infiltration rate to less than the required design rate. The rate must be specified in the maintenance plan, for example, 20 inches of standing water should infiltrate in 24 hours or less. It should also include provisions for corrective actions such as removing accumulated fine particles from the pond to restore the designed infiltration rate.

Part 6-15(C) Drainage Maintenance Covenants

Section 6-15(C)(1) Applicability

Nearly all new developments include drainage improvements that are required by Article 14-5 Flood Hazard and Drainage Control (ROA 1994), with the possible exception of a site that is allowed free discharge and for which stormwater quality requirements are waived. In those instances where such drainage features must be perpetually maintained to minimize possible damage to other properties or to public properties, the City may require the property owner to enter into a covenant or provide a note on the plat assuring maintenance of such facilities.

Section 6-15(C)(2) Procedures for Covenants

The Hydrology Section of the Planning Department maintains fillable forms available for download for three (3) types of covenants that are discussed below. Covenants run with the land. They generally require the owner of the land to maintain features to City standards and allow the City’s entrance upon the property to inspect drainage features for such maintenance as needed, so the covenant must be signed by the actual owner of the land with a notary confirmation of the owner’s identity.
The blanks on the fillable forms must be filled in and exhibits of the approved facilities must be prepared by a responsible representative of the owner. The signed and notarized original document must be submitted to the Design Review Section of the Planning Department along with a check for the recording fees and a copy of the deed as proof of ownership. City staff will then review the covenant and record the document in the Bernalillo County Records, then e-mail a recorded copy to the applicant.

When the drainage facility is located on-site, Covenants must be recorded prior to Certificate of Occupancy for new commercial Building Permits, and prior to approval of the Grading and/or Paving Permit for commercial projects that do not include a Building Permit. When the facility is located off-site, the Covenant must be recorded prior to approval of any permits, and prior to recording any plats, and prior to issuance of work order for all types of development for which Hydrology Section approval is required. The following is a brief description of the three types of drainage covenants the City may require the developer to provide:

1. **Private Facility Drainage Covenant:** for a privately owned, privately maintained facility. It places maintenance and inspection responsibility on the property owner(s). For example, a scour protection wall to protect property adjacent to an unlined arroyo or a first flush pond.

2. **Drainage Covenant (no public easement):** for a privately owned, privately maintained facility whose non-function or failure to perform will cause damage to others. For example, a large detention pond in a shopping center. The maintenance responsibilities lie with the owner. The City, however, has the right to inspect periodically and to enforce proper maintenance.

3. **Agreement and Covenant:** for a privately maintained facility within the City’s property (City right-of-way or City easement). The City has the right to inspect and to enforce proper maintenance. If the City right-of-way or City Easement does not already exist before the development, then one must be dedicated and/or granted in accordance with the "Final Plat" or "Grant of Drainage Easement" procedures above. For example, an Agreement and Covenant may be required for phased developments that require temporary retention ponds and/or sediment ponds.

Section 6-15(C)(3) Procedures for Plats

The Hydrology Section of the Planning Department maintains standard language to be placed on plats with provisions for private maintenance of drainage facilities in drainage easements that is available for download. The language must be included on both preliminary and final plats prior to approval by Hydrology, and must be used in lieu of a separate Covenant to identify maintenance responsibilities for on-site facilities wherever possible.
ARTICLE 6-16 COMMON EQUATIONS

Article 6-17 presents the most commonly used equations in drainage submittals: weirs, orifice, and Manning’s.

Part 6-16(A) Weirs

A weir is a barrier in an open channel, over which water flows. A weir with a sharp upstream corner or edge such that the water springs clear of the crest is a “sharp crested weir.” All other weirs are classified as “weirs not sharp crested.” Weirs are to be evaluated using the following equation:

\[EQUATION \ 6.64 \ \ Q = CLH^{3/2} \]

where:
- \(Q \) = Discharge in cfs
- \(C \) = Discharge coefficient use 2.7. If a discharge coefficient other than 2.7 is to be used, provide justification in drainage submittal.
- \(L \) = Effective length of crest in feet
- \(H \) = Depth of flow above elevation of crest in feet (approach velocity shall be disregarded in most applications)

Weirs are generally used as measuring and hydraulic control devices. Emergency spillways in which critical depth occurs and overflow-type roadway crossings of channels are the most common applications of weirs. Channel drop structures and certain storm drain inlets may also be analyzed as weirs. Special care must be exercised when selecting weir coefficients in all of the following cases:
1. Submerged weirs.
2. Broad crested weirs.
3. Weirs with obstructions (i.e. guardrails, piers, etc.).

Part 6-16(B) Orifices

An orifice is a submerged opening with a closed perimeter through which water flows. Orifices are analyzed using the following equation:

\[EQUATION \ 6.65 \ \ Q = CA (2gh)^{1/2} \]

where:
- \(Q \) = Discharge in cfs
- \(C \) = Discharge coefficient use 0.6. If a discharge coefficient other than 0.6 is to be used, provide justification in the drainage submittal.
- \(A \) = Area of opening in square feet
- \(g \) = 32.2 ft/sec²
- \(h \) = Depth of water measured from the center of the opening

Approach velocity shall be disregarded in most applications.
Orifices are generally used as measuring and hydraulic control devices. Orifice hydraulics control the function of many “submerged inlet - free outlet” culverts, primary spillways in detention facilities, manholes in conduit flow, and storm drain catch basins.

Part 6-16(C) Manning’s Equation

Manning’s equation is used to calculate flow, due to gravity, in open channels and conduits. In a conduit, the HGL must be below the soffit. As the Manning’s roughness coefficient value increases, velocity decreases and the HGL increases. Manning’s equation is presented below:

EQUATION 6.66 \[Q = \frac{(1.486AR^{2/3}S^{0.5})}{n} \]

where:
- \(Q \) - Flow Rate in Cubic Feet per Second
- \(A \) - Flow Area
- \(R \) - Hydraulic Radius; \(R = \frac{A}{P} \) where \(A \) is the flow area and \(P \) is the wetted (flow) perimeter
- \(S \) - Slope
- \(n \) - Manning’s Roughness Coefficient (values to be used in drainage submittals shown in **TABLE 6.16.26**)

TABLE 6.16.26 Values of Manning’s “n”

<table>
<thead>
<tr>
<th>Material</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic Pipe-Smooth Bore</td>
<td>0.010</td>
</tr>
<tr>
<td>Reinforced Concrete Pipe</td>
<td>0.013</td>
</tr>
<tr>
<td>Poured Concrete</td>
<td>0.013</td>
</tr>
<tr>
<td>No-Joint Cast In Place Concrete Pipe</td>
<td>0.014</td>
</tr>
<tr>
<td>Reinforced Concrete Box</td>
<td>0.015</td>
</tr>
<tr>
<td>Reinforced Concrete Arch</td>
<td>0.015</td>
</tr>
<tr>
<td>Streets</td>
<td>0.017</td>
</tr>
<tr>
<td>Flush Grouted Rip-Rap</td>
<td>0.020</td>
</tr>
<tr>
<td>Corrugated Metal Pipe</td>
<td>0.025</td>
</tr>
<tr>
<td>Grass Lined Channels (Sodded & Irrigated)</td>
<td>0.025</td>
</tr>
<tr>
<td>Earth Lined Channels (Smooth)</td>
<td>0.030</td>
</tr>
<tr>
<td>Arroyo Channels</td>
<td>0.030</td>
</tr>
<tr>
<td>Wire Tied Rip-Rap</td>
<td>0.040</td>
</tr>
<tr>
<td>Medium Weight Dumped Rip-rap</td>
<td>0.045</td>
</tr>
<tr>
<td>Grouted Rip-Rap (Exposed Rock)</td>
<td>0.045</td>
</tr>
<tr>
<td>Arroyo Overbank</td>
<td>0.045</td>
</tr>
<tr>
<td>Jetty Type Rip-Rap ((D_{50 > 24}))</td>
<td>0.050</td>
</tr>
</tbody>
</table>
ARTICLE 6-17 HISTORY

In August of 2015, two technical subcommittees were convened to update this chapter. One subcommittee was convened to evaluate a new hydrologic model, evaluate hydraulic models and revise the closed conduit and open channel sections of this chapter. The current hydrologic model, AHYMO, was not replaced, as the subcommittee decided that further study was required.

Members of this subcommittee are listed below:

Curtis Cherne, PE, CFM
Technical Subcommittee Chair
City of Albuquerque

Daniel Aguirre
Wilson and Company
Rick Beltramo
Galway Construction
Alandren Etlantus
Bohannan Huston Incorporated
Andres Sanchez
SSCAFCA
Gerhard Schoener
SSCAFCA
Stephen Scissons
Army Corp of Engineers
Brad Bingham
AMAFCA
Shahab Biazar
City Engineer
Brian Patterson
Titan Development
Rita Harmon
City of Albuquerque
Charles Easterling
Easterling and Associates
Kevin Daggett
City of Albuquerque
Dave Thompson
Thompson Engineering Associates
Don Briggs
Bernalillo County
Hugh Floyd
RESPEC
Pat Stovall
Smith Engineering
Vince Carrica
Tierra West

The second subcommittee convened to evaluate all other sections of the chapter. The chapter was reorganized for easier use and was structured with the approach to help the development community with site development. Some of the larger changes are:

1. Addition of Floodplain Development
2. Addition of Rio Grande Valley Drainage Criteria
3. Emphasis on Downstream Capacity and Off-site Flows
5. Addition of Low Impact Development
6. Removal of Probable Maximum Flood/Precipitation and Dam Design

Members of this subcommittee are listed below:

Curtis Cherne, PE, CFM
Technical Subcommittee Chair
City of Albuquerque
The DPM Technical Subcommittee would like to dedicate this revision to Jeff Mortensen P.E., who sadly passed away during the revising of this manual. Jeff was very knowledgeable in all aspects of drainage and he was involved with the creation of the Drainage Chapter and every revision since its inception.

In February 2015, the DPM revision was approved to incorporate requirements from the U.S. EPA MS4 Permit for post-construction development, and infiltration was acknowledged in the design of ponds.

The Drainage Chapter, originally Section 22.2, Hydrology, was first published in March, 1982, as part of the three-volume Development Process Manual (DPM); Volume 1: Procedures, Volume 2: Design Criteria, and Volume 3, Policies and Plans (now obsolete). The DPM is the result of the effort of a special team of City of Albuquerque staff and Albuquerque Urban Advisory Council members.

A major revision to Section 22.2 was adopted with the approval of a “Notice of Emergency Rule” by the City in January, 1986. This revision deleted a procedure that was based on Rational method “C” coefficients from the SCS Hydrologic Soil Group and textbook and handbook references.

A “DPM Subcommittee on Drainage” was established by the City in January, 1987 to update and revise the DPM design criteria for Section 22.2, Hydrology. The subcommittee held its first meeting in February, 1987. The subcommittee consisted of members from City staff, Albuquerque Metropolitan Arroyo Flood Control Authority (AMAFCA) staff, and local engineering consultants. The Bernalillo County Public Works Department later joined the subcommittee. In January, 1990 the subcommittee changed its name to the DPM “Drainage Design Criteria Committee” to avoid potential confusion with another committee established by the DPM Steering Group.

To supplement the work of the Committee, a research study was conducted in 1987 by Dr. Richard Heggen at the University of New Mexico to determine local infiltration factors.

A draft of the revised section was distributed for community review in January, 1990. This document recommended use of initial abstraction and uniform infiltration to complete rainfall loss. It included a procedure for smaller basins based on the Rational Method and a procedure for large and small watersheds based on the HYMO computer program.
With the adoption of the Bernalillo County Storm Drainage Ordinance (No. 90-6), the County Engineer was responsible for establishing criteria, procedures, and standards for the design of flood control, drainage controls, and erosion control improvements. To fulfill this requirement, Bernalillo County adopted “Interim Drainage Design Criteria for Bernalillo County” (April, 1990). This document incorporated Parts A, B, E and F from the January, 1990 draft of DPM Section 22.2, Hydrology.

In January, 1991, a revision of Section, 22.2, was distributed to eight (8) Federal and State agencies and 26 local engineering firms. A public “Notice of Review” was published in the Albuquerque Journal and Tribune on February 4, 1991. Following incorporation of review comments, the August, 1991 version of Section 22.2, Hydrology was released for use by the Drainage Design Criteria Committee. This version included the placement of the rainfall peak [in this second hour of the design storm. Modifications to the Probable Maximum Flood procedures incorporated a “local storm” and a “general storm.” A “Notice of Second Review” was published in the Albuquerque Journal and Tribune on August 31, 1991. The August, 1991 version has been accepted by the City, County, and AMAFCA as an allowable procedure for hydrologic analysis and design of flood control structures.

The January, 1993 version of Section 22.2, Hydrology incorporated comments received after August, 1991, including a procedure to evaluate basin hydrology for steep natural slopes and text revisions suggested by the USDA Soil Conservation Service. For most applications, there were no computational differences between the January, 1993 version and the August, 1991 version.

Following a public review and comment period, the revised Section 22.2, Hydrology was approved by the City Engineer and the Mayor and became effective in the City on April 7, 1993. Bernalillo County also adopted the revision as the standard for design of flood and drainage control, effective April 7, 1993. Since then, the revised Section 22.2, Hydrology has been the principal reference for hydrologic design in the City of Albuquerque and Bernalillo County.

The Drainage Design Criteria Committee wishes to acknowledge the assistance of the many individuals who reviewed the document. In particular we wish to thank Richard Leonard, Brian Burnett, and Dwayne Sheppard for their work on the Committee.

The DPM Drainage Design Criteria Committee:

Richard J. Heggen, PE, PH, PhD
Professor of Civil Engineering
University of New Mexico

Howard C Stone, PE
Water Resources Manager
Bohannan-Huston Inc.

Clifford E. Anderson, PE & PS
Drainage Engineer, AMAFCA
Charles M. Easterling, PE
Pres., Easterling & Assoc.

Robert S. Foglesong, PE & PS
Surface Water Hydrologist
Bernalillo County Public Works

Fred Aguirre, PE
Hydrologist, PWD
City of Albuquerque
ARTICLE 6-18 REFERENCE

References included below remain unchanged, as the 2018 revision used committee members’ experience. Their names are listed in Article 6-17 History. Their years of experience were a valuable resource.

Part 6-18(A) Hydraulics

Section 6-18(A)(1) Weirs and Orifices

Section 6-18(A)(2) Closed Conduits

Section 6-18(A)(3) Channels

Section 6-18(A)(4) Catch Basins

1. Los Angeles County Flood Control Authority, Design Manual - Hydraulic P.O. Box 2418 Los Angeles, California 90054 Rev. 1972.
Section 6-18(A)(5) Street Hydraulics

1. See Reference Section 6-18(A)(3) 1
2. See Reference Section 6-18(A)(3) 4

Section 6-18(A)(6) Berms and Levees

1. See Reference Section 6-18(A)(3) 6
2. See Reference Section 6-18(A)(3) 7
3. See Reference Section 6-18(A)(3) 8
Chapter 7
Transportation Design

This chapter presents criteria for the design of street systems and related features to accommodate differing needs. These criteria are intended to assure acceptable levels of comfort, safety, quality, and durability in completed designs.

Contents

Article 7-1 Introduction .. 7-9

Article 7-2 Purpose and Scope ... 7-9

Part 7-2(A) Governing Policy & Regulations 7-10

Section 7-2(A)(1) Albuquerque/Bernalillo County Comprehensive Plan 7-10
Section 7-2(A)(2) Integrated Development Ordinance (Article 14-16 ROA 1994) ... 7-10

Section 7-2(A)(3) Drainage Control Ordinance (Part 14-5-2 ROA 1994) 7-10
Section 7-2(A)(4) Street Tree Ordinance (Part 6-6-2 ROA 1994) 7-11
Section 7-2(A)(5) Traffic Code (Chapter 8 ROA 1994) 7-11
Section 7-2(A)(6) Streets and Sidewalks Ordinance (Article 6-5 ROA 1994) 7-11

Section 7-2(A)(7) Long Range Transportation System (LRTS) Guide 7-11
Section 7-2(A)(8) Bikeway & Trails Facility Plan (BTFP) 7-11
Section 7-2(A)(9) Corridor Studies .. 7-12

Part 7-2(B) Design Manuals & Resources 7-12

Section 7-2(B)(1) Roadway Design ... 7-12
Section 7-2(B)(2) Pavement Design ... 7-12
Section 7-2(B)(3) Pedestrian Facilities 7-12
Section 7-2(B)(4) Bikeways and Trails .. 7-13
Section 7-2(B)(5) Public Transit .. 7-13
Section 7-2(B)(6) Off-street Parking .. 7-13
Section 7-2(B)(7) Traffic Calming .. 7-13

Part 7-2(C) Using the DPM to Determine Roadway Specifications 7-13

Section 7-2(C)(1) Roadway Evaluation Process 7-13
Section 7-2(C)(2) Standards versus Guidelines 7-14
Section 7-2(C)(3) Design Waiver ... 7-14
Section 7-2(C)(4) Roadway Evaluation .. 7-14
Section 7-2(C)(5) Other Design Considerations 7-15

Part 7-2(D) Street Elements ... 7-17

Section 7-2(D)(1) Pedestrian Realm .. 7-17
Section 7-2(D)(2) Travel Way .. 7-18
Section 7-2(D)(3) Design Speed ... 7-20
Section 7-2(D)(4) Street Element Table 7-20
ARTICLE 7-3 ROADWAY DESIGN CONTEXT .. 7-22
Part 7-3(A) Transportation Planning and Policy .. 7-22
Part 7-3(B) Regional Transportation Planning .. 7-23
Section 7-3(B)(1) Metropolitan Transportation Plan (MTP) 7-23
Section 7-3(B)(2) Long Range Transportation Systems Guide (LRTS Guide) 7-25
Section 7-3(B)(3) Functional Classification ... 7-27
Section 7-3(B)(4) Right-of-way Width ... 7-30
Part 7-3(C) Albuquerque/Bernalillo County Comprehensive Plan 7-31
Section 7-3(C)(1) General Purpose ... 7-31
Section 7-3(C)(2) Implications for the DPM ... 7-32
Section 7-3(C)(3) ABC Comp Plan Corridors ... 7-32
Section 7-3(C)(4) ABC Comp Plan Centers ... 7-35
Section 7-3(C)(5) Policy Matrices ... 7-36
Section 7-3(C)(6) Other Considerations ... 7-38
Part 7-3(D) City of Albuquerque Complete Streets Ordinance 7-38
Section 7-3(D)(1) Definition of Complete Streets .. 7-38
Section 7-3(D)(2) Purpose of Ordinance ... 7-38
Section 7-3(D)(3) Street Design and Implementation ... 7-39
Section 7-3(D)(4) Connection Between the Complete Streets Ordinance and the
DPM ... 7-39
Part 7-3(E) Principles of Network Design and Roadway Connectivity 7-39
Section 7-3(E)(1) Connectivity ... 7-40
Section 7-3(E)(2) Regional Connectivity and Spacing of Major Roads 7-41
Section 7-3(E)(3) Neighborhood Connectivity ... 7-41
Section 7-3(E)(4) Intersection Density ... 7-42
Section 7-3(E)(5) Regional Network Considerations .. 7-43

ARTICLE 7-4 DESIGN STANDARDS .. 7-44
Part 7-4(A) Network Connectivity ... 7-44
Section 7-4(A)(1) Purpose ... 7-44
Section 7-4(A)(2) Definition of Terms ... 7-44
Section 7-4(A)(3) Connectivity ... 7-45
Section 7-4(A)(4) General Network Considerations ... 7-47
Section 7-4(A)(5) Block Lengths ... 7-48
Section 7-4(A)(6) Traffic Signal Spacing ... 7-48
Section 7-4(A)(7) Designated Pedestrian Crossings .. 7-50
Part 7-4(B) Site Access Points ... 7-53
Section 7-4(B)(1) Definitions ... 7-53
Section 7-4(B)(2) General Guidance & Curb Cuts .. 7-54
Section 7-4(B)(3) Pedestrian Access ... 7-54
Section 7-4(B)(4) Vehicular Access ... 7-55
Section 7-4(B)(5) Curb Return Design .. 7-58
Section 7-4(B)(6) Access Control ... 7-60
Section 7-4(B)(7) Striping and Signage .. 7-61
Section 7-4(B)(8) Roadways in NMDOT Jurisdiction 7-61
Part 7-4(C) Pavement Design ... 7-62
Section 7-4(C)(1) General Provisions ... 7-62
Section 7-4(C)(2) Subgrade Materials Evaluation .. 7-62
Section 7-4(C)(3) Traffic Factors in Pavement Design 7-64
Section 7-4(C)(4) Structural Design of Pavement .. 7-67
Section 7-4(C)(5) Flexible Pavements Design ... 7-69
Section 7-4(C)(6) Portland Cement Concrete Design 7-71
Section 7-4(C)(7) Alternative Pavement .. 7-71
ARTICLE 7-5 TRAFFIC STUDIES .. 7-158

Part 7-5(A) Background and Purpose .. 7-158
Part 7-5(B) Traffic Scoping Form and Traffic Impact Study 7-159
 Section 7-5(B)(1) Traffic Scoping Form (TSF) 7-159
 Section 7-5(B)(2) Traffic Impact Study (TIS) 7-159
Part 7-5(C) Traffic Study Warranting Criteria 7-160
 Section 7-5(C)(1) TSF Warranting Criteria 7-161
 Section 7-5(C)(2) TIS Warranting Criteria 7-162
Part 7-5(D) Traffic Analysis Procedures .. 7-162
 Section 7-5(D)(1) Traffic Scoping Form ... 7-162
 Section 7-5(D)(2) Traffic Impact Study (TIS) 7-163
Part 7-5(E) TIS Report Elements ... 7-164
 Section 7-5(E)(1) Executive Summary ... 7-164
 Section 7-5(E)(2) Introduction ... 7-164
 Section 7-5(E)(3) Existing Conditions ... 7-165
 Section 7-5(E)(4) Future Traffic Conditions and Analysis Years 7-166
TABLES

TABLE 7.2.27 Roadway Evaluation Process .. 7-15
TABLE 7.2.28 Automobile LOS by Corridor and Location* 7-16
TABLE 7.2.29 Street Element Dimensions ... 7-21
TABLE 7.3.30 Planning Document and Relevance for DPM .. 7-23
TABLE 7.3.31 Applications of the LRTS Guide in the DPM .. 7-26
TABLE 7.3.32 LRRS Roadway Types .. 7-27
TABLE 7.3.33 Roadway Functional Classification Descriptions 7-29
TABLE 7.3.34 Right-of-way Width Ranges for Major Roads 7-31
TABLE 7.3.35 Right-of-way Width Ranges for Local Roads 7-31
TABLE 7.3.36 Relationship among Corridor Types .. 7-33
TABLE 7.3.37 ABC Comp Plan Corridor Designations .. 7-34
TABLE 7.3.38 ABC Comp Plan Center Types and Definitions 7-35
TABLE 7.3.39 ABC Comp Plan Matrices – Descriptions and Relevance to DPM 7-37
TABLE 7.3.40 Intersection Density by Location, LRTS Guide 7-42
TABLE 7.4.41 Characteristics by Location ... 7-46
TABLE 7.4.42 Recommended Distance between Signalized Intersections by Corridor Type .. 7-49
TABLE 7.4.43 Designated Pedestrian Crossing Types ... 7-52
TABLE 7.4.44 Low-density Residential Driveways ... 7-55
TABLE 7.4.45 Minimum Distance Between Commercial Site Access and Intersection .. 7-58
TABLE 7.4.46 Maximum Number of Commercial Site Access Points per Site 7-58
TABLE 7.4.47 Driveway Widths for Arterial, Collector, and Local Streets 7-59
TABLE 7.4.48 Curb Return Radii by Design Vehicle – Single Entrance/Exit Widths ... 7-60
TABLE 7.4.49 R-value and Resilient Modules (Mr) Correlation 7-64
TABLE 7.4.50 Traffic Criteria for Pavement Design .. 7-65
TABLE 7.4.51 Growth Factor* .. 7-65
TABLE 7.4.52 ESAL Vehicle Equivalency Factor ... 7-66
TABLE 7.4.53 Lane Distribution Factor, DL .. 7-66
TABLE 7.4.54 Minimum Pavement Component Thickness 7-67
TABLE 7.4.55 Structural Coefficients of Pavement Components 7-67
TABLE 7.4.56 Serviceability Rating* .. 7-68
TABLE 7.4.57 Reliability and Statistical Values ... 7-68
TABLE 7.4.58 Standard Normal Deviation Values ... 7-69
TABLE 7.4.59 Structural Design Computation Form .. 7-70
TABLE 7.4.60 Dimensions for Angle Parking ... 7-102
TABLE 7.4.61 Minimum Parallel Parking Stall Width by Speed Limit 7-103
TABLE 7.4.62 Minimum Centerline Radius for a Normal Road* 7-109
TABLE 7.4.63 Design Controls for Vertical Curves 7-111
TABLE 7.4.64 Minimum Stopping Sight Distance ... 7-112
TABLE 7.4.65 Minimum Intersection Sight Distance 7-114
TABLE 7.4.66 Curb Return Radii Table .. 7-120
TABLE 7.4.67 Turn Lane Warrants .. 7-125
TABLE 7.4.68 Right-turn Lane Design Criteria .. 7-126
TABLE 7.4.69 Taper Design Criteria .. 7-127
TABLE 7.4.70 Minimum Left-turn Lane Transition Length 7-127
TABLE 7.4.71 ADT Parameters for Local Streets .. 7-130
TABLE 7.4.72 ADT Generation for Local Streets ... 7-131
TABLE 7.4.73 Local Street Design Standards .. 7-132
TABLE 7.4.74 Maximum Cul-de-sac Length ... 7-134
TABLE 7.4.75 Private Way Design Standards .. 7-136
TABLE 7.4.76 Easement Radii for Private Access Easements 7-136
TABLE 7.4.77 Parking Stall Dimensions ... 7-139
TABLE 7.4.78 Dimensions for Standard Angle Parking 7-141
TABLE 7.4.79 Dimensions for Compact Angle Parking 7-141
TABLE 7.4.80 Off-street Loading Space Dimensions 7-142
TABLE 7.4.81 Minimum Throat Length ... 7-144
TABLE 7.4.82 Minimum Drive Aisle Width .. 7-145
TABLE 7.4.83 Minimum Average Maintained Illuminance, E ... 7-150
TABLE 7.4.84 Minimum Average Maintained Illuminance 7-150
TABLE 7.4.85 Illuminance Method - Recommended Values 7-150
TABLE 7.4.86 Allowable CCT and Duv ... 7-152
TABLE 7.5.87 Traffic Analysis Requirements by Location 7-161
TABLE 7.5.88 Desired LOS by Location and Corridor Type 7-165
TABLE 7.5.89 LOS for Main Street Corridors ... 7-165
FIGURES

FIGURE 7.2.41 Street Element Dimensions Along Major Roads 7-21
FIGURE 7.3.42 Transportation and Land Use Planning 7-22
FIGURE 7.3.43 Access and Functional Class ... 7-27
FIGURE 7.3.44 Pedestrian Access to Cul-de-sac Example 7-40
FIGURE 7.3.45 Layered Networks ... 7-43
FIGURE 7.4.46 Regional and Neighborhood Roadway Networks 7-44
FIGURE 7.4.47 Controlled Pedestrian Crossing Example 7-45
FIGURE 7.4.48 Uncontrolled Pedestrian Crossing Example 7-45
FIGURE 7.4.49 Neighborhood Connectivity 7-47
FIGURE 7.4.50 Example Layout: Signalized Intersections & Pedestrian Crossings ... 7-49
FIGURE 7.4.51 Pedestrian Crossing Examples 7-52
FIGURE 7.4.52 Pedestrian Crossing Decision Path 7-53
FIGURE 7.4.53 Site Access Elements ... 7-54
FIGURE 7.4.54 Right-of-way Dedication .. 7-55
FIGURE 7.4.55 Low-density Residential Driveway Location and Dimensions 7-56
FIGURE 7.4.56 Driveway Distance From Intersection 7-56
FIGURE 7.4.57 Low-density Residential Shared Access Point 7-57
FIGURE 7.4.58 Commercial Site Access Points and Distance From Intersection ... 7-58
FIGURE 7.4.59 Curb Return Access Point ... 7-59
FIGURE 7.4.60 Divided Entrance Width ... 7-60
FIGURE 7.4.61 Non-residential Driveways with Aligned Centerline 7-61
FIGURE 7.4.62 Design Chart Flexible Pavements 7-70
FIGURE 7.4.63 Residential Area .. 7-74
FIGURE 7.4.64 Mixed-use Area ... 7-74
FIGURE 7.4.65 Sidewalk Slopes ... 7-75
FIGURE 7.4.66 Pedestrian Access Route ... 7-76
FIGURE 7.4.67 Perpendicular Curb Ramp ... 7-77
FIGURE 7.4.68 Parallel Curb Ramp .. 7-78
FIGURE 7.4.69 Directional Curb Ramp .. 7-78
FIGURE 7.4.70 Curb Ramp Counter Slope ... 7-79
FIGURE 7.4.71 Curb Ramp Clear Space .. 7-80
FIGURE 7.4.72 Crosswalk Marking ... 7-81
FIGURE 7.4.73 Refuge Island – At Grade ... 7-82
FIGURE 7.4.74 Refuge Island – Raised Median 7-83
FIGURE 7.4.75 Bicycle Lane .. 7-85
FIGURE 7.4.76 Paved Trail .. 7-88
FIGURE 7.4.77 Blended Transition Ramp with Matching Trail and Ramp Width ... 7-89
FIGURE 7.4.78 Trail Alternative 1, Vertical Separation 7-90
FIGURE 7.4.79 Trail Alternative 2, Trail in Lieu of Sidewalk 7-91
FIGURE 7.4.80 Transit Boarding and Alighting 7-91
FIGURE 7.4.81 ADA/PROWAG-compliant Pedestrian Access Route 7-92
FIGURE 7.4.82 ADA/PROWAG-compliant Bench Design Requirements .. 7-94
FIGURE 7.4.83 Travel Lane ... 7-96
FIGURE 7.4.84 Bus Turnout .. 7-97
FIGURE 7.4.85 Bus Bay .. 7-98
ARTICLE 7-1 INTRODUCTION

Transportation in an urban environment is a complex interaction of different modes of travel, trip purposes, and land use contexts. This chapter presents criteria established for use in the design of street systems and related features to accommodate these differing needs. These criteria are intended to ensure acceptable levels of comfort, safety, quality, and durability in completed transportation projects.

The guidance and regulations provided in the transportation chapter of the DPM are intended for use by qualified design professionals familiar with municipal street design. A brief overview of important governing regulations is presented together with references to commonly-accepted design manuals and publications related to the subject. Designers and others using this manual are expected to familiarize themselves fully with the pertinent regulations and the publications cited in the DPM.

The infrastructure standards contained in the DPM are intended to provide public benefits and support the health, welfare, and safety of Albuquerque residents. While the use of minimum design standards is generally cost effective, there are operational benefits and reduced economic life cycle costs when design exceeds the minimum required standard. The design values in this chapter represent the minimum standard; however, the project designer is encouraged to use values above this minimum.

ARTICLE 7-2 PURPOSE AND SCOPE

The transportation chapter of the DPM establishes standards and guidance both for private developers during the creation of site development and master plans, and the City of Albuquerque for the design of new roadways or reconstruction and rehabilitation of existing roadways. The purpose of this chapter is to promote consistently sound design of street systems with acceptable performance characteristics, to encourage innovative design, and to assert the need for sound, responsible, professional judgment by the designer.

Standards and guidelines established by this document rely on best practices from national design manuals and standards used by similar sized municipalities. This chapter was also developed in coordination with the Albuquerque/Bernalillo County Comprehensive Plan (ABC Comp Plan) and the Integrated Development Ordinance (IDO) to ensure that land use and transportation strategies work together within the City of Albuquerque. The linkages between applicable policy and regulatory documents that inform infrastructure standards contained in the transportation chapter are further described in Article 7-3 Roadway Design Context. This chapter also provides step-by-step guidance in the roadway design process to help designers correctly apply DPM standards when designing facilities within the City.
Part 7-2(A) Governing Policy & Regulations

Following are overviews of important City and regional policy and regulatory documents pertaining to street design. The list is not intended to be exhaustive, and the user is cautioned that these regulations are subject to change at any time. The DPM ensures that street design standards are consistent with the following ordinances and regulations. Nevertheless, competent designers must maintain familiarity with these and other pertinent regulations as they are updated over time.

Section 7-2(A)(1) Albuquerque/Bernalillo County Comprehensive Plan

The Albuquerque/Bernalillo County Comprehensive Plan (ABC Comp Plan) contains a shared community vision for how the City of Albuquerque and Bernalillo County should grow and confront long-term challenges as well as the cultural and environmental features that should be protected in the future. As a policy document, the ABC Comp Plan contains guidance about where growth is appropriate and what form it should take, including Center and Corridor designations and policy matrices. Additional information on the relationship between the ABC Comp Plan and the DPM is provided in Article 7-3 Roadway Design Context.

Section 7-2(A)(2) Integrated Development Ordinance (Article 14-16 ROA 1994)

The Integrated Development Ordinance (IDO) (Article 14-16 ROA 1994) contains regulations relating to access, circulation, and parking on private property; the interface with City right-of-way; and maximum block length and size. The IDO establishes zoning and land use categories that, in turn, govern certain street design parameters.

IDO Section 14-16-5-4 (Subdivision of Land) includes the following topics that are particularly relevant to street design:

- Requirements for Traffic Engineer approval of any plat that creates City right-of-way and private access easements.
- General right-of-way standards for streets, based upon roadway classification.
- Requirements for the provision of and compliance with detailed design criteria and technical standards for construction in the DPM.

Section 7-2(A)(3) Drainage Control Ordinance (Part 14-5-2 ROA 1994)

The Drainage Control Ordinance (Part 14-5-2 ROA 1994) establishes requirements governing design of storm runoff facilities as such facilities relate to the street system. The Drainage Ordinance also requires at least 1 all-weather access to developments.
Section 7-2(A)(4) **Street Tree Ordinance (Part 6-6-2 ROA 1994)**

Part 6-6-2 Street Tree Ordinance (ROA 1994) requires the installation of trees along major streets when obtaining building permits or paving parking lots.

Section 7-2(A)(5) **Traffic Code (Chapter 8 ROA 1994)**

The Traffic Code (Chapter 8 ROA 1994) regulates general traffic control, enforcement of construction signing, and establishes the criteria for clear-sight geometry at intersections.

Section 7-2(A)(6) **Streets and Sidewalks Ordinance (Article 6-5 ROA 1994)**

The Streets and Sidewalks Ordinance (Article 6-5 ROA 1994) contains the following guidance and requirements:

- **Street Names:** Establishes consistent criteria for use in naming City streets and streets within the extraterritorial planning and platting jurisdiction of the City.
- **Future Street Lines:** Provides for establishment of future street lines by the City Council. The Ordinance prohibits the construction of buildings and substantial alterations and additions to existing structures within such designated future street lines and setback areas.
- **Sidewalks:** Establishes the requirement for the construction of sidewalk and curb and gutter for properties, including dimensional, location, and construction regulations for sidewalks.
- **Curb Cuts:** Regulates the location, dimensions, and placement of driveway entrances through curbs to public rights-of-way.
- **Complete Streets:** Provides direction to the City to evaluate all design projects and incorporate all modes of transportation when designing or rehabilitating streets. See the Roadway Design Context section for additional information.

Section 7-2(A)(7) **Long Range Transportation System (LRTS) Guide**

The LRTS Guide is part of the Metropolitan Transportation Plan (MTP) contains maps depicting the long-range transportation networks through the Albuquerque urban area, as developed by the Mid-Region Council of Governments (MRCOG)/Mid-Region Metropolitan Planning Organization (MRMPO) and adopted by the Metropolitan Transportation Board (MTB). (See Article 7-3 Roadway Design Context for additional information.)

1. **Long Range Roadway System (LRRS):** Guides the locations and right-of-way set-aside for major streets.
2. **Long Range Bicycle System (LRBS):** Depicts the current and future bikeway systems for the region.

Section 7-2(A)(8) **Bikeway & Trails Facility Plan (BTFP)**

The Bikeway and Trails Facility Plan (BTFP) provides direction for the City in development of a well-connected, enjoyable, and safe bicycle and trail
network. Many of the design guidelines and standards from the BTFP are incorporated into this chapter.

Section 7-2(A)(9) Corridor Studies

Corridor studies take place regularly throughout the city, and such studies may influence design of major streets. The City’s Engineering Division of the Department of Municipal Development should be consulted for detailed information.

Part 7-2(B) Design Manuals & Resources

The following design manuals and other resources provide regulations and guidance for designing and building transportation infrastructure. The list is not intended to be exhaustive, and the user is cautioned that these regulations are subject to change at any time.

These documents may be updated over time. The DPM is consistent with the most updated versions as of 2018, with publication years indicated below. Designers should always use or reference the most recent version.

Section 7-2(B)(1) Roadway Design

4. Institute for Transportation Engineers (ITE), Designing Walkable Urban Thoroughfares, 2010.

Section 7-2(B)(2) Pavement Design

Section 7-2(B)(3) Pedestrian Facilities

1. City of Albuquerque, IDO Subsection 14-16-5-6(C), (General Landscaping Standards), 2018.
2. City of Albuquerque, IDO Subsection 14-16-5-6(D) (Street Frontage Landscaping), 2018.

Section 7-2(B)(4) Bikeways and Trails

4. MRCOG, *LRBS*.

Section 7-2(B)(5) Public Transit

Section 7-2(B)(6) Off-street Parking

Section 7-2(B)(7) Traffic Calming

Part 7-2(C) Using the DPM to Determine Roadway Specifications

Section 7-2(C)(1) Roadway Evaluation Process

Designers should follow a series of steps to determine the appropriate range in right-of-way and street design standards when considering the design of a new roadway or rehabilitation or reconstruction of an existing facility. **TABLE 7.2.27** below and the **DPM Part 7-2(C)** assist designers and users through the roadway evaluation process to ensure relevant policies and design standards are considered.
Roadway design guidance in the DPM is generally based on 3 designations:

1. **ABC Comp Plan Corridor**: City-specific designations reflecting the intended urban design and priority modes and street elements for major roadways.
2. **Functional Classification**: Designations defined by the Federal Highway Administration regarding the role of the roadway in moving people and goods.
3. **Design Speed**: The actual speed motorists are intended to travel under free-flow traffic conditions. Design speed is a function of roadway geometry. Some technical and geometric standards for roadways vary depending on the design speed rather than the roadway type. General guidance on design speeds are provided by Corridor type and functional classification in *ABC Comp Plan Table 7-5: Priority Street Element Matrix*. (See *Part 7-2(D) Street Elements*.)

Additional information on functional classification and Corridor designations are provided in the *Roadway Design Process* section.

Section 7-2(C)(2) Standards versus Guidelines

The DPM contains a combination of requirements and recommendations for transportation infrastructure. In instances where the term "shall" is used, the design information constitutes a standard where implementation is mandatory. If the term "should" is used, the design information constitutes a guideline and designers are encouraged to apply the guidelines to the greatest extent feasible.

Section 7-2(C)(3) Design Waiver

Where deviations from the DPM are necessary due to topographical, right-of-way, or other constraints, a design waiver may be requested from the City Engineer. The waiver process is described in *Chapter 2 Development Procedures*.

Section 7-2(C)(4) Roadway Evaluation

TABLE 7.2.27 outlines the process a designer should follow when designing a roadway and choosing necessary roadway elements and suitable dimensions. Standards for desired roadway elements are contained throughout this chapter of the DPM.
TABLE 7.2.27 Roadway Evaluation Process

<table>
<thead>
<tr>
<th>Step</th>
<th>Actions Required by Roadway Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Consult the Long Range Roadway System</td>
<td>Determine functional classification and right-of-way ranges. If the roadway is classified as a principal arterial, determine whether the corridor is a regional principal arterial or a community principal arterial on the LRRS (right-of-way needs vary depending on the regional role of the principal arterial). Identify existing right-of-way.</td>
</tr>
<tr>
<td>2. Consult the ABC Comp Plan Center and corridors Network map</td>
<td>Determine relevant land use designation, including whether the roadway passes through transit station areas or identified Centers that have special guidance. Identify the Corridor type. The Corridor designation provides guidance on priorities by travel mode and other design characteristics. Check for references to the roadway on the LRBS, Bikeways and Facilities Trails Plan, MTP Priority Transit Network, and MTP Primary Freight Network.</td>
</tr>
<tr>
<td>3. Review the ABC Comp Plan Priority Street Element Matrix</td>
<td>Determine which modes of transportation and street design elements should be prioritized, depending on any applicable Center or Corridor designations.</td>
</tr>
<tr>
<td>4. Review Existing Conditions</td>
<td>Analysis should determine if changes to the configuration of the roadway are desired. Considerations include: roadway configuration, travel conditions, traffic volume, alternative mode infrastructure and transit service, landscaping and sidewalk width, and medians and turn lanes.</td>
</tr>
<tr>
<td>5. Design / Redesign</td>
<td>Complete roadway design to support intended roadway users and surrounding land use context. This may vary along the roadway corridor.</td>
</tr>
</tbody>
</table>

Section 7-2(C)(5) Other Design Considerations

7-2(C)(5)(i) ADA/PROWAG

All new streets shall be constructed in compliance with ADA/PROWAG standards. During reconstruction projects, designers shall make every effort to ensure the street is brought into compliance with ADA/PROWAG. Where PROWAG standards conflict with ADA standards, the ADA standards shall prevail.
7-2(C)(5)(ii) Design Vehicle

The design vehicle to be used in the roadway design and redesign process shall be an SU-30. Where high levels of heavy truck travel are anticipated, an alternative design vehicle may be used with approval by the City Engineer. See the Section 7-4(I)(6) Intersection Design and Part 7-4(B) Site Access Points for guidance on curb return radii and other design elements where consideration of the design vehicle is required.

7-2(C)(5)(iii) Level of Service (LOS)

7-2(C)(5)(iii)(a) Automobile LOS

The ABC Comp Plan establishes appropriate LOS by location. Per the ABC Comp Plan, automobile mobility needs are to be balanced against the needs of other roadway users. Lower LOS, and somewhat higher levels of congestion associated with lower LOS, are acceptable where non-automobile travel modes are prioritized, such as along Premium Transit and Main Street Corridors. The acceptable LOS also varies as roadways pass through designated Centers where there are high levels of pedestrian activity. TABLE 7.2.28 contains automobile LOS by Center and Corridor type or functional classification.

TABLE 7.2.28 Automobile LOS by Corridor and Location*

<table>
<thead>
<tr>
<th>Functional Classification & Roadway Type</th>
<th>Transit Station Area</th>
<th>Downtown</th>
<th>Urban Center</th>
<th>Activity Center (Mixed-use)</th>
<th>Village Center</th>
<th>Employment Center</th>
<th>Outside Activity Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Transit</td>
<td>E-F</td>
<td>E-F</td>
<td>E-F</td>
<td>E-F</td>
<td>E-F</td>
<td>E-F</td>
<td>E-F</td>
</tr>
<tr>
<td>Major Transit</td>
<td>E</td>
<td>E-F</td>
<td>E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
</tr>
<tr>
<td>Maint Street</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
</tr>
<tr>
<td>Commuter</td>
<td>E</td>
<td>E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D</td>
</tr>
<tr>
<td>Other Arterial</td>
<td>E</td>
<td>E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>E</td>
<td>E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D-E</td>
<td>D</td>
</tr>
<tr>
<td>Collector</td>
<td>E</td>
<td>D-E</td>
<td>D</td>
<td>C-D</td>
<td>C-D</td>
<td>C-D</td>
<td>C-D</td>
</tr>
<tr>
<td>Main Street</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

* Table based on ABC Comp Plan.

7-2(C)(5)(iii)(b) Multi-modal LOS

Multi-modal LOS analysis is encouraged as part of the roadway redesign process to identify locations where pedestrian and bicycle infrastructure could be improved. The DPM does not require that a certain multi-modal LOS be obtained or that a particular multi-modal LOS tool be used; however, design principles that support higher multi-modal LOS are integrated throughout the DPM and the City Standard Specifications.

7-2(C)(5)(iii)(c) NMDOT Facilities

NMDOT-owned facilities are not governed by the standards or guidelines contained in the DPM. Coordination with NMDOT is required and standards
from the NMDOT Design Manual shall be used where a City-led project is undertaken on an NMDOT-owned facility.

Part 7-2(D) Street Elements

Modest differences in design ensure that roadways support the surrounding land use context. Therefore, the design of streets in the City of Albuquerque varies depending on the Corridor type and location. This section defines major street elements and provides general guidance on the principles that govern the design and redesign of roadways.

The street is divided into 2 areas, and the street elements are associated with one or the other:

1. **Pedestrian Realm**: includes the landscaping area and pedestrian access route (i.e. sidewalk).
2. **Travel Way**: includes the curb-to-curb area used for vehicle and bicycle travel.

Section 7-2(D)(1) Pedestrian Realm

The pedestrian realm is the generally elevated area above the travel way between the curb and the right-of-way line or the property line of the adjacent parcel. The pedestrian realm elements include the frontage zone, sidewalk, and the landscape/buffer zone.

The scale and design of Pedestrian Realm elements vary depending on the Corridor type and location. In general, wider buffers and sidewalks are desired in areas with high levels of pedestrian activity, including designated Centers and along certain designated Corridors. Detailed guidance can be found in Part 7-4(E) Pedestrian Facilities, including the application of the standards listed in TABLE 7.2.27 during reconstruction projects.

7-2(D)(1)(i) Frontage Zone

The frontage zone constitutes the segment between the sidewalk and the property line, which may be located within the City right-of-way. The presence of frontage zones reduces the likelihood of encroachments, conflicts between vehicular and pedestrian traffic, and of walls or other vertical structures being erected in the clear sight triangle. Frontage zones are most appropriate on roadways classified as collectors or above, and on non-residential local streets. The frontage zone is typically between 1’-2.5’ on all roadways classified as collectors and above. See the Local Streets section for additional guidance.

7-2(D)(1)(ii) Sidewalks

A hard-surfaced walk or raised path and any curb ramps or blended transitions along and generally paralleling the side of the streets for pedestrians. Sidewalks do not include the curb and gutter. For ADA/PROWAG purposes, the sidewalk area is also referred to as the “pedestrian access route,” and must be free of obstacles, protruding objects, and vertical obstructions.
Section 7-2(D)(1)(iii) Landscape/Buffer Zone

The landscape/buffer zone, also referred to as the furnishing zone, constitutes the area between the curb and the sidewalk and provides space for signage, utilities, storm water catchment, landscaping, street furnishings, and driveway aprons. The landscape/buffer zone separates the sidewalk from automobile traffic, and allows for the necessary space at crossings to install ADA/PROWAG accessible ramps at intersections. The top of the curb is included in the landscape/buffer zone, but is not considered part of the sidewalk.

Section 7-2(D)(2) Travel Way

The travel way may include curb and gutter, shoulders, bicycle facilities, transit amenities, on-street parking, travel lanes, medians, and turn lanes. Design guidance within the travel way generally depends on the Corridor designation, and whether a roadway segment is located inside or outside of a Center. If roadways have no Corridor designation, guidance is provided by functional classification.

7-2(D)(2)(i) Curb and Gutter

Curb and gutter constitute the area along the edge of a street that separates the elements in the pedestrian realm from the travel way and serves an important role in stormwater management. See Part 7-4(D) Curb and Gutter for general requirements and dimensions. See Chapter 6 Drainage, Flood Control, and Erosion Control for additional considerations, including low-impact development.

The gutter pan is considered as part of the overall roadway width; it may be counted as part of the width of the curbside travel lane or on-street parking space. The gutter pan is not included as part of the width of a bicycle lane.

7-2(D)(2)(ii) Shoulders

Shoulders are the space between the outside of the driving lane and the curb or roadway edge, and generally serve as a buffer, to provide space for disabled vehicles on high-speed roadways, and to provide space for maintenance and emergency vehicles.

Bicycle lanes may take the place of a shoulder, although buffers between the bicycle lane and the curb may also serve as shoulder space. In rural areas without curb and gutter, the shoulder may be unpaved. The width of the shoulder depends on the location and the available right-of-way.

7-2(D)(2)(iii) Bicycle Facilities

Bicycle facilities include on-street bicycle lanes, separated multi-use paths, and buffers that provide additional comfort and safety for cyclists. See Part 7-4(F) Bikeways and Trails for standards related to bicycle facilities, as well as guidance on the appropriate locations for bicycle facilities.

7-2(D)(2)(iv) Transit Amenities

Dedicated or transit-specific infrastructure may be used within the Travel Way depending on the context, and are more appropriate for some corridor types.
than others. Transit stop amenities are generally located in the Pedestrian Realm. See Part 7-4(G) Public Transit for further guidance.

7-2(D)(2)(v) On-street Parking

On-street parking constitutes dedicated areas generally on the edge of the Travel Way and adjacent to the curb for vehicles to park. On-street parking may be parallel or angled, depending on the available right-of-way and the location. See Part 7-4(H) On-street Parking for guidance on appropriate locations and dimensions.

7-2(D)(2)(vi) Travel Lanes

Travel lanes are dedicated areas for vehicle traffic. The design of general purpose travel lanes should be consistent with the intended role of the facility, including the types of vehicle and the needs of all potential users, as well as the surrounding land use context. Bicycle lanes are considered to be travel lanes.

The widths provided in TABLE 7.2.29 are consistent with national standards. Narrow lanes (i.e. the low end of the ranges in TABLE 7.2.29) can result in lower speeds and reduced crossing distances and are encouraged in locations where a balance of modes is desired, high-speed vehicle travel is less critical, and in areas with high levels of pedestrian activity. Travel lanes narrower than those indicated in TABLE 7.2.29 may be considered under highly constrained conditions and require the approval of the City Engineer.

See Article 7-4 Design Standards for additional guidance on roadway network design principles. See Part 7-4(G) Public Transit for guidance related to dedicated transit infrastructure and travel lanes where transit operates in mixed flow traffic.

The width of the travel lane is measured from the center of lane striping and the curb face. The gutter pan may be included as part of the width of curbside travel lanes.

7-2(D)(2)(vii) Medians

Medians are the center portion of the roadway that separates general purpose travel lanes moving in opposite directions. Medians frequently incorporate features to provide safety benefits and improve operations by providing space for turning vehicles. Some form of raised or striped median is desirable on principal and minor arterials, with wider medians required along segments with turn lanes or turn bays.

Center turn lanes may be incorporated as part of a median and interspersed with landscaped median islands. Medians may also serve as pedestrian or bicycle refuges, whether as raised features or through pylons, pavement markings, and signage that distinguish the pedestrian safe zone. See Section 7-4(I)(7) Median and Turn Lane Design for additional guidance.

7-2(D)(2)(viii) Turn Lanes

Turn lanes provide dedicated space for vehicles to complete a turning movement without blocking the flow of traffic. They may be continuous in the center of a roadway, combined with medians, or located at intersections. Intersection turn
lanes may be on the inside or outside of the road, depending on the turning
movement direction. Turn lane width varies depending on the Corridor type, the
type of turn lane, and the design speed. See Section 7-4(I)(7) Median and Turn Lane
Design for more information on various design options.

Section 7-2(D)(3) Design Speed

The design speed by Corridor type and location, as identified in the ABC Comp.
Plan, is provided in TABLE 7.2.29. The design speed is a function of roadway
geometry and reflects the actual speed motorists are intended to travel under
free-flow traffic conditions. Standards for the various geometric elements that
affect design speed are located throughout the transportation chapter.

The design speeds provided in TABLE 7.2.29 reflect a general approach that
slower speeds are more appropriate in locations with high levels of bicycle
and pedestrian travel, such as Centers and Corridors, as well as collectors and
local streets. Higher design speeds are appropriate outside of Centers and
along roadways where vehicle throughput is most critical. Posted speeds are
established only after appropriate examination of the completed street by the
Traffic Engineer.

Section 7-2(D)(4) Street Element Table

TABLE 7.2.29 summarizes design standards for various street elements by
location. The table does not indicate whether the street elements are required
for a particular roadway and should be used in combination with the ABC Comp.
Plan Table 7-5: Priority Street Element Matrix, which provides guidance on roadway
elements that should be included on Corridors. For example, sidewalks are
required on all roadways in the City of Albuquerque, while the presence of
bicycle infrastructure depends on the location and available right-of-way. TABLE
7.2.29 indicates the standard widths when street elements are included.

Achieving standards widths for desired elements may be particularly
challenging for roadway reconstruction projects, thus requiring some level of
prioritization on individual roadways and consideration of the roles that a series
of roads play across the network. For reconstruction projects, the landscape/
buffer zone should be provided as space allows.
TABLE 7.2.29 Street Element Dimensions

<table>
<thead>
<tr>
<th>Corridor Type / Classification</th>
<th>Location</th>
<th>Design Speed (MPH)</th>
<th>Pedestrian Realm</th>
<th>Travel Way</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frontage Zone (ft.)</td>
<td>Sidewalk Width (ft.)</td>
</tr>
<tr>
<td>Premium Transit</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10-12</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>1-2.5</td>
<td>8-10</td>
</tr>
<tr>
<td>Major Transit</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10-12</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>N/A</td>
<td>6-10</td>
</tr>
<tr>
<td>Multi-modal</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10-12</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>N/A</td>
<td>6-10</td>
</tr>
<tr>
<td>Commuter</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Main Street</td>
<td>Main Street</td>
<td>25-30</td>
<td>1-2.5</td>
<td>10-12</td>
</tr>
<tr>
<td>Other Arterial</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>Inside Center</td>
<td>30-35</td>
<td>1-2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>35-40</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Major Collector</td>
<td>Inside Center</td>
<td>25-30</td>
<td>1-2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>30-35</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Minor Collector</td>
<td>Inside Center</td>
<td>25-30</td>
<td>1-2.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Outside Center</td>
<td>30-35</td>
<td>N/A</td>
<td>6</td>
</tr>
<tr>
<td>Major Local</td>
<td>Inside / Outside Center</td>
<td>18-30</td>
<td>1-2.5 / N/A</td>
<td>5</td>
</tr>
<tr>
<td>Other Locals</td>
<td>Inside / Outside Center</td>
<td>15-25</td>
<td>1-2.5 / N/A</td>
<td>5</td>
</tr>
</tbody>
</table>

* Not including the gutter pan.

** Dedicated bicycle infrastructure may be appropriate along some major local roads. In these circumstances, use the design characteristics of a minor collector (inside Center). See Part 7-4(J) Local Streets for more information.

*** See Part 7-4(G) Public Transit for additional guidance on travel lane widths for roads with transit service.
ARTICLE 7-3 ROADWAY DESIGN CONTEXT

Planning efforts in the Albuquerque area emphasize the connection between land use and transportation and creating streets that are appropriate for the surrounding context. To support a range of policy and planning objectives, the design standards and guidance contained in the transportation chapter of the DPM are linked to the location of the roadway and the surrounding land use context.

This section clarifies the relationship among

- Long-range regional planning efforts
- City of Albuquerque policies
- Detailed design standards contained in the transportation chapter of the DPM

Designers are encouraged to refer to this section to understand the sources of DPM design standards and the rationale behind design priorities.

Part 7-3(A) Transportation Planning and Policy

The DPM represents the most specific planning and design document for the City of Albuquerque and connects the general policies and recommendations of planning documents related to land use and transportation to the actual design and function of City infrastructure. In practice, this document translates the policies and vision to location-specific design standards. The Roadway Design Context section describes these key planning documents and how each planning effort builds upon the layer that preceded it (see FIGURE 7.3.42 and TABLE 7.3.30).

FIGURE 7.3.42 Transportation and Land Use Planning

The highest level regional planning takes place through the MTP and is performed by the MRMPO with the participation of member agencies, including the City of Albuquerque and Bernalillo County. The MTP examines where growth will take place, identifies strategies for meeting future
transportation needs, and provides a list of all anticipated transportation projects in the 20-plus year timeframe of the plan. The scope of the MTP has broadened over time as MRMPO began undertaking scenario planning efforts to understand different ways the region could grow and the resulting impacts on the transportation system. Although the MTP is a regionally-approved document, it relies on local jurisdictions for policy implementation and project development. The most recent MTP includes the LRTS Guide, which provides right-of-way ranges and general design guidance based on the roadway type and the surrounding land use context.

The ABC Comp Plan provides a vision for how growth should occur specifically in the City of Albuquerque and in unincorporated portions of Bernalillo County. The plan emphasizes additional development in designated Centers and Corridors and describes the desired characteristics of these locations. The ABC Comp Plan provides greater detail on Corridor types than the LRTS Guide or MTP, including policy guidance on the form and function of different facilities.

The IDO regulates land use, development standards, and some infrastructure for new subdivisions. The IDO is the primary implementation tool of the ABC Comp Plan; however, for the policies of the ABC Comp Plan and the regulations of the IDO to be effective in creating places that support multi-modal transportation, they must be complemented by street design standards, such as those contained in the DPM.

TABLE 7.3.30 Planning Document and Relevance for DPM

<table>
<thead>
<tr>
<th>Planning Effort</th>
<th>Level</th>
<th>Scope / Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metropolitan Transportation Plan</td>
<td>Regional</td>
<td>Policy document and long-term project list</td>
</tr>
<tr>
<td>Long Range Transportation Systems Guide</td>
<td>Regional</td>
<td>Regional role of corridors; right-of-way ranges</td>
</tr>
<tr>
<td>ABC Comp Plan</td>
<td>City / County</td>
<td>Policy document</td>
</tr>
<tr>
<td>Integrated Development Ordinance</td>
<td>City</td>
<td>Zoning code and subdivision ordinance</td>
</tr>
<tr>
<td>Development Process Manual</td>
<td>Site / Roadway</td>
<td>Street design and site development guidance</td>
</tr>
</tbody>
</table>

Part 7-3(B) Regional Transportation Planning

Section 7-3(B)(1) Metropolitan Transportation Plan (MTP)

7-3(B)(1)(i) General Purpose

The MTP, updated every 5 years, examines the transportation challenges facing the Albuquerque Metropolitan Planning Area (AMPA) over the next 20-25 years. The reference document at the time of the 2017 Update of the ABC Comp Plan and the 2018 update to the DPM is the 2015 Futures 2040 MTP.
The **MTP** is a product of MRMPO, a regional government planning agency responsible for long-range transportation planning and for the programming of near-term federal transportation dollars in the AMPA. MRMPO is housed within MRCOG and works closely with member agencies, such as the City of Albuquerque, Bernalillo County, and other transportation partners and stakeholders to develop the **MTP**. The **MTP** sets priorities for how federal transportation dollars available to the region through the Transportation Improvement Program (TIP) will be allocated. The plan is also the source of the region's household and employment projections and forecasts how population and employment growth is distributed within the metropolitan area.

The role of MRMPO and the **MTP** is to identify long-term regional transportation needs and strategies to address those needs, and to incentivize agencies to pursue programs and projects that have the greatest regional benefits. MRMPO is overseen and the **MTP** must be adopted by the MTB, comprised of elected officials and other representatives from agencies and jurisdictions across the region, including the City of Albuquerque.

7-3(B)(1)(ii) Scenario Planning

In addition to a trend scenario, the regionally-adopted socioeconomic forecast that projects future development patterns based on existing plans and policies, the 2040 **MTP** contains a preferred scenario, developed collaboratively with agencies from across the AMPA, which demonstrates that encouraging growth in activity centers and along transit corridors has a range of benefits. These include reduced total driving or vehicle miles traveled (VMT), lower levels of congestion due to more efficient use of the transportation network, improved access to services and employment sites, lower transportation-related CO emissions, and a smaller development footprint that reduces the amount of new housing and employment sites at risk due to the impacts of climate change.

7-3(B)(1)(iii) Relationship between the MTP and City of Albuquerque Planning Documents

The **MTP** establishes the general connection between transportation infrastructure and surrounding land use and provides the regional framework under which more specific planning and roadway design efforts take place. The **MTP** and the Preferred Scenario are reflected in goals of the **ABC Comp Plan** that support increased transportation options and higher density and a mix of land uses in targeted locations. The **MTP** and the **ABC Comp Plan** share an emphasis on additional development within activity centers and corridors, and designations from the **MTP** Priority Transit Network are included in the **ABC Comp Plan** as Premium Transit or Major Transit Corridors. See Section 7-3(C)(2) for additional discussion on **ABC Comp Plan** Center and Corridor designations.

The **MTP** and the **ABC Comp Plan** also share policies and strategies for reducing VMT and managing congestion, including travel demand management strategies that increase transportation choice by supporting investments in alternative modes of transportation and reduce the number of peak-period single-occupancy vehicle trips. Implementing **MTP** goals, particularly those related to alternative modes, requires streetscapes that
support travel options for all users. The DPM specifically supports City and regional planning objectives through roadway design standards.

Section 7-3(B)(2) Long Range Transportation Systems Guide (LRTS Guide)

7-3(B)(2)(i) General Purpose

The LRTS Guide was developed as part of the 2015 update to the Futures 2040 MTP and translates Plan recommendations and Complete Streets principles into general street design guidelines. Objectives of the LRTS Guide include supporting regional travel requirements, balancing the needs of all modes, and ensuring street designs are compatible with the built environment. The LRTS Guide replaces the Future Albuquerque Area Bikeways and Streets (FAABS) document, which guided new roadway construction for decades.

7-3(B)(2)(ii) Applications of the LRTS Guide in the DPM

Though the design guidance in the LRTS Guide is largely superseded for the City of Albuquerque by the standards contained in the DPM, there are several components of the LRTS Guide that apply to roadway design within the City of Albuquerque. (See TABLE 7.2.27.) Critical components of the LRTS Guide include:

- Long-range system maps
- Right-of-way requirements for new arterials and collectors
- Guidance related to overall network design and connectivity
TABLE 7.3.31 Applications of the LRTS Guide in the DPM

<table>
<thead>
<tr>
<th>LRTS Guide Component</th>
<th>DPM Integration / Implications</th>
<th>Action Required by Designer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Long Range System Maps</td>
<td>The system maps identify future roadways and bicycle facilities that must be incorporated into subdivision layout and roadway design.</td>
<td>Refer to LRRS and LRBS maps for location of current and future facilities.</td>
</tr>
<tr>
<td>2. Right-of-way Guidance</td>
<td>The LRTS Guide is the source for right-of-way requirements for all roads classified as collectors or above. Right-of-way requirements for principal arterials vary depending on whether the corridor is designated as a regional or a community principal arterial.</td>
<td>Refer to table <code>TABLE 7.2.29</code> on right-of-way ranges.</td>
</tr>
<tr>
<td>3. Network Connectivity Standards</td>
<td>The DPM provides standards related to block length, traffic signal space, and pedestrian crossing frequency, among other considerations.</td>
<td>Consult Article 7-4 Design Standards for standards related to block length and the spacing of major roads. Additional guidance related to intersection density and network design for large subdivisions can be found in Part 7-4(A) Network Connectivity and the LRTS Guide.</td>
</tr>
</tbody>
</table>

7-3(B)(2)(iii) Long Range System Maps

The LRRS is the regional network consisting of all existing and proposed arterial and collector roadways. Facilities may be included in the LRRS regardless of whether funding is currently identified. (Only roads with identified funding are included in the MTP.)

The LRBS contains all existing and proposed bikeway and trail facilities. The LRBS consolidates local bicycle planning efforts completed by jurisdictions across the region.

7-3(B)(2)(iv) LRTS Guide and LRRS Roadway Types

The LRTS Guide provides right-of-way ranges for new roadways by functional classification. (See Section 7-3(B)(3) for discussion of functional classification and Section 7-3(B)(4) for additional information on right-of-way ranges.) To ensure that the right-of-way required for new principal arterials supports the surrounding context, the LRRS designates regional and community principal arterials, reflecting the fact that roadways with the same functional classification may serve different purposes. Per the LRTS Guide, different levels of right-of-way should be set-aside depending on the designation as a regional or a community principal arterial. These designations also inform the role and function of the roadway, including whether vehicle throughput is prioritized to improve regional mobility, or whether the infrastructure should support a range...
of modes and access to local land uses. (See Table 7.3.32)

<table>
<thead>
<tr>
<th>LRRS Roadway Type</th>
<th>Purpose of Designation</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Principal Arterial</td>
<td>Identify facilities where higher speed vehicle travel should be preserved and where access management strategies could be pursued.</td>
<td>Paseo del Norte, Tramway Blvd, Rio Bravo Blvd</td>
</tr>
<tr>
<td>Community Principal Arterial</td>
<td>Ensure that a particular mode is not to be prioritized at the expense of others, and that the corridor is meant to bring people to an area as opposed to through the area (as is the case with regional principal arterials).</td>
<td>Central Ave, Irving Blvd, San Mateo Blvd</td>
</tr>
</tbody>
</table>

Section 7-3(B)(3) Functional Classification

7-3(B)(3)(i) General Purpose and Background

Functional classification is used to identify the role of a roadway in moving people and goods, determine eligibility to receive federal funding, and for system monitoring and prioritizing resource allocation. Many jurisdictions also use functional classification in determining maintenance schedules and operational improvements, such as investments in Intelligent Transportation Systems.

FIGURE 7.3.43 Access and Functional Class
The following factors determine the functional classification of a roadway, including:

- **Mileage (the uninterrupted length of the road).**
- **Traffic volume, including the volume of a facility relative to other routes.**
- **Posted speed and/or observed travel speeds.**
- **Travel lanes and roadway capacity.**
- **Existing land use and future development.**
- **Spacing between routes.**

The purposes of a roadway are particularly important in determining functional classification, including whether a facility is meant to serve longer-distance travel needs (i.e. mobility) or provide access to local land uses. Roads that provide more entrance and exit points and serve shorter distance trips are generally classified as local roads or as collectors, while roads that serve longer-distance trips and connect larger destinations are generally arterial roads. **TABLE 7.3.33** defines the typical roadway features by functional classification.

Functional classification within the City of Albuquerque and Bernalillo County were updated in 2015 and are maintained by the NMDOT. All proposed changes to functional classifications must be proposed and approved through MRMPO before final approval by the NMDOT.

7-3(B)(3)(ii) Functional Classification and the DPM

While national design manuals are generally organized around functional classification, the DPM provides detailed roadway design guidance for arterial roadways based on Corridor designations, where applicable. For collectors and arterials where no Corridor designation is applied, guidance and standards are applied by functional classification or design speed. The DPM also provides standards for local streets that provide direct land access and connections to higher order streets. Additional guidance is provided where roadways pass through Centers. Within a major subdivision, City staff may assign a functional classification for new roadways during the review process.
TABLE 7.3.33 Roadway Functional Classification Descriptions

<table>
<thead>
<tr>
<th>Description</th>
<th>Design Considerations</th>
<th>Bicycle Infrastructure Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Classification: Principal Arterial</td>
<td>Generally high traffic-volume corridors serving long-distance trips.</td>
<td>Barrier protected bicycle lane/cycle track within activity centers.</td>
</tr>
<tr>
<td></td>
<td>- Serve major destinations and centers and provide critical connections across and within a region.</td>
<td>Bicycle lane with striped buffer.</td>
</tr>
<tr>
<td></td>
<td>- Provide a high degree of mobility for motorists but low levels of land access.</td>
<td>Parallel roadways within 1,000 ft. in areas with a grid network.</td>
</tr>
<tr>
<td></td>
<td>- Generally 2 or 3 through lanes per direction with a central left turn lane.</td>
<td>Adjacent multi-use paths.</td>
</tr>
<tr>
<td></td>
<td>- Regular transit service is common and premium transit with dedicated lanes may be appropriate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- On-street parking may be considered only in activity centers or urban areas with commercial activity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Due to high speeds and traffic volumes, bikeways should not be included on these roadways if there are existing parallel routes within 1,000 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Narrower lanes can be considered in activity centers and locations with high levels of pedestrian activity.</td>
<td></td>
</tr>
</tbody>
</table>

Functional Classification: Minor Arterial	Serve trips of moderate length.	Bicycle lane.
	- Connect to and complement principal arterials, provide intra-community connectivity.	Barrier protected bicycle lane/cycle track in activity centers and/or high traffic areas.
	- May carry local bus routes.	
	- Provide more land access than principal arterials without penetrating individual neighborhoods.	
	- Generally have fewer lanes, lower speed limits, and lower traffic volumes (6,000-20,000 ADT) than principal arterials	
	- Generally, 2 through lanes per direction with a central left turn lane. Transit service is common in mixed-flow on general purpose lanes.	
	- On-street parking may be considered in activity centers or urban areas with commercial activity.	
	- Number of lanes should support current or near-term term project traffic volume; excessive capacity should be avoided.	
	- Narrower lanes may be considered in activity centers with high pedestrian volumes.	

Functional Classification: Major Collector	Gather traffic from local roads and channel then onto the arterial network.	Bicycle lane.
	- Generally serve intra-community travel and provide less mobility and greater land access than arterials.	Sharrows/shared lane where volumes and speeds are low.
	- Feature moderate speed limits and traffic volumes (3,000-12,000 ADT).	
	- Generally, 1 or 2 through lanes per direction with a central left turn lane.	
	- On-street parking may be considered in activity centers or urban areas with commercial activity.	
	- Number of lanes should support current or near-term term project traffic volume; excessive capacity should be avoided.	
	- Narrower lanes may be considered in activity centers or locations with high pedestrian volumes.	

(source: FHWA and LRTS Guide)
TABLE 7.3.33 Roadway Functional Classification Descriptions

<table>
<thead>
<tr>
<th>Description</th>
<th>Design Considerations</th>
<th>Bicycle Infrastructure Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Collector</td>
<td>- Generally 1 through lane in each direction; may feature center turn lane.</td>
<td>- Bicycle lane.</td>
</tr>
<tr>
<td></td>
<td>- On-street parking may be considered in activity centers or urban areas with commercial activity.</td>
<td>- Sharrows/shared lane where volumes and speeds are low.</td>
</tr>
<tr>
<td></td>
<td>- Penetrates residential neighborhoods and distribute trips from local roads to the arterial network.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Used for short distances and feature lower speeds and traffic volumes (under 6,000 ADT) than major collectors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Generally 1 through lane in each direction; may feature center turn lane.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- On-street parking may be considered in activity centers or urban areas with commercial activity.</td>
<td></td>
</tr>
<tr>
<td>Local Roads</td>
<td>- Narrow roadways, though there should be sufficient width to support emergency vehicle access.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- On-street parking is generally provided.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Major local roads may function in a similar manner to minor collectors and may contain similar design features.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bicycles generally travel with the flow of traffic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Provide a high degree of land access, including most roads within residential areas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Support short trips at low speeds.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Bus routes generally do not run on local roads.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The DPM identifies 3 types of local roads – major, normal, and access – with modest design differences.</td>
<td></td>
</tr>
</tbody>
</table>

Section 7-3(B)(4) Right-of-way Width

7-3(B)(4)(i) General Considerations

The required right-of-way is a starting point for determining the roadway features that can be accommodated and how to balance modes and desired street elements. Right-of-way ranges should not be understood as encouraging the maximum roadway footprint or the inclusion of all possible roadway features. Roads that are especially wide can accommodate many types of roadway needs and uses, but may make conditions uncomfortable for cyclists, pedestrians, and transit users due to the nearby traffic volume or vehicle speeds, and may require pedestrians to cross long distances.

Per the [LRTS Guide](#), the minimum right-of-way should be set aside to meet the expected needs of the roadway. Right-of-way can be minimized if desired roadway elements, such as bicycle facilities, are incorporated on nearby facilities, or if there is sufficient roadway network density that vehicle travel can be dispersed across many roads and the width of an individual roadway can be limited without compromising auto mobility needs.

7-3(B)(4)(ii) Major Roads

Right-of-way width requirements for all arterials or collectors are determined by the [LRTS Guide](#) and are provided in **TABLE 7.3.34** below. More right-of-way
is required for roads with higher functional classification; principal arterials should have wider right-of-way than minor arterials, which should be wider than collectors.

TABLE 7.3.34 Right-of-way Width Ranges for Major Roads

<table>
<thead>
<tr>
<th>Roadway Type</th>
<th>Right-of-way Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Principal Arterial</td>
<td>106 ft. – 156 ft.</td>
</tr>
<tr>
<td>Community Principal Arterial</td>
<td>96 ft. – 130 ft.</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>82 ft. – 124 ft.</td>
</tr>
<tr>
<td>Major Collector</td>
<td>62 ft. – 100 ft.</td>
</tr>
<tr>
<td>Minor Collector</td>
<td>48 ft. – 84 ft.</td>
</tr>
</tbody>
</table>

7-3(B)(4)(iii) Local Roads

Right-of-way widths for local roads are provided in TABLE 7.3.35. See Part 7-4(J) Local Streets for additional information.

TABLE 7.3.35 Right-of-way Width Ranges for Local Roads

<table>
<thead>
<tr>
<th>Corridor Type</th>
<th>Location / Subdivision Type</th>
<th>Right-of-way Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Local</td>
<td>Citywide</td>
<td>44 ft. – 46 ft.</td>
</tr>
<tr>
<td>Normal Local</td>
<td>Single-family Residential Areas</td>
<td>48 ft. – 52 ft.</td>
</tr>
<tr>
<td></td>
<td>All Other Areas</td>
<td>48 ft. – 61 ft.</td>
</tr>
<tr>
<td>Major Local</td>
<td>Single-family Residential Areas</td>
<td>48’ ft. – 58 ft.</td>
</tr>
<tr>
<td></td>
<td>All Other Areas</td>
<td>50 ft. – 73 ft.</td>
</tr>
</tbody>
</table>

7-3(B)(4)(iv) Application to Existing Roads

Limited right-of-way on existing facilities may provide constraints on the available options and force designers to make choices and tradeoffs among street elements. Corridor designations are therefore useful in prioritizing how the available right-of-way should be allocated. Additional right-of-way may be considered but is not required for existing roadways if they are below the ranges provided in the DPM.

Part 7-3(C) Albuquerque/Bernalillo County Comprehensive Plan

Section 7-3(C)(1) General Purpose

The ABC Comp Plan is the policy document jointly adopted by the City of Albuquerque and Bernalillo County that describes the community’s vision for the future and identifies desired policy outcomes. In practice, the ABC Comp Plan guides discretionary decisions about changes to zoning, development proposals, and public investment decisions. The supporting IDO is a regulatory document that governs more specific land use considerations, including zoning, subdivision regulations, and site development standards.
Although it is primarily a land use document, the ABC Comp Plan addresses many issues confronting the City of Albuquerque that are inter-related and must be addressed in a coordinated manner. From a transportation perspective, the plan emphasizes increased transportation options, travel demand management strategies to manage congestion, and connectivity for all modes through "networks for vehicles, bicycling, walking, and transit that provide easy and safe access to employment, amenities, and services." The ABC Comp Plan emphasizes not only investments in public transit and infrastructure for non-auto modes, but a more comprehensive examination of the streetscape.

Section 7-3(C)(2) Implications for the DPM

The ABC Comp Plan contains tools and policies to encourage complementary land uses and transportation infrastructure. The link between land use and transportation in the ABC Comp Plan is built around the Centers and Corridors framework, which is summarized in the ABC Comp Plan Vision Map. The Centers and Corridors framework "prioritizes infill and growth in more urban areas and discourages growth in more rural and undeveloped areas" and asserts that "creating multi-modal corridors that connect centers within Albuquerque will be an important element of mobility in the future." For this framework to be successful, Corridors must have the right infrastructure to enable safe travel within Centers, to connect destinations, and support the needs of a range of users. This policy guidance is expanded into design standards throughout this chapter of the DPM.

In addition to design standards by Corridor type, policy matrices provide general guidance on street design elements and indicate transportation priorities by location.

Section 7-3(C)(3) ABC Comp Plan Corridors

While the LRTS Guide regional role designations and the roadway functional classification determine the amount of right-of-way that is allocated, the ABC Comp Plan applies Corridor designations that reflect the different functions that roadways may fulfill and the travel modes that should be incorporated into street design.

The ABC Comp Plan Corridors comprise a network of roadways that collectively meet the travel needs of Albuquerque and Bernalillo County residents. The network approach means that some Corridors prioritize certain modes over others. (See TABLE 7.3.36) For example, Commuter Corridors are facilities that play a critical role in the mobility of single-occupancy vehicles (Commuter Corridors are generally consistent with the Regional Principal Arterials designations on the LRRS). Premium Transit and Major Transit Corridors are roadways where space may be allocated for dedicated travel lanes, while Main Street and Multi-modal Corridors balance the needs of various users.

Roadways that are not designated in the ABC Comp Plan are subject to design guidance based on their functional classification.
TABLE 7.3.36 Relationship among Corridor Types

<table>
<thead>
<tr>
<th>Functional Classification</th>
<th>Long Range Roadway System</th>
<th>ABC Comp Plan Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Arterial*</td>
<td>Regional Principal Arterial / Community Principal Arterial</td>
<td>Premium Transit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Major Transit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-modal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Commuter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Main Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other</td>
</tr>
</tbody>
</table>

Some minor arterials are designated in the [ABC Comp Plan](#), however, there are no LRRS designations for minor arterials and all minor arterials have the same right-of-way requirements. All principal arterials are identified on the LRRS as either a regional or community principal arterial.

Land use and development patterns are also intended to vary by Corridor type. For example, land uses along Major Transit and Main Street Corridors and around Premium Transit Station Areas should include a mix of uses and pedestrian-oriented design. Commuter Corridors are intended for long-distance trips across town by automobile, including limited-access streets, and development along Commuter Corridors should be more auto-oriented. Where Corridors pass through designated Centers, development should include also include pedestrian-oriented design. The characteristics of each Comp Plan Corridor are provided in [TABLE 7.3.37](#).
<table>
<thead>
<tr>
<th>Corridor Designation</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premium Transit*</td>
<td>Premium Transit Corridors are intended to feature high-quality, high-capacity, high-frequency public transit (e.g. bus rapid transit). These corridors are planned for mixed-use and transit-oriented development within walking distance from transit stations at strategic locations along the corridor, with adequate transitions to single-family neighborhoods behind the corridor.</td>
<td>Central Ave, University Blvd</td>
</tr>
<tr>
<td>Major Transit</td>
<td>Major Transit Corridors are anticipated to be served by high frequency and local transit (e.g. Rapid Ride, local, and commuter buses). These corridors prioritize transit above other modes to ensure a convenient and efficient transit system. Walkability on these corridors is key to providing a safe and attractive pedestrian environment, as well as good access for pedestrians, cyclists, and transit users to goods and services along these Corridors and the Centers they connect.</td>
<td>San Mateo Blvd, Lomas Blvd, Coors Blvd</td>
</tr>
<tr>
<td>Main Street</td>
<td>Main Street Corridors are intended to be lively, highly walkable streets lined with local-serving businesses. Main Street Corridors are active areas with buildings usually placed right up to the sidewalk, with parking available on-street and to the sides or behind buildings. Main Street Corridors should be well-served by transit with pedestrian amenities such as street trees, landscaping, and wide sidewalks.</td>
<td>Central Ave, 4th St (north of Downtown), Bridge Blvd (South Valley)</td>
</tr>
<tr>
<td>Multi-modal</td>
<td>Multi-modal corridors are intended to encourage the redevelopment of aging, auto-oriented commercial strip development to a more mixed-use, pedestrian-oriented environment that focuses heavily on providing safe, multi-modal transportation options. The development of these corridors will enhance the environment for pedestrians and transit users, while nearby parallel streets (if available) may serve bicycle travel.</td>
<td>Isleta Blvd, Menaul Blvd, Paradise Blvd</td>
</tr>
<tr>
<td>Commuter</td>
<td>Commuter Corridors are higher-speed and higher-traffic volume routes for people traveling across town, usually via limited-access roadways. Access controls on these corridors influence the location and mix of land uses and the design of development. Development sites along Commuter Corridors should be buffered from the roadway. Motor vehicles are prioritized on these corridors, though safe conditions for pedestrians may be supported through landscaping, buffers, and medians.</td>
<td>Unser Blvd, Paseo del Norte, Gibson Blvd, Tramway Blvd</td>
</tr>
<tr>
<td>Other</td>
<td>Some roadways, including all collectors and the majority of minor arterials, do not have a Corridor designation. Undesignated corridors do not serve a function that specifically requires any particular mode to be prioritized over others. Per the Complete Streets Ordinance, these corridors require consideration of all users. Design for undesignated corridors should be based on the functional classification.</td>
<td>Juan Tabo Blvd, Academy Blvd</td>
</tr>
</tbody>
</table>

Premium Transit Corridors function as an overlay on a primary Corridor designation. Design standards in the DPM are generally provided for Premium Transit station areas, defined as the area within a 660 ft. radius around transit stations. Outside of Premium Transit station areas, the underlying Corridor designation informs roadway design and land use considerations; however, Premium Transit Corridors may require dedicated infrastructure and special design considerations along the length of the roadway.
Section 7-3(C)(4) ABC Comp Plan Centers

The design standards in this chapter often vary depending on whether the site being developed or the roadway passes through a designated Center. Most Centers are areas of relatively intense development characterized by a variety of uses that allow for many different activities. The ABC Comp Plan designates 5 types of Centers on a spectrum of development density, intensity of land use and activity, and market area size. See the Vision Map in the ABC Comp Plan to determine if a project is located in a Center.

<table>
<thead>
<tr>
<th>Center Type</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Albuquerque’s Downtown serves as a regional hub for concentrated job and commercial activity supported by high-density housing and includes a wide variety of land uses. Downtown is intended to have the highest intensity of employment and commercial uses in the region and to offer a high-quality environment for pedestrians. This mixed-use district should include multiple transportation options, street trees, wide sidewalks, and easy-to-use wayfinding signs.</td>
<td>Downtown Albuquerque</td>
</tr>
<tr>
<td>Urban Center</td>
<td>Urban Centers are walkable districts that incorporate a mix of employment, service, and residential uses at a density and intensity lower than Downtown but higher than neighborhood-serving Activity Centers. Urban centers are easily accessed by transit and provide opportunities for people to live, work, learn, shop, and play. Urban Centers are intended to become more walkable over time through investments in streetscape amenities, attracting infill development, and locating services closer to nearby residents.</td>
<td>Uptown, Volcano Heights</td>
</tr>
<tr>
<td>Activity Center</td>
<td>Activity Centers provide convenient, day-to-day services at a neighborhood scale to serve the surrounding area within a 20-minute walk or a short bicycle ride. These smaller centers should incorporate pedestrian-friendly design and are appropriate for mixed-use and multi-family housing.</td>
<td>UNM, San Mateo Blvd & Montgomery Blvd, Coors Blvd & Montaño Rd</td>
</tr>
<tr>
<td>Employment Center</td>
<td>Employment Centers are intended to remain predominately industrial, business, and retail centers. Employment Centers tend to be auto-oriented are generally located at major intersections or along highways or major arterials that provide access for trucks and connections for freight. Street design should emphasize efficient movement of vehicles and pedestrian accommodation within business parks.</td>
<td>Journal Center, Kirtland AFB, Albuquerque Sunport</td>
</tr>
<tr>
<td>Village Center</td>
<td>Village Centers are located in unincorporated areas of Bernalillo County and include a variety of retail and commercial services. As of the adoption of the 2017 ABC Comp Plan, there are no Village Centers within the City limits.</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Section 7-3(C)(5) Policy Matrices

Roadways should contain different features depending on the Corridor type, surrounding land use, and whether a roadway design is being developed for inside or outside of a designated Center. The policy matrices contained in the ABC Comp Plan – described below and summarized in TABLE 7.3.39 – provide guidance on how street design and development form should vary depending on the location and context. These matrices should be referenced during the roadway design process. Various aspects of the matrices have been incorporated into the DPM. For example, the acceptable LOS determined through a traffic impact study varies depending on the location.

The street design policy matrix indicates desired urban form and roadway characteristics by Corridor type and location. Design considerations include: access management, design speed, peak hour LOS, priority travel mode, transit accommodations, signalized intersections, on-street parking, pedestrian facilities and streetscape improvements, sidewalk width, landscaping and buffers, and bicycle facilities. The matrix differentiates between desired roadway form inside and outside of designated Centers or Premium Transit station areas. Many of these characteristics are built into the design standards of the DPM; however, the matrices should be considered for additional guidance on the desired urban form and street design context.

The ABC Comp Plan Table 7-5: Priority Street Element Matrix takes the street design matrices a step further by providing guidance on which travel modes and street elements to prioritize along designated Corridors. As not all street elements can or should be included along a particular roadway, the matrix provides direction on how to balance and prioritize the available right-of-way with the needs of various users in different locations and contexts.

Two land use development form matrices, one for Centers and one for Corridors, identify the desired land use mix and provide guidance on parking and characteristics of the built environment. An important difference to note in the Location column in TABLE 7.3.39 is the relationship between the buildings and the street, including setbacks and building access.
TABLE 7.3.39 ABC Comp Plan Matrices – Descriptions and Relevance to DPM

<table>
<thead>
<tr>
<th>Matrix</th>
<th>Location</th>
<th>Description</th>
<th>Relevance to DPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Street Design Policy</td>
<td>Chapter 6: Transportation - Policies by Corridor type (6.1.4-6.1.9)</td>
<td>General guidance on desired roadway character and the types of roadway elements that would ideally be incorporated along each Corridor type. Identifies desired size and scale of roadway elements and accommodations for alternative modes.</td>
<td>Identifies roadway character through guidance related to Corridor type and land use context. The DPM is the source of design specifications.</td>
</tr>
<tr>
<td>Street Design Policy</td>
<td>Chapter 7: Urban Design – Policies on Development Form (7.1.3 – Table 7-5)</td>
<td>Identifies which modes and roadway features should be accommodated within the City right-of-way given the surrounding land use context. The extent of available right-of-way may force designers to make tradeoffs and balance between needs.</td>
<td>Informs desired street elements and provides policy guidance for prioritizing elements within limited right-of-way. The street elements priority matrix should be used in combination with the dimensions outlined in the DPM standards.</td>
</tr>
<tr>
<td>Street Elements Matrix</td>
<td>Chapter 7: Urban Design – Policies on Development Form (7.1.3 – Table 7-3)</td>
<td>Identifies general land use mix, characteristics of the built environment, and relationship between buildings and the street within designated Centers. Guidance includes setbacks, building access, parking requirements, and parking location.</td>
<td>Contains considerations related to block length, site access, and desired level of network connectivity.</td>
</tr>
<tr>
<td>Development Form Matrix - Centers</td>
<td>Chapter 7: Urban Design – Policies on Development Form (7.1.3 – Table 7-4)</td>
<td>Identifies general land use mix, characteristics of the built environment, and relationship between buildings and the street along linear Corridors. Guidance includes setbacks, building access, parking requirements, and parking location.</td>
<td>Contains considerations related to block length, site access, and desired level of network connectivity.</td>
</tr>
</tbody>
</table>
Section 7-3(C)(6) Other Considerations

7-3(C)(6)(i) Areas of Change and Consistency

Other designations in the ABC Comp Plan are important to note as they influence the intended form and function of certain areas within the City, but are not generally incorporated into roadway design standards contained in DPM. All Centers and Corridors, with the exception of Commuter Corridors, are considered Areas of Change. These locations are intended to be supported by transit service and pedestrian travel opportunities, and contain land use patterns that encourage additional growth, higher levels of density, and more intense levels of development. Areas of Consistency are locations where existing land use regulations take precedent and where zoning changes are discouraged. All new development in areas of consistency should be at the scale and intensity of surrounding neighborhoods. Commuter Corridors, which promote auto travel, are areas of consistency.

7-3(C)(6)(ii) Other City Planning Documents

Community stakeholders have provided input about roadway design as part of formal public outreach processes for a number of locations across the City. Cross sections that were developed as part of an approved City planning process or study within the last 10 years should be considered as the basis for roadway design options within that planning or study area. Applicable plans and studies are posted on the Planning webpage.

Part 7-3(D) City of Albuquerque Complete Streets Ordinance

Section 7-3(D)(1) Definition of Complete Streets

Part 6-5-6 ROA 1994, the City’s Complete Streets Ordinance, defines Complete Streets as follows: “roadway(s) with cross sections (including City right-of-way and public or private easements abutting a City right-of-way that are designated for a roadway) built at a human scale, designed and operated for equal access by all users, including pedestrians, bicyclists, motorists and transit riders of all ages and abilities, to allow comfortable and convenient street crossings, and pedestrian access to adjacent land uses. Complete Streets components include, but are not limited to, sidewalks, bicycle lanes, dedicated bus lanes, comfortable and accessible public transportation stops, frequent and comfortable pedestrian crossing opportunities, median pedestrian islands, accessible pedestrian signals, curb extensions and pedestrian bulb-outs, reduced travel lane widths determined by the design speed of the roadway, context-appropriate curb return radii, roundabouts, or other features that accommodate efficient multi-modal travel.”

Section 7-3(D)(2) Purpose of Ordinance

The Complete Streets Ordinance, adopted in 2015 and updated in 2019, calls for formal consideration of multi-modal roadway elements as part of the street design and re-design process in established areas of the City. The Complete
Streets Ordinance follows a similar resolution passed by the MTB of MRMPO and responds to the fact that "much of Albuquerque’s existing roadway system was built to facilitate access to destinations by personal automobile, resulting in streets that are uninviting and impractical for other users." In their place, roadways should be designed to be context sensitive and to create multiple transportation options, where practical. To achieve this, roads should balance sufficient vehicle mobility needs with sidewalks, bicycle lanes, transit amenities, traffic calming measures, and convenient pedestrian crossings.

Section 7-3(D)(3) Street Design and Implementation

The Complete Streets Ordinance requires any project that would alter or otherwise affect streets to consider ways to mitigate insufficient multi-modal infrastructure that does not meet design standards. The Complete Streets Ordinance does not apply to basic maintenance projects such as patching, cleaning, or sidewalk repair that do not involve resurfacing, restriping, or reconfiguring the roadway.

Multi-modal infrastructure is to be introduced through traffic calming techniques, including but not limited to narrowing and/or removing general purpose lanes and reallocating space to other users, introducing parallel parking, and by providing buffers between vehicle traffic and pedestrian and bicycle facilities.

Section 7-3(D)(4) Connection Between the Complete Streets Ordinance and the DPM

The DPM incorporates Complete Streets principles and design considerations to ensure that multi-modal transportation infrastructure and context-sensitive design solutions are contained in all roadway redesign and new construction projects. Complete Streets design principles are most heavily emphasized in the design standards for designated Centers and Corridors and through the policy matrices in the ABC Comp Plan.

DPM Part 7-2(C) outlines the steps to be followed by City staff or contractors during roadway redesign or new construction projects. The design review process applies to all roads classified as collector or above and requires designers to examine the existing infrastructure and determine whether or not desired street elements are presently available. DPM Part 7-2(C) also identifies the relevant planning guidance that should be considered for prioritizing roadway elements, including regional transit and bicycle corridor designations, and Tables 7-3, 7-4, and 7-5 (Development Form and Priority Street Element Matrices) in the ABC Comp Plan.

Part 7-3(E) Principles of Network Design and Roadway Connectivity

The ABC Comp Plan emphasizes that roadway networks be designed in ways that promote transportation options and make destinations as accessible as possible. This section provides additional background on the purpose and intent of network design principles discussed in the LRTS Guide and the ABC.
Comp Plan and their implications for roadway design. Specific guidance related to connectivity standards is located in Article 7-4 Design Standards.

Section 7-3(E)(I) Connectivity

Connectivity affects the ability of travelers to efficiently reach their destinations; it is a function of the number of intersections, or intersection density, and the layout of the roadway network. Well-connected networks include numerous intersections, shorter block lengths, and few dead-end roads. Benefits of connectivity include: direct travel routes between destinations, which reduces VMT and improves air quality; dispersing traffic across multiple roadways to reduce congestion, including during traffic incidents; providing better emergency vehicle access; and creating shorter and more direct bicycle and pedestrian routes. Well-connected networks can also help avoid situations where property access falls directly onto arterials.

The LRTS Guide provides general guidance and strategies for improving connectivity and ensuring that transportation networks work for all users. Connectivity strategies include large-scale measures such as the presence of regional networks by travel mode and establishing standards for intersections per square mile and roadway spacing, as well as smaller-scale strategies such as using access easements and drainage utilities for creating connections and wall breaks or paths for providing access from residential subdivisions to the external transportation network.

FIGURE 7.3.44 Pedestrian Access to Cul-de-sac Example

The IDO specifies that new subdivisions include neighborhood-level roadway networks that connect to and are integrated with the regional transportation system. In addition to the design of roadways themselves, the best means of ensuring this integration is through standards related to block length and intersection density. Local roads also support the regional network by ensuring adequate access to regional roads, and the layout of local roads is critical to developing highly-connected networks that better support non-motorized travel.
Section 7-3(E)(2) Regional Connectivity and Spacing of Major Roads

The network of arterial and collector roadways provides connections across the City of Albuquerque and the larger region. These major roads should be spaced at regular intervals as the most efficient roadway networks in urban areas provide nearby parallel streets to allow for flexibility and route options. The regional roadway network layout should emphasize redundancy with many route options. Networks that rely on a few large-scale high-capacity roadways should be avoided as they generally become congested, inhibit pedestrian circulation, and compromise safety.

Per ITE access management guidance, the spacing between arterials should be no more than 1 mile apart. The network layout and level of connectivity should support the desired development and land use patterns, and the spacing of arterials and collectors should balance traffic flow demands with needs of non-motorized travel modes. Arterials may be spaced as close as ½ mile apart in areas with high levels of pedestrian activity, such as Downtown or an Urban Center. Arterials and collectors should be spaced more closely together in areas within denser networks and shorter block lengths. Larger spacing is more appropriate in rural and residential areas, but the network in those areas must still provide adequate bicycle and pedestrian connections.

Arterials and collectors should be interspersed to create a system of thoroughfares and parallel facilities that collectively meet the needs of a range of users. Guidance for the spacing of signalized intersections and designated pedestrian crossings are provided in Part 7-4(E) Pedestrian Facilities.

Section 7-3(E)(3) Neighborhood Connectivity

The layout and density of local streets within a neighborhood influences internal circulation patterns as well as access to the external roadway network. Local roads should provide short, direct routes that connect residential neighborhoods with commercial areas, schools, other neighborhoods, and arterials where transit service is most likely to be found.

Bicycle and pedestrian access to the external roadway network should be provided at regular intervals (i.e. no more than ¼ mile apart). If street connections are not feasible or not appropriate for the location, access may be provided via wall breaks. Bicycle routes on neighborhood streets that are parallel to arterials also provide a safe and comfortable alternative to cyclists rather than traveling along on-street bicycle lanes on arterials.

Cul-de-sacs and stub streets are generally prohibited as they limit the ability to access the regional roadway network. (See IDO Subsection 14-16-5-3(E)(1)(D) (Stubs Streets and Cul-de-sacs) for exceptions and Part 7-4(J) Local Streets for additional guidance on discontinuous streets.)
Section 7-3(E)(4) Intersection Density

Intersection density refers to the number of intersections in the road network for a particular area. Intersection density is a function of block length, road layout, and parcel size, and should be considered during the planning of medium- and large-scale developments.

Greater intersection density and shorter block lengths are most appropriate in Centers and Premium Transit station areas that promote high levels of pedestrian activity. Intersection density may be lower and block lengths may be longer in residential and industrial areas, or commercial areas and Employment Centers with low levels of pedestrian activity.

Sufficient intersections should be provided within residential neighborhoods to allow for the circulation of pedestrians and cyclists and to allow access to the regional network. **Table 7.3.40** provides guidance on intersection density, adapted from the LRTS Guide to City of Albuquerque land use designations.

<table>
<thead>
<tr>
<th>Location</th>
<th>Intersection Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>100 - 200 / sq. mi.</td>
</tr>
<tr>
<td>Urban Center</td>
<td>80 - 120 / sq. mi.</td>
</tr>
<tr>
<td>Activity Center</td>
<td>60 - 100 / sq. mi.</td>
</tr>
<tr>
<td>Employment Center</td>
<td>40 - 100 / sq. mi.</td>
</tr>
<tr>
<td>Residential Areas</td>
<td>30 - 50 / sq. mi.</td>
</tr>
<tr>
<td>Other Areas</td>
<td>30 - 50 / sq. mi.</td>
</tr>
</tbody>
</table>
Section 7-3(E)(5) Regional Network Considerations

7-3(E)(5)(i) Layered Roadway Networks

FIGURE 7.3.45 Layered Networks

The spacing of arterials and collectors and intersection density standards support layered roadway networks that provide route choice and create opportunities for all modes across the larger system. Each individual roadway does not have to meet the needs of all users if there are accessible facilities on nearby parallel routes. Rather, roadway networks should be created to encourage pedestrian and bicycle travel across the system and to enable freight movement on key corridors. Bicycle facilities may be preferable on nearby parallel roads (either a parallel collector or local road) with lower speeds and traffic volume than principal arterials.

7-3(E)(5)(ii) Limited Access Facilities

MRMPO maintains an inventory of limited access roadways across the AMPA. These roadways are subject to additional guidance with regards to intersection spacing and the intervals between traffic signals. The MRMPO roadway access policies should be consulted for projects located along designated limited access facilities.
ARTICLE 7-4 DESIGN STANDARDS

Part 7-4(A) Network Connectivity

Section 7-4(A)(1) Purpose
This section provides guidance on the spacing and layout of roads, blocks, and pedestrian crossings and recommendations for integrating road design and site development with the regional transportation system, as defined in the LRRS.

Section 7-4(A)(2) Definition of Terms
1. **Regional roadway network**: refers to the system of collector and arterial roadways (also referred to as major roads) that provide mobility and access across the city. See FIGURE 7.4.46.
2. **Neighborhood roadway network**: refers to the local streets, often in a residential area, that are surrounded by the regional roadway network.

FIGURE 7.4.46 Regional and Neighborhood Roadway Networks

3. **Arterial/collector spacing**: the distance between major roads along a corridor. Unless there is a grade separation, intersections of collectors and arterials are controlled by traffic signals.
4. **Block length**: the length of roadway between 2 intersections. The intersections at the end of blocks maybe signalized or unsignalized depending on the roadway type.
5. **Designated pedestrian crossing**: a location where pedestrians are encouraged to cross a roadway, as indicated by a combination of signal devices, signage, or pavement markings. (See Section 7-4(A)(7).)
6. **Signalized pedestrian crossing**: a designated pedestrian crossing where traffic is forced to stop and the pedestrian is protected by a traffic signal or pedestrian-activated signal device.
7. **Signalized intersection**: an intersection where vehicles are managed through a traffic signal. Pedestrian crossings are typically provided at signalized intersections.
8. **Mid-block crossing**: a designated pedestrian crossing not located at an intersection. Mid-block crossings provide direct access to destinations and reduce the distance between intersections with designated crossings.
9. **Controlled Pedestrian Crossing**: a location where vehicles in all directions are managed with traffic control devices that may facilitate pedestrian crossing. See FIGURE 7.4.47.
10. **Uncontrolled Pedestrian Crossing**: a location where pedestrians may cross a roadway where vehicles are not controlled. Pedestrian crossings with pavement markings and signage are an example of both uncontrolled and designated pedestrian crossing. See [Section 7-4(A)(7) Designated Pedestrian Crossings](#) for guidance regarding designated pedestrian crossings and [FIGURE 7.4.48 Uncontrolled Pedestrian Crossing Example](#).

Section 7-4(A)(3) Connectivity

Connectivity affects the ability of travelers to efficiently reach their destinations. The network characteristics standards in [TABLE 7.4.41](#) are intended to promote well-connected networks, including numerous intersections, shorter block lengths, and adequate pedestrian crossings. See [Article 7-3 Roadway Design Context](#) for additional discussion.
TABLE 7.4.41 Characteristics by Location

<table>
<thead>
<tr>
<th>Location</th>
<th>Major Road Spacing</th>
<th>Block Length</th>
<th>Signalized Pedestrian Crossing</th>
<th>Designated Pedestrian Crossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>1,320 ft. - 2,640 ft. (¼ to ½ mile)</td>
<td>200 ft. - 400 ft.</td>
<td><660 ft. (¼ mile)</td>
<td><400 ft.</td>
</tr>
<tr>
<td>Urban Center</td>
<td>1,320 ft. - 2,640 ft. (¼ to ½ mile)</td>
<td>300 ft. - 400 ft.</td>
<td><660 ft. (¼ mile)</td>
<td><400 ft.</td>
</tr>
<tr>
<td>Activity Center</td>
<td>1,320 ft. - 2,640 ft. (¼ to ½ mile)</td>
<td>400 ft. - 600 ft.</td>
<td><1,320 ft. (¼ mile)</td>
<td><600 ft.</td>
</tr>
<tr>
<td>Employment Center</td>
<td><2,640 ft. (½ mile)</td>
<td><800 ft.</td>
<td><2,640 ft. (½ mile)</td>
<td>As appropriate*</td>
</tr>
<tr>
<td>Village Center</td>
<td>1,320 ft. - 2,640 ft. (¼ to ½ mile)</td>
<td>400 ft. - 600 ft.</td>
<td><1,320 ft. (¼ mile)</td>
<td><600 ft.</td>
</tr>
<tr>
<td>Other Areas / Local Streets</td>
<td><2,640 ft. (½ mile)</td>
<td><600 ft.</td>
<td><2,640 ft. (½ mile)</td>
<td>As appropriate*</td>
</tr>
<tr>
<td>Main Street Corridor</td>
<td>1,320 ft. - 2,640 ft. (¼ to ½ mile)</td>
<td>300 ft. - 400 ft.</td>
<td><660 ft. (¼ mile)</td>
<td><400 ft.</td>
</tr>
</tbody>
</table>

* See [Section 7-4(A)(7)] and FIGURE 7.4.50.

7-4(A)(3)(i) Regional Connectivity and Spacing of Major Roads

1. **TABLE 7.4.41** designates the recommended spacing between major roads. This table does not differentiate between principal and minor arterials or major and minor collectors, since the most important consideration from a connectivity perspective is the frequency of major roads.
2. Arterials should be spaced no more than 1 mile apart. Arterials may be spaced as close as ¼ mile apart in areas with high levels of pedestrian activity, such as Downtown or Urban Centers.
3. Arterials and collectors should be interspersed to create a system of thoroughfares and parallel facilities that collectively meet the needs of a range of users.
4. Arterials and collectors should be spaced more closely together in areas within denser networks and shorter block lengths. Larger spacing is more appropriate in rural and residential areas, though the network must provide adequate bicycle and pedestrian connections.

7-4(A)(3)(ii) Neighborhood Connectivity

1. Local streets shall provide short, direct routes that connect residential neighborhoods with commercial areas, schools, other neighborhoods, and arterials where transit service is most likely to be found. (See FIGURE 7.4.49)
2. Bicycle and pedestrian access points shall be provided to the regional roadway network or existing bicycle facility at least every ¼ mile. If street connections are not feasible or not appropriate for the location, access may be provided via wall breaks. (See FIGURE 7.4.49 and FIGURE 7.4.50)
3. Cul-de-sacs and stub streets limit the ability to access the regional roadway network. See [IDO Subsection 5-3(E)(1)(d) Stub Streets and Cul-de-sacs] and [Section 7-4(J)(3) Stub, Cul-de-sac, and Loop Street Criteria] for appropriate locations and restrictions.
4. See [Part 7-4(J) Local Streets] for additional guidance on discontinuous streets and residential access via a single driveway.
Section 7-4(A)(4) General Network Considerations

7-4(A)(4)(i) General Block Layout
Blocks shall follow a square or rectilinear grid system, where feasible. Alignments may vary depending on topography, to protect natural features, to respond to site constraints, or to meet the needs of a particular set of land uses.

7-4(A)(4)(ii) Major Roads and ABC Comp Plan Centers
1. Arterials and collectors shall provide direct connections to Centers.
2. Major roads should comprise a network in which a series of parallel facilities collectively meet the needs of all users and provide sufficient capacity within designated Centers. (See Article 7-3 Roadway Design Context for additional discussion.)
3. Networks should be designed to ensure delivery trucks are accommodated and may reach their destinations. Accommodations for large delivery trucks (i.e. greater than SU-30) are not required on all roads.
4. Commuter Corridors should pass along the edges rather than through a Center. Where Commuter Corridors pass through or bisect Centers, the road design should transition to a typical section that supports the adjacent land use with slower design speeds and improved access to businesses and residential areas.

7-4(A)(4)(iii) Limited Access Facilities
Consult the MRCOG Roadway Access Policies for designated limited access facilities. These roadways are subject to additional guidance with regards to driveways, intersection spacing and the intervals between traffic signals.

7-4(A)(4)(iv) Right-of-way Allocation
See Article 7-3 Roadway Design Context for the required right-of-way allocation by functional classification for new roadways. Per the LRTS Guide, right-of-way values at the low end of the range are most appropriate if there is a high density of parallel facilities. Narrower facilities also reduce barriers for pedestrians and cyclists when crossing the street.
Section 7-4(A)(5) Block Lengths

1. Block length refers to the distance along a roadway between intersections. Block lengths vary depending on the roadway type and whether the roadway is located in a Center, with shorter block lengths most appropriate in high pedestrian activity areas.
2. See TABLE 7.4.41 for block lengths by location.
3. The maximum block length for collectors and arterials is 600 feet, except where access limitations are applied.
4. Along limited access facilities, business access or backage roads are strongly encouraged with pedestrian connections to the arterial provided every 600 feet or less.
5. The maximum block length along local streets is 600 feet. (See IDO Section 14-16-5-4(E)(3)(b) for exceptions). See Part 7-4(J) Local Streets for guidance on cul-de-sacs and stub streets.
6. Mid-block crossings shall be considered and are strongly encouraged for new streets in the following circumstances:
 a. Downtown and Urban Centers and along Main Street Corridors where block lengths exceed 400 feet. The mid-block crossing shall be located at the middle of the block to the greatest extent feasible.
 b. Other areas and any new development where block lengths exceed 600 feet. The mid-block crossing shall be located at the middle of the block to the greatest extent feasible.
7. See Section 7-4(A)(7) Designated Pedestrian Crossings for more information on crossings at intersections and mid-block locations.

Section 7-4(A)(6) Traffic Signal Spacing

1. Traffic signals are located at intersections to manage the flow of traffic and allow for safe pedestrian crossing. See Section 7-4(I)(6) for additional information on traffic control devices.
2. Standards for intervals between traffic signals can be found in TABLE 7.4.42.
3. Outside of Centers, traffic signal spacing less than ¼ mile is discouraged and requires approval by the City Engineer.
4. Along high auto volume roadways, such as Commuter Corridors, signalized intersections should be evenly spaced and at intervals that ensure efficient flow of vehicles (generally ½ mile).
5. The spacing between signals along Major Transit, Multi-modal, and Main Street Corridors should be at the low end of the range provided in TABLE 7.4.41 where practical, to ensure greater connectivity and opportunities for pedestrian crossings.
6. Within Centers, signalized intersections may be appropriate at intervals below the distance ranges provided in TABLE 7.4.42.
7. Unless the intersection is grade-separated, all intersections between arterial and collectors shall be controlled with signalized pedestrian crossings.
8. Intersections where arterials and collectors intersect with local streets may be unsignalized. See FIGURE 7.4.50 for an example of the spacing of traffic signals and pedestrian crossings.
9. Intersections involving 2 local streets are generally served by stop or yield sign controls.

TABLE 7.4.42 Recommended Distance between Signalized Intersections by Corridor Type

<table>
<thead>
<tr>
<th>Corridor</th>
<th>Distance between Signalized Intersections</th>
<th>Distance between Signalized Pedestrian Crossings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Transit</td>
<td>1,320 ft. - 2,640 ft. (¼ - ½ mile)</td>
<td>1,320 ft. (¼ mile)</td>
</tr>
<tr>
<td>Multi-modal</td>
<td>1,320 ft. - 2,640 ft. (¼ - ½ mile)</td>
<td>1,320 ft. (¼ mile)</td>
</tr>
<tr>
<td>Main Street</td>
<td>1,320 ft. (¼ mile)</td>
<td>660 ft. (¼ mile)</td>
</tr>
<tr>
<td>Commuter</td>
<td>2,640 ft. - 5,280 ft. (½ - 1 mile)</td>
<td>2,640 ft. (½ mile)</td>
</tr>
<tr>
<td>Other Arterial</td>
<td>2,640 ft. (½ mile)</td>
<td>2,640 ft. (½ mile)</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>1,320 ft. - 2,640 ft. (¼ - ½ mile)</td>
<td>1,320 ft. (¼ mile)</td>
</tr>
<tr>
<td>Collector</td>
<td>1,320 ft. - 2,640 ft. (¼ - ½ mile)</td>
<td>1,320 ft. (¼ mile)</td>
</tr>
</tbody>
</table>

FIGURE 7.4.50 Example Layout: Signalized Intersections & Pedestrian Crossings
Section 7-4(A)(7) Designated Pedestrian Crossings

1. The locations where pedestrians are encouraged to cross a roadway, as indicated by a combination of signal, signage, or pavement markings. While motorists are required by state law to stop for pedestrians crossing a roadway within a crosswalk, some forms of pedestrian crossings provide a higher level of safety and comfort than others. The type of crossing infrastructure depends on the location, traffic volume, and other considerations. (See warranting criteria in Subsection 7-4(A)(7)(iii)(a).)

2. Designated pedestrian crossings may be located at unsignalized or signalized intersections, and may be protected via a traffic signal or pedestrian-activated signal device, or unprotected with elements such as flashing beacons, pavement markings, and signage.

7-4(A)(7)(ii) Types of Designated Crossings

1. A higher level of safety and comfort for pedestrians are provided by traffic control signals, including pedestrian hybrid beacons that completely stop the flow of traffic through a pedestrian-activated sensor.

2. The crossing types listed in TABLE 7.4.43 are ordered from higher to lower form of safety and comfort.

3. Multiple measures should be combined at a crossing, such as a marked crosswalk and a pedestrian refuge island.

4. Traffic volume and the number of lanes of traffic that must be crossed should be considered when determining the most appropriate type of designated pedestrian crossing.

5. Examples of crosswalk design and pedestrian refuge islands are provided in FIGURE 7.4.52.

6. For signage type and placement of hybrid and flashing beacons, see MUTCD guidance.
Basic Criteria Met?
- Adequate stopping sight distance
- Minimal trucks
- Minimal turning movements
- Minimal driver distractions

Condition Red
Crosswalk not recommended. If pedestrian warrants are met, other treatments could be added such as: pedestrian bridge, pedestrian underpass or pedestrian signal.

Condition Green
Eligible for crosswalk with no or minimal additional treatments. Evaluate need for advance signing.

Condition Yellow
Eligible for crosswalk with additional treatments.

Condition Green
Eligible for crosswalk. Pavement markings and school crossing signs shall be installed at all officially designated school crossings on trunk highways. Note: Properly trained adult crossing guards may be the most effective means to increase safety.

Stop Controlled
Crosswalks and pedestrian warning signs will typically not be installed. Pedestrian treatment will only be installed if an engineering study demonstrates needs.

Signal Controlled Urban and Rural
Eligible for crosswalk with no or minimal additional treatments. Evaluate need for advance signing.

School Crossing

Source: NMDOT, FHWA

FIGURE 7.4.51 Pedestrian Crossing Decision Path
TABLE 7.4.43 Designated Pedestrian Crossing Types

<table>
<thead>
<tr>
<th>Controlled Locations</th>
<th>Uncontrolled Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic control device (signal or stop signs)</td>
<td>Flashing beacon (rapid rectangular flash beacon, in-pavement flashers)</td>
</tr>
<tr>
<td>Pedestrian hybrid beacon</td>
<td>Pedestrian refuge island</td>
</tr>
<tr>
<td></td>
<td>Signage (in-street, overhead, or sign post)</td>
</tr>
<tr>
<td></td>
<td>Marked crosswalk (no signs or signals)</td>
</tr>
</tbody>
</table>

FIGURE 7.4.52 Pedestrian Crossing Examples

7-4(A)(7)(iii) Frequency of Pedestrian Crossings

7-4(A)(7)(iii)(a) General Warranting Criteria

1. Designated pedestrian crossings shall be available between signalized crossings as appropriate and as specified in TABLE 7.4.41. The frequency of designated pedestrian crossings depends on factors that include, but are not limited to the location, block length, and the type of corridor. More frequent crossings shall be provided along corridors with high levels of pedestrian activity and within Centers.

2. In locations not specified in TABLE 7.4.41 (including in residential neighborhoods), the maximum distance between designated pedestrian crossings should be 1,320 feet unless there is no pedestrian activity in the area. Additional crossings may be provided as appropriate.

3. Designated pedestrian crossings should be provided at intersections unless blocks exceed desired lengths, in which case mid-block crossings may be considered. (See Section 7-4(A)(7)(iii)(d).)

4. Designated pedestrian crossings should also be provided in all of the following situations:
 a. Within 100 feet of a transit station and 400 feet of a transit stop.
 b. At special generators, including schools, hospitals, recreational sites, event centers, or major shopping/retail sites.
 c. Areas with identified safety concerns, as demonstrated through a Road Safety Audit, crash rates above the regional average, or the result of other studies or data collection efforts.

5. Designated pedestrian crossings at locations other than those specified by the DPM should be supported by a study or pedestrian count information documenting that a crossing is warranted at the location.

6. Designated pedestrian crossings may be required at the discretion of the City Engineer, and may be omitted with the approval of the City Engineer.
7. Uncontrolled pedestrian crossings should not be provided in high volume traffic locations or other situations that are not conducive to safe pedestrian travel. See Subsection 7-4(A)(7)(iii)(c) for additional guidance.

7-4(A)(7)(iii)(b) Signalized Pedestrian Crossings

Signalized pedestrian crossings (e.g. traffic signals or pedestrian hybrid beacons) should be provided at intervals per TABLE 7.4.41 and TABLE 7.4.42 and in all of the following locations:
1. All at-grade intersections with a traffic signal.
2. Every 2,640 feet (½ mile) or less in all other circumstances, unless no pedestrian activity is present or is unlikely to be present in the future.

7-4(A)(7)(iii)(c) Considerations for Unsignalized Pedestrian Crossings

1. A decision path to determine what level of control to use at a pedestrian crossing is provided in FIGURE 7.4.51. Introducing an unsignalized pedestrian crossing may make conditions less safe for pedestrians by creating a false sense of security. Unsignalized pedestrian crossings are generally discouraged.
2. Additional guidance on appropriate locations for unsignalized pedestrian crossings can be found in the National Cooperative Highway Research Program (NCHRP) Report 562 Improving Pedestrian Safety at Unsignalized Crossings and the FHWA Safety Effects of Marked Versus Unmarked Crosswalks at Uncontrolled Intersections.
3. The City Engineer may elect not to approve the installation of an unsignalized pedestrian crossing if the location is not supported by the criteria provided in FIGURE 7.4.51.

7-4(A)(7)(iii)(d) Consideration of Mid-block Crossings during Reconstruction Projects

1. Mid-block crossings shall be considered and are strongly encouraged during roadway reconstruction projects in Downtown, Urban Centers, and along Main Street Corridors where existing block lengths exceed 400 feet.
2. Mid-block crossings shall be considered and are strongly encouraged during roadway reconstruction projects where existing block lengths exceed 600 feet and where pedestrians are present, including high pedestrian activity areas such as schools.
3. Mid-block crossings are strongly encouraged where 2 major pedestrian generators are located on opposite sides of the street and are separated by a collector or arterial roadway, or to provide direct access to a school where no designated crossings are nearby.
4. The spacing of traffic signals must be evaluated during the consideration of mid-block crossings. See the MUTCD for guidance on traffic signal spacing.

Part 7-4(B) Site Access Points

Section 7-4(B)(1) Definitions

Curb returns and drivepads provide site access points for residential and commercial properties. (See FIGURE 7.4.54)
1. Driveway: An area on private property where vehicles and bikes are operated or allowed to stand.
2. Drivepad: The portion of a driveway in the right-of-way that connects a street to a commercial or residential driveway and that is typically at sidewalk grade.

3. Curb Return: The curved section of curb connecting a street to an intersecting street or driveway, both of which are typically at the street grade.

Section 7-4(B)(2) General Guidance & Curb Cuts

1. The frequency of site access points depends on the functional classification of the corridor and whether the roadway is located in a residential or non-residential area.

2. Per the ABC Comp Plan, there should be minimal driveways in high pedestrian activity areas to reduce conflicts between motorists and pedestrians. Closely spaced site access points conflict with safe pedestrian movement by increasing vehicle crossings over sidewalks and by reducing on-street parking.

3. Site access points should be limited along Commuter Corridors and other auto-oriented areas in order to manage access and improve traffic flow.

4. Part 6-5-4 Curb Cuts Ordinance (ROA 1994) regulates the location, dimensions, and frequency of site access points along public rights-of-way.

5. Shared Site Access Points: driveways that straddle property lines, or are entirely on 1 property but are to be used by another property, shall have an access easement. Sufficient area behind the drivepad for the proper operation of the driveway must also be included.

6. Abandoned site access points: per the Curb Cuts Ordinance, any abandoned site access points must be replaced with sidewalk, curb, and gutter by the property owner. As a part of a public roadway project, after 30 day notice, the City may close abandoned site accesses.

7. The driveway or intersecting road behind a curb return shall be flush with and of the same material as the paved section of the intersecting roadway.

8. Alternate materials for the site access point may be approved by the City Engineer.

Section 7-4(B)(3) Pedestrian Access

1. Pedestrian access is required to all properties in the City of Albuquerque. See Part 7-4(E) Pedestrian Facilities for requirements and design guidelines.
2. All site access points shall be ADA/PROWAG compliant.
3. The curb ramp and transitions shall be fully located within the City right-of-way or public sidewalk easement.
4. Right-of-way or public roadway easement is required to be dedicated as shown in FIGURE 7.4.54.

FIGURE 7.4.54 Right-of-way Dedication

Section 7-4(B)(4) Vehicular Access

1. All site access points to City of Albuquerque roads shall be approved by the Traffic Engineer.
2. Sites are accessed through drivepads or curb returns. See Section 7-4(B)(5) for locations where curb returns are allowed and the number of site access points allowed per site.
3. Site access points for low-density residential development shall be designed per TABLE 7.4.44.
 a. Illustrations for the location and dimensions of driveways and drivepads can be found in FIGURE 7.4.55, FIGURE 7.4.56, and FIGURE 7.4.57.
 b. The dimensions given in this section are for the width of the driveway at the drivepad / property line.
 c. Site access points shall not be located on a major street (i.e. collector or arterial) unless it is the only street available to access the site.
 d. For residential properties with 2 access points, driveways shall be spaced at least 28 feet apart from each other.

<table>
<thead>
<tr>
<th>TABLE 7.4.44 Low-density Residential Driveways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
</tr>
<tr>
<td>Driveway width</td>
</tr>
<tr>
<td>Minimum distance between driveways</td>
</tr>
<tr>
<td>Minimum distance from side property line</td>
</tr>
<tr>
<td>Minimum frontage for 2 driveways</td>
</tr>
<tr>
<td>Maximum width of shared site access point</td>
</tr>
</tbody>
</table>
e. Driveways shall be set back a minimum 5 feet from the side property line as illustrated in FIGURE 7.4.55 and TABLE 7.4.44 to ensure that the drivepad is separated from the property line sufficiently.

f. The driveway may be built at the property line if both of the following requirements are met:
 i. The driveway for the adjacent lot is on the far side of that lot.
 ii. The owner presents a letter from the adjacent property owner agreeing to the location of the driveway and drivepad.

g. Driveways located on corner properties shall be located as shown in FIGURE 7.4.56. The driveway should be 25 feet from face of the curb-line extension or 10 feet from the property line extension. Whichever distance is greater from the corner governs.

h. Driveway width may be increased to 30 feet, if requested, to allow access to a 3-car garage or to park a recreation vehicle or boat.

FIGURE 7.4.56 Driveway Distance From Intersection

4. Shared Site Access Points
a. For small lots (i.e. 40-foot frontage or less), the site access should be shared by 2 lots, leaving area for a minimum of 1 on-street parking space, as illustrated in FIGURE 7.4.57.
b. Shared-access driveways may be separated beyond the back of the sidewalk.
c. The maximum width of the shared access point allowed is 40 feet.

FIGURE 7.4.57 Low-density Residential Shared Access Point

5. Multi-family, Mixed-use, and Non–residential Site Access Points
 a. Location of site access points shall include the following considerations:
 i. Minimum distance from an intersection, per TABLE 7.4.45 and FIGURE 7.4.58.
 ii. Maximum number of site access points allowed based on roadway classification, per TABLE 7.4.46.
 b. All dimensions are measured from the curb face or driveway edge.
 c. Site accesses should be evenly spaced in areas where more than 1 driveway is proposed for 1 site.
 d. See Section 7-4(II)(7) Median and Turn Lane Design for additional guidance on the spacing of median openings.

FIGURE 7.4.58 Commercial Site Access Points and Distance From
Intersection

![Intersection diagram](image)

TABLE 7.4.45 Minimum Distance Between Commercial Site Access and Intersection

<table>
<thead>
<tr>
<th>Type of Street</th>
<th>Cross Street Classes</th>
<th>Arterial</th>
<th>Collector</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>D</td>
<td>A</td>
</tr>
<tr>
<td>Principal Arterial</td>
<td></td>
<td>300 ft.</td>
<td>200 ft.</td>
<td>150 ft.</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td></td>
<td>200 ft.</td>
<td>150 ft.</td>
<td>100 ft.</td>
</tr>
<tr>
<td>Major Collector</td>
<td></td>
<td>150 ft.</td>
<td>150 ft.</td>
<td>100 ft.</td>
</tr>
<tr>
<td>Minor Collector</td>
<td></td>
<td>150 ft.</td>
<td>150 ft.</td>
<td>100 ft.</td>
</tr>
<tr>
<td>Local (additional distance may be required for queuing)</td>
<td></td>
<td>75 ft.</td>
<td>75 ft.</td>
<td>50 ft.</td>
</tr>
</tbody>
</table>

TABLE 7.4.46 Maximum Number of Commercial Site Access Points per Site

<table>
<thead>
<tr>
<th>Type of Street</th>
<th>Access Points per Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Arterials</td>
<td>1-2 access points per 300 ft. frontage</td>
</tr>
<tr>
<td>Minor Arterials</td>
<td>1-2 access points per 200 ft. frontage</td>
</tr>
<tr>
<td>Collectors</td>
<td>1 access point per 100 ft. frontage</td>
</tr>
</tbody>
</table>

Section 7-4(B)(5) Curb Return Design

7-4(B)(5)(i) Curb Return Access Guidelines

1. Curb returns rather than drivepads are recommended on collectors and arterials and may be appropriate under any of the following circumstances:
 a. For high-volume traffic generators (e.g. over 25 vehicles entering or exiting per hour).
 b. For developments with median access and 25 or more parking spaces.
 c. For developments with 50 or more required parking spaces.
2. Curb returns are permitted on local streets when a site has more than 50 parking spaces.
3. One-way drives are only permitted where the circulation is self-enforcing (e.g. when angle parking and one-way aisles are used to establish the one-way pattern from entrance to exit).

4. The width and radius of the entrance are dependent upon the design vehicle. The design vehicle is generally an SU-30, though a smaller design vehicle is encouraged where feasible. See Section 7-4(I)(6) Intersection Design for additional information.

7-4(B)(5)(ii) Curb Return Access Widths

1. Widths of site access points shall be per TABLE 7.4.47.

2. Additional width may be permitted for median. See FIGURE 7.4.60 and FIGURE 7.4.61 for typical curb return access layout.

3. Narrower site access points shall be provided in Centers; along Premium and Major Transit, Multi-modal, and Main Street Corridors; and in locations with high pedestrian activity levels.

TABLE 7.4.47 Driveway Widths for Arterial, Collector, and Local Streets

<table>
<thead>
<tr>
<th>Entrance</th>
<th>Arterial & Collector</th>
<th>Local Streets</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-way Drive</td>
<td>20 ft. – 25 ft.</td>
<td>12 ft. – 20 ft.</td>
</tr>
<tr>
<td>Two-lane Drive</td>
<td>22 ft. – 30 ft.</td>
<td>22 ft. – 24 ft.</td>
</tr>
<tr>
<td>Three-lane Drive</td>
<td>24 ft. – 35 ft.</td>
<td>22 ft. – 30 ft.</td>
</tr>
<tr>
<td>Larger Vehicles (WB-40 or larger)</td>
<td>Max 50 ft.</td>
<td>Max 30 ft.</td>
</tr>
</tbody>
</table>

FIGURE 7.4.59 Curb Return Access Point
7-4(B)(5)(iii) Curb Return Access Radii

1. Curb radii shall be designed according to the standards in **TABLE 7.4.48**.
2. Additional curb return radii guidance provided in **Section 7-4(I)(6)(iii)**.
3. Smaller radii shall be provided in Centers; along Premium and Major Transit, Multi-modal, and Main Street corridors; and in locations with high pedestrian activity levels. Coordinate with City Engineer for use of smaller radii.

TABLE 7.4.48 Curb Return Radii by Design Vehicle – Single Entrance/Exit Widths

<table>
<thead>
<tr>
<th>Design Vehicle</th>
<th>Max. Radius at Flow Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car Only</td>
<td>15 ft.</td>
</tr>
<tr>
<td>SU-30 (Single-unit truck: 30 ft./wheel base: 20 ft. (refuse truck))</td>
<td>25 ft.</td>
</tr>
<tr>
<td>WB-40 (Tractor trailer: 50 ft./wheel base: 40 ft.)</td>
<td>30 ft.</td>
</tr>
<tr>
<td>WB-50 (Tractor trailer: 55 ft./wheel base: 50 ft. (18-wheeler))</td>
<td>35 ft.</td>
</tr>
</tbody>
</table>

Section 7-4(B)(6) Access Control

1. See the [MRCOG Roadway Access Control Inventory of Limited Access Roadways](#) for locations where site access may be limited. Contact the Traffic Engineer in the Transportation Development Division or visit the [MRCOG website](#) for additional information.
2. Limited-access roadways are typically located on principal arterials or on the interstate/frontage road system. This restriction may apply to the entire roadway length or individual segments.
3. Where drivepads/access points are to be constructed on opposite sides of the street, the centerlines need to be as closely aligned as conditions allow. (See **FIGURE 7.4.61**.) Drivepads/access points do not need to be aligned if they are offset by 50 feet or more.
4. Where a median opening is desired, access to both sides of the street shall be considered. If development exists on both sides of the street, left turn bays for both directions may need to be constructed. For streets with
medians, access points need to be placed such that the centerline of the drivepads/access points are as closely aligned as conditions allow on the median openings.

5. Streets or driveways with median access points shall be placed such that the centerline of the access points are as closely aligned as conditions allow on the median openings.

6. If access points cannot be aligned, it is recommended to have them offset so that potential left turn paths do not cross and requirements are met for Case F Sight Distance in the AASHTO Green Book.

FIGURE 7.4.61 Non-residential Driveways with Aligned Centerline

Section 7-4(B)(7) Striping and Signage

1. Site access points with 3 or more lanes require striping and arrows to define proper usage by entering and exiting vehicles. See City Standard Specifications and the latest MUTCD for additional information.

2. Appropriate signage needs to be included with the construction of any commercial site access point. This may include one way, exit, entrance, and turn restriction signs.

Section 7-4(B)(8) Roadways in NMDOT Jurisdiction

A driveway permit from the District 3 office is required for roadways under NMDOT jurisdiction, in addition to City concurrence. To learn the boundaries for NMDOT roadways, contact the Traffic Engineer.
Part 7-4(C) Pavement Design

Section 7-4(C)(1) General Provisions

The sections in Part 7-4(C) provide requirements for the subgrade materials evaluation, traffic analysis, and design of flexible pavements, rigid pavements, and alternative pavements. Either the methods below or the design procedure from the NMDOT are acceptable for design of pavements in the city.

The design method contained herein was developed by the review of various methods that are now, or have been, in use by different state transportation departments and/or municipalities within the southwestern United States. These methods are all based on adoption and enhancement of the AASHTO 1993 Guide for Design of Pavement Structures. These methods were selected due to history of performance and due to the City of Albuquerque being in a specific geographic location where experience can be called upon and certain factors will not change.

The 3 major overall assumptions that have been made in the development of these design procedures are:
1. The adequacy of the design will be established by soils and material surveys and laboratory studies.
2. The design strengths assumed for the subgrade and pavement structure will be achieved through proper construction methods.
3. An adequate present and projected traffic loading for the analysis period is derived from accurate present and historical data in order to achieve the intended serviceability of the roadway.

Section 7-4(C)(2) Subgrade Materials Evaluation

7-4(C)(2)(i) Sampling Methods

The City of Albuquerque uses all of the following sampling methodology for subgrade material evaluation:
5. The correlation between R-value and resilient modulus is in TABLE 7.4.49.
6. All soil tests shall be conducted under the supervision of a professional engineer registered in the State of New Mexico familiar with soil sampling and testing procedures.
7. The design subgrade soil is defined as the upper 2 feet of soil under the proposed pavement.

7-4(C)(2)(ii) Frequency of Testing and Required Elements

All of the following sampling frequency and techniques for subgrade materials (native and borrowed) shall be used:
1. One (1) sample for each type of soil.
2. A minimum of 1 sample every 300 feet for collector and arterial streets.
3. A minimum of 2 samples per project minimum.
4. One (1) "R" value and proctor sample per each soil condition or 3 per mile of the poorest soil.
5. At least 1 and preferably 2 soil borings should go down to a depth comparable to any potential sewer or water line depth. A moisture determination should be made for each sample.
6. Sampling is to be random and shall not be restricted along any given line, but shall be spread irregularly over the proposed roadway.
7. The depth of sampling shall extend to a minimum depth of 3 feet below proposed subgrade elevation unless rock is encountered.

7-4(C)(2)(iii) Required Soil Tests

All of the following tests shall be performed on all soil samples:
1. Sieve analysis.
2. Plastic index.
3. Soil correlation/analysis to determine representative soils, on which R-value tests are to be performed.
4. With approval from the City Engineer, the designer can use R-value from TABLE 7.4.49 based on soil type to supplement actual R-value test results on the subgrade soils encountered. Both the tested and estimated R-values can be used to determine the design R-value.
5. R-value and Proctor density-moisture tests.
6. If subgrade stabilization will be used, stabilization testing is required.
7. Determination of in-situ moisture content.

7-4(C)(2)(iv) Geotechnical Design Report

1. Pavement designs for local streets serving residential areas have been standardized and are presented in Section 2400 of the City Standard Specifications. These standards are based on an R-value of 50 or greater. Soils investigation as outlined in this section will be required to determine the nature of subgrade treatment needed to achieve the minimum R-value.
2. A design report shall be submitted for the construction of arterial, collector, or streets located in industrial areas. This report documents the existing pavement section material, thickness, and width and considers the design information regarding the proposed improvements. Any unusual circumstances that could affect design and/or construction shall be noted. A site plan showing boring locations, soil boring logs and soil test results shall be provided.
3. The design "R" value is correlated to the Resilient Modulus (MR) for use in the flexible pavement design nomograph using TABLE 7.4.49.
TABLE 7.4.49 R-value and Resilient Modules (M_r) Correlation

<table>
<thead>
<tr>
<th>R-VALUE</th>
<th>MR</th>
<th>R-value</th>
<th>MR</th>
<th>R-value</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2176</td>
<td>30</td>
<td>6143</td>
<td>60</td>
<td>17345</td>
</tr>
<tr>
<td>1</td>
<td>2252</td>
<td>31</td>
<td>6359</td>
<td>61</td>
<td>17956</td>
</tr>
<tr>
<td>2</td>
<td>2331</td>
<td>32</td>
<td>6583</td>
<td>62</td>
<td>18588</td>
</tr>
<tr>
<td>3</td>
<td>2414</td>
<td>33</td>
<td>6815</td>
<td>63</td>
<td>19242</td>
</tr>
<tr>
<td>4</td>
<td>2499</td>
<td>34</td>
<td>7055</td>
<td>64</td>
<td>19920</td>
</tr>
<tr>
<td>5</td>
<td>2586</td>
<td>35</td>
<td>7303</td>
<td>65</td>
<td>20621</td>
</tr>
<tr>
<td>6</td>
<td>2678</td>
<td>36</td>
<td>7560</td>
<td>66</td>
<td>21347</td>
</tr>
<tr>
<td>7</td>
<td>2772</td>
<td>37</td>
<td>7826</td>
<td>67</td>
<td>22098</td>
</tr>
<tr>
<td>8</td>
<td>2869</td>
<td>38</td>
<td>8102</td>
<td>68</td>
<td>22876</td>
</tr>
<tr>
<td>9</td>
<td>2970</td>
<td>39</td>
<td>8387</td>
<td>69</td>
<td>23682</td>
</tr>
<tr>
<td>10</td>
<td>3075</td>
<td>40</td>
<td>8682</td>
<td>70</td>
<td>24515</td>
</tr>
<tr>
<td>11</td>
<td>3183</td>
<td>41</td>
<td>8988</td>
<td>71</td>
<td>25379</td>
</tr>
<tr>
<td>12</td>
<td>3295</td>
<td>42</td>
<td>9305</td>
<td>72</td>
<td>26272</td>
</tr>
<tr>
<td>13</td>
<td>3411</td>
<td>43</td>
<td>9632</td>
<td>73</td>
<td>27197</td>
</tr>
<tr>
<td>14</td>
<td>3531</td>
<td>44</td>
<td>9971</td>
<td>74</td>
<td>28154</td>
</tr>
<tr>
<td>15</td>
<td>3656</td>
<td>45</td>
<td>10322</td>
<td>75</td>
<td>29146</td>
</tr>
<tr>
<td>16</td>
<td>3784</td>
<td>46</td>
<td>10686</td>
<td>76</td>
<td>30172</td>
</tr>
<tr>
<td>17</td>
<td>3918</td>
<td>47</td>
<td>11062</td>
<td>77</td>
<td>31234</td>
</tr>
<tr>
<td>18</td>
<td>4056</td>
<td>48</td>
<td>11451</td>
<td>78</td>
<td>32334</td>
</tr>
<tr>
<td>19</td>
<td>4198</td>
<td>49</td>
<td>11854</td>
<td>79</td>
<td>33472</td>
</tr>
<tr>
<td>20</td>
<td>4346</td>
<td>50</td>
<td>12272</td>
<td>80</td>
<td>34650</td>
</tr>
<tr>
<td>21</td>
<td>4499</td>
<td>51</td>
<td>12704</td>
<td>81</td>
<td>35870</td>
</tr>
<tr>
<td>22</td>
<td>4658</td>
<td>52</td>
<td>13151</td>
<td>82</td>
<td>37133</td>
</tr>
<tr>
<td>23</td>
<td>4822</td>
<td>53</td>
<td>13614</td>
<td>83</td>
<td>38440</td>
</tr>
<tr>
<td>24</td>
<td>4991</td>
<td>54</td>
<td>14093</td>
<td>84</td>
<td>39794</td>
</tr>
<tr>
<td>25</td>
<td>5167</td>
<td>55</td>
<td>14590</td>
<td>85</td>
<td>41194</td>
</tr>
<tr>
<td>26</td>
<td>5349</td>
<td>56</td>
<td>15103</td>
<td>86</td>
<td>42645</td>
</tr>
<tr>
<td>27</td>
<td>5537</td>
<td>57</td>
<td>15635</td>
<td>87</td>
<td>44464</td>
</tr>
<tr>
<td>28</td>
<td>5732</td>
<td>58</td>
<td>16185</td>
<td>88 and higher</td>
<td>45700</td>
</tr>
<tr>
<td>29</td>
<td>5934</td>
<td>59</td>
<td>16755</td>
<td>88 and higher</td>
<td>45700</td>
</tr>
</tbody>
</table>

Section 7-4(C)(3) Traffic Factors in Pavement Design

7-4(C)(3)(i) Traffic Criteria for Pavement Design

1. Average weekday daily traffic (AWDT), street classification, percent distribution of vehicle types, directional distribution, and the growth rate used for the design computations shall be obtained either from MRCOG or through a traffic study conducted by a professional engineer registered in the State of New Mexico. The values shall be compared against those in
TABLE 7.4.50 and, unless the values are based on historical data more than 5 years old, the greater value shall be used.

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>AWDT (both directions)</th>
<th>Truck Traffic Percentage</th>
<th>Directional Distribution</th>
<th>Annual Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Arterial</td>
<td>12,000</td>
<td>3 1 1 *</td>
<td>50%</td>
<td>5%</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>8,500</td>
<td>3 1 1 *</td>
<td>50%</td>
<td>4%</td>
</tr>
<tr>
<td>Collector</td>
<td>6,000</td>
<td>3 1 1 *</td>
<td>50%</td>
<td>4%</td>
</tr>
</tbody>
</table>

* SUT = Single-unit Truck; STT = Single-trailer Truck; MTT = Multi-trailer Truck. For buses, contact City Transit Department.

2. On smaller projects (less than 1,000 linear feet of street construction), where traffic count data is not available and a traffic count study is not warranted, the values in TABLE 7.4.50 may be used, as approved by the City Engineer.

3. Pavement shall be designed for 20 years unless approval for an alternate design life is received from the City Engineer.

4. The growth factor values to be used for calculations in this section are identified in TABLE 7.4.51.

<table>
<thead>
<tr>
<th>Design Period Years</th>
<th>Annual Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Growth 2% 4% 5% 6% 7% 8% 10%</td>
</tr>
</tbody>
</table>

5. The ESAL Vehicle Equivalency Factor (EF) for various vehicle types are as shown in TABLE 7.4.52.
Table 7.4.52: ESAL Vehicle Equivalency Factor

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>ESAL EF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger Car</td>
<td>0.0008</td>
</tr>
<tr>
<td>Other 4-wheel vehicle</td>
<td>0.0087</td>
</tr>
<tr>
<td>Single Unit Truck</td>
<td>0.1890</td>
</tr>
<tr>
<td>Single-trailer Truck</td>
<td>2.3719</td>
</tr>
<tr>
<td>Multi-trailer Truck</td>
<td>2.3187</td>
</tr>
<tr>
<td>Bus</td>
<td>0.6808</td>
</tr>
</tbody>
</table>

6. The following equation will calculate the default ESAL (18,000-pound Equivalent Single Axle Load):

\[
ESAL = AWDT \times 365 \times \text{Growth Factor} \left(\%\text{SUT} \times EF_{\text{SUT}} + \%\text{STT} \times EF_{\text{STT}} + \%\text{MTT} \times EF_{\text{MTT}} + \%\text{Bus} \times EF_{\text{Bus}} + \%\text{Auto} \times EF_{\text{Auto}} \right)
\]

For this calculation, the sum of the different vehicle types equals 100%, and the percentage is entered numerically. For example, 3% is entered as .03.

7-4(C)(3)(ii) Design Lane Traffic Computation

The following equation will determine the ESAL in the design lane:

\[
ESAL_L = D_d \times D_L \times ESAL
\]

where:

- \(D_d\) = A directional distribution factor, expressed as a percentage, that accounts for the distribution of ESAL units by direction but not less than what is shown in Table 7.4.50.
- \(D_L\) = A lane distribution factor, expressed as a percentage, that accounts for distribution of traffic when 2 or more lanes are available in one direction (Table 7.4.53).

Table 7.4.53: Lane Distribution Factor, DL

<table>
<thead>
<tr>
<th>No. of Lanes in Each Direction</th>
<th>Percent ESAL in Design Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>65</td>
</tr>
</tbody>
</table>

7-4(C)(3)(iii) Example ESAL Calculation

Example for a 4-lane minor arterial:

\[
ESAL = 8,500 \times 365 \times 29.78 [(0.03 \times 0.1890) + (0.01 \times 2.3719) + (0.01 \times 2.3187) + (0.95 \times 0.0008)] = 4,927,844
\]

\[
ESAL_L = 0.5 \times 0.9 \times 4,927,844 = 2,217,530
\]
Section 7-4(C)(4) Structural Design of Pavement

7-4(C)(4)(i) Minimum Pavement Component Thickness

The criteria in TABLE 7.4.54 govern minimum pavement component thickness and apply to all major (arterial and collector) roadways. These criteria are derived based on engineering judgment and past experience in construction quality control.

<table>
<thead>
<tr>
<th>Pavement Component</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphaltic Concrete (AC)</td>
<td>4 in.</td>
</tr>
<tr>
<td>Cement-Treated Base Course (CTB)</td>
<td>4 in.</td>
</tr>
<tr>
<td>Bituminous Treated Base Course (BTB)</td>
<td>4 in.</td>
</tr>
<tr>
<td>Aggregate Base Course (ABC)</td>
<td>4 in.</td>
</tr>
<tr>
<td>Sub-base Material</td>
<td>4 in.</td>
</tr>
<tr>
<td>Soil Cement</td>
<td>6 in.</td>
</tr>
<tr>
<td>Asphalt Emulsion Treated Soil</td>
<td>6 in.</td>
</tr>
</tbody>
</table>

7-4(C)(4)(ii) Structural Coefficients of Pavement Components

<table>
<thead>
<tr>
<th>Pavement Component</th>
<th>Layer Modification Factor</th>
<th>Structural Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Mix Seal Coat (PMSC)</td>
<td>N/A</td>
<td>0.25</td>
</tr>
<tr>
<td>Asphaltic Concrete (AC)</td>
<td>N/A</td>
<td>0.42</td>
</tr>
<tr>
<td>Bituminous Treated Base Course (BTB)</td>
<td>N/A</td>
<td>0.25</td>
</tr>
<tr>
<td>Cement Treated Base Course (CTB)</td>
<td>N/A</td>
<td>0.20</td>
</tr>
<tr>
<td>Aggregate Base Course (ABC)</td>
<td>1.15</td>
<td>0.10</td>
</tr>
<tr>
<td>Sub-base Material</td>
<td>1.00</td>
<td>0.06</td>
</tr>
<tr>
<td>Asphalt Emulsion Treated Soil</td>
<td>N/A</td>
<td>Tentative</td>
</tr>
<tr>
<td>Soil Cement</td>
<td>N/A</td>
<td>Tentative</td>
</tr>
<tr>
<td>Lime Stabilization</td>
<td>N/A</td>
<td>Tentative</td>
</tr>
</tbody>
</table>

The design structural number is calculated using the layer modification factors and structural coefficients in TABLE 7.4.55 and all of the following steps:
1. The layer modification factor is applied to the base course layer coefficient to reflect the drainage or permeability characteristics of the selected base course.
2. Drainage coefficients are not applied to the asphaltic concrete layers, nor to the stabilized subgrade layers.
3. The modification factors may be set to other values than those recommended if the designer chooses.
4. The modification factors will range between 1.00 and 1.15 for bases approaching saturation less than 25% of the time, and base permits water removal with in 1 day.
5. If the stated conditions do not apply, see Part 2, Section 2.4 of the AASHTO 1993 Guide for Design of Pavement Structures.
6. The structural number is calculated using the depth in inches (di) for each layer as follows:
 \[EQUATION \quad 7.3 \quad SN = a_1 d_1 + a_2 d_2 m_2 + ... + a_i d_i m_i \]

7-4(C)(4)(iii) Serviceability Index

The serviceability of a pavement is defined as the ability to serve high-volume automobile and truck traffic. In the design equation, the serviceability index enters into the equation as the lowest index that will be tolerated before resurfacing or reconstruction becomes necessary.

A scale with a range of 0 through 5 was established for present serviceability rating, with a value of 5 as the highest index of serviceability and 0 as the lowest. The initial serviceability (Po) rating and terminal serviceability (Pt) rating are recommended to be selected as shown in TABLE 7.4.56.

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>Initial Serviceability Rating (Po)</th>
<th>Standard Normal Deviation (Pt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Arterial</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>4.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Collector</td>
<td>4.2</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* Based on the 1993 AASHTO method of calculating ESAL’s (change in PSI = Po - Pt).

7-4(C)(4)(iv) Reliability and Statistics

The 1993 AASHTO method of calculation incorporates reliable statistics on the degree of certainty for expected performance over the 20 year analysis period. TABLE 7.4.57 provides the 1993 AASHTO equation recommended reliability and standard deviation values for principal arterial, minor arterial, and collector streets.

<table>
<thead>
<tr>
<th>Street Classification</th>
<th>Reliability Level</th>
<th>Standard Deviation (S_o)</th>
<th>Standard Normal Deviation (Z_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Arterial</td>
<td>85%</td>
<td>0.45</td>
<td>-1.037</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>80%</td>
<td>0.40</td>
<td>-0.841</td>
</tr>
<tr>
<td>Collector</td>
<td>75%</td>
<td>0.40</td>
<td>-0.674</td>
</tr>
</tbody>
</table>
Alternatively, the standard normal deviation as a function of reliability level may be chosen as from TABLE 7.4.58. It is not recommended to use a design reliability level of greater than 90%.

<table>
<thead>
<tr>
<th>Reliability Level</th>
<th>Standard Normal Deviation (Z_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>-0.000</td>
</tr>
<tr>
<td>60%</td>
<td>-0.253</td>
</tr>
<tr>
<td>70%</td>
<td>-0.524</td>
</tr>
<tr>
<td>75%</td>
<td>-0.674</td>
</tr>
<tr>
<td>80%</td>
<td>-0.841</td>
</tr>
<tr>
<td>85%</td>
<td>-1.037</td>
</tr>
<tr>
<td>90%</td>
<td>-1.282</td>
</tr>
</tbody>
</table>

7-4(C)(4)(v) Economic Factors

The design engineer is encouraged to investigate the use of various combinations of pavement components in order to derive the most economic design applicable to the project characteristics and structural requirements.

Section 7-4(C)(5) Flexible Pavements Design

7-4(C)(5)(i) Design Procedure

1. A nomograph from the AASHTO 1993 Guide for Design of Pavement Structures pavement design has been provided to simplify the solution to the mathematical relationship of the Resilient Modulus value, ESAL, and the structural number. (See FIGURE 7.4.62)

2. Pavement structural designs shall be submitted in the format as shown on TABLE 7.4.59.

3. The equation for calculation of ESAL (W18) using the AASHTO 1993 Guide for Design of Pavement Structures is shown below:

\[\log_{10} W_{18} = Z_n S_5 + 9.36 \log_{10} \left(SN + 1 \right) - 0.2 + \frac{\left[\log_{10} \left(\text{change in PSI} \right) \right]}{\left((0.40 + \frac{1094}{SN+1}) \right)} + \frac{2.32 \log_{10} M_{15}}{10} - 8.07 \]
FIGURE 7.4.62 Design Chart Flexible Pavements

TABLE 7.4.59 Structural Design Computation Form

<table>
<thead>
<tr>
<th>Alternate</th>
<th>Subbase</th>
<th>CTB</th>
<th>BTB</th>
<th>ABC</th>
<th>AC</th>
<th>PMSC</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0)</td>
<td>(2)</td>
<td>(25)</td>
<td>(1)</td>
<td>(2)</td>
<td>(25)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design SN________
Section 7-4(C)(6) Portland Cement Concrete Design

The current acceptable method for design of Portland cement concrete pavement is the procedure in the AASHTO 1993 Guide for Design of Pavement Structures and 1998 Supplement - Guide for Design of Pavement Structures, Part II. As an alternative, the Portland Cement Concrete Pavement (PCCP) design may be determined by use of accepted industry approach and software, such as the American Concrete Pavement Association “Street Pave” software or NMDOT procedures. Concrete pavement joints shall be detailed in the plans. Guidelines for joint layout can be obtained from the American Concrete Pavement Association.

All of the following design criteria shall be used in the structural design of PCCP:
1. All PCCP shall be fly-ash modified concrete as specified in the City Standard Specifications or have other methods of mitigating Aggregate Silica Reaction as approved by the City Engineer.
2. Design of PCCP shall be based on flexural strength value of 600 psi at 28 days as measured by ASTM Method C 78.
3. Stabilized base course values used in conjunction with PCCP designs shall be as indicated below:
 a. Portland Cement Stabilized Base: 300 psi compressive strength as measured by ASTM Method D1633.
 b. Asphalt Treated Base: 1,000 pound minimum Marshal stability as measured by ASTM Method D1559 (as modified in the City Standard Specifications).
4. Reliability shall be 85%.
5. Final Serviceability Index shall be 2.5.

Section 7-4(C)(7) Alternative Pavement

1. Alternative types of pavement can be used for crosswalks, parking lots, sidewalks, and trails.
2. Where used in the City right-of-way, approval of proposed design and City’s maintenance obligations are required from the City Engineer and the Department of Municipal Development.
3. Alternative materials must have sufficient strength for the projected traffic and require approval of the City Engineer.
4. Crosswalks may be a different material from the remainder of the street.
5. Options for alternative pavement include but are not limited to:
 a. Brick
 b. Pavers
 c. Permeable or Porous Pavement
 d. Stamped Concrete
 e. Gravel

7-4(C)(7)(i) Permeable or Porous Pavement

Requests to use permeable pavement shall include all of the following:
1. Geotechnical investigation showing that the subgrade soils have sufficient percolation properties or a design that provides rainwater storage until percolation is achieved.
2. Agreement to maintain the pavement using sweeping, vacuuming or power washing.
3. Product information showing that the porous pavement meets ADA requirements. If it does not, a different material that does meet those requirements must be used for ADA accessible parking spaces and any accessible paths, and documentation must be provided.

Part 7-4(D) Curb and Gutter

Section 7-4(D)(1) Right-of-way Requirements

1. All streets within the City shall have curb and gutter. Exceptions may be granted by the City Engineer in developed areas that predominantly lack curb and gutter and existing right-of-way widths are insufficient to add them.

2. On collectors and above, the standard 8 inch high barrier-type curb as shown in the City Standard Specifications must be used as the exterior curb section. Deviation from these standards will require approval of the City Engineer.

3. On local streets, 6 inch high barrier-type curb is the standard curb to be used for the exterior curb section; however, 8 inch high barrier-type curb may be used to accommodate drainage requirements as needed.

4. If both traffic and drainage requirements can be met to the satisfaction of the City Engineer, mountable curb types as shown in the City Standard Specifications may be used on local streets.

5. Mountable curbs may be used in roundabout and/or traffic circle medians.

6. On collectors and above, a 1.5 foot wide gutter pan shall be installed at all curb locations.

7. On local streets, a 1.5 foot wide gutter pan may be installed at all curb locations. Wider gutters may be used to accommodate drainage requirements.

8. The gutter pan is considered as a part of the overall roadway width; it may be included as part of the width of the curbside travel lane and on-street parking space. The gutter pan is not included as a part of the required width of a bicycle lane.

Section 7-4(D)(2) Private Property Requirements

1. A visual barrier must be maintained along the public street clearly defining the points of access. Curbs shall be used in conjunction with landscaping as required by the IDO.

2. Curbs should be used to separate landscaping from parking areas and pedestrian ways in non-single-family residential developments.

3. Curbing or parking blocks should be provided to prevent overhang of parking stalls or circulation of vehicles over sidewalk or City right-of-way.

Part 7-4(E) Pedestrian Facilities

The ABC Comp Plan emphasizes the provision of a range of safe travel options, including access for pedestrians to all areas of the metropolitan area. As such, all public and private transportation facilities shall include pedestrian appropriate accommodations.
Section 7-4(E)(1) Public Sidewalks

7-4(E)(1)(i) General Provisions

1. All roads in the City right-of-way or roadway easements shall include distinct and accessible pedestrian accommodations. Alleyways are exempt from the requirement for separate pedestrian accommodations.

2. All new roadway construction shall include sidewalks and landscape/buffer zones installed on both sides of the street.

3. Roadway reconstruction, defined in this section as any project that includes the construction of new curbs or the horizontal relocation of the curb line, shall include sidewalks and landscape/buffer zones to the greatest extent feasible.

4. Additional right-of-way or easements may be required if any portion of the sidewalk is located outside the existing right-of-way.

5. High pedestrian activity areas are defined as Centers, Main Street Corridors, and Premium Transit station areas, as well as areas surrounding big box stores or clusters of retail activity, school zones, locations where buildings with zero setback are present, and neighborhoods with an average density of 10 units per acre. Multi-modal and Major Transit Corridors may also be considered high pedestrian activity areas depending on the surrounding land uses.

6. If a proposed public sidewalk is located along a Corridor and has constrained right-of-way, the designer should consult the ABC Comp Plan Table 7-5: Priority Street Element Matrix to identify priority elements.

7. Exceptions to sidewalk and width requirements may be granted in historic neighborhoods, where sidewalks have traditionally not been present, or to match the surrounding character of the residential area. Waivers may be granted by the City Engineer within developed areas that predominantly lack sidewalk and where existing right-of-way widths are insufficient to add them.

8. DPM waiver procedures are found in Article 2-9 DPM Waiver in Chapter 2 Development Procedures.

7-4(E)(1)(ii) Pedestrian Realm Typologies

See Part 7-2(D) Street Elements for pedestrian realm definitions. Below are the graphic configurations of the pedestrian realm.
7-4(E)(1)(ii)(a) Residential Areas

FIGURE 7.4.63 Residential Area

7-4(E)(1)(ii)(b) Mixed-use Areas

FIGURE 7.4.64 Mixed-use Area

7-4(E)(1)(iii) Pedestrian Facility Dimensions

1. See TABLE 7.2.29 for design requirements for pedestrian facilities and other roadway elements by location and functional class. See Part 7-4(J) Local Streets for additional guidance on pedestrian facilities on local roadways.

2. All sidewalks on new and reconstructed roadways shall provide a minimum 5 foot wide pedestrian access route.

3. Wider sidewalks shall be provided in Centers; along Premium and Major Transit, Multi-modal, and Main Street Corridors; and in locations with high pedestrian activity levels per TABLE 7.2.29.

4. If right-of-way is constrained and there is insufficient space for a landscaping buffer, the sidewalk should be widened an additional 2 feet. This extra width is used to provide additional pedestrian circulation and comfort and to create separation from transit service running in curbside lanes, while also serving the various roles of the landscape/buffer zone.
7-4(E)(1)(iv) Frontage Zone

1. A frontage zone is not required for development in residential and non-residential zone districts where large front setbacks apply.
2. The frontage zone is encouraged for development in mixed use zones, particularly in areas with setback maximums, with overhead awnings and signs projecting over the sidewalk, in Downtown and Urban Centers, and along Premium Transit and Main Street Corridors.

7-4(E)(1)(v) Sidewalk Design Requirements

1. Sidewalks and curb ramps shall be a minimum of 4 inches thick Portland cement concrete as shown in the City Standard Specifications. Designs incorporating alternate materials must be approved by the Design Review and Construction Section (DRC). The basis for consideration of such approval will be appropriateness, safety, and durability resulting in a useful life expectancy near or equal to that of the standard Portland cement concrete sidewalks.
2. All new sidewalks shall meet or exceed ADA/PROWAG requirements. Reconstruction projects including sidewalks and ramps shall be brought into conformity with ADA/PROWAG standards to the maximum extent possible.
3. Sidewalk cross slopes shall not exceed 2%. To ensure ADA/PROWAG compliance, it is recommended that cross slopes be designed at 1.5% to allow for tolerance in construction. (See FIGURE 7.4.65)
4. The sidewalk running slopes shall have a maximum grade of 5% unless the existing grade of the roadway exceeds 5%. In which case the sidewalk may match but not exceed the general grade established by the adjacent roadway or right-of-way easement. (See FIGURE 7.4.65)

FIGURE 7.4.65 Sidewalk Slopes

5. If it is necessary to locate objects such as mailboxes, hydrants, signposts, etc. within a sidewalk, then the sidewalk shall be widened to provide a minimum pedestrian access route of 4 feet around any part of the obstruction. (See FIGURE 7.4.66)
6. If an object must protrude farther than 4 inches into a pedestrian access route at a height greater than 27 inches and less than 80 inches above the sidewalk surface, it must include a warning device that is detectable by a vision-impaired person who navigates with a cane. The minimum 4 foot pedestrian access route must still be provided around the object. (See City Standard Specifications for warning devices.)

7-4(E)(1)(vi) Landscape/Buffer Zone Requirements

1. Landscape/buffer zones are required for all new development.
2. Landscape/buffer zones must meet the minimum widths in TABLE 7.2.29.
3. Landscape/buffer zone surfacing may consist of planting areas or a walkable surface provided that it is visually distinct from the pedestrian access route.
4. It strongly encouraged to include landscape/buffer zones in road reconstruction projects, especially along higher speed roadways, to improve pedestrian safety and comfort. Due to constrained right-of-way, buffers shall be provided as space permits. Where 2-foot width or less is available for the landscape/buffer zone, the sidewalk may be widened instead of providing the buffer.
5. Landscape/buffer zones are a high priority along corridors where transit operates.
6. In locations where there is insufficient right-of-way for landscape/buffer zone, street trees shall be located in accordance with Part 6-6-2 Street Tree Ordinance (ROA 1994). Where street trees are provided, the minimum pedestrian access route must be maintained by the adjacent property owner(s) at all times.
7. For minimum planting area size, plant size, spacing, soil condition, installation, irrigation, and other general information applicable to planting in the City right-of-way, see IDO Subsection 14-16-5-6(C), General Landscaping Standards.
8. For information about required street trees, their location, and tree well dimensions, see IDO Section 14-16-5-6(D) Street Frontage and Frontage Landscaping and Part 6-6-2 Street Tree Ordinance (ROA 1994).
9. Landscape/buffer zones shall be designed and used per low-impact development (LID) guidelines.

7-4(E)(1)(vii) Curb Ramp Requirements

1. All curb ramps shall meet or exceed ADA/PROWAG requirements.
2. Curb ramps are required to provide access between elevated pedestrian facilities and road surfaces at pedestrian crossings. Ramps shall be installed at all intersections unless pedestrian crossing is prohibited. For the purposes of this section, the following definitions apply:
 a. **Intersection**: The location where two roadways (public or private) intersect.
 b. **Intersection crosswalk**: The extension of a sidewalk or shoulder across an intersection, whether it is marked or not.
3. Curb ramps are categorized by their design and position relative to the pedestrian facility and roadway. **FIGURE 7.4.67**, **FIGURE 7.4.68**, and **FIGURE 7.4.69** provide guidelines and illustrate examples of common ramps that can be used in different situations.
 a. **Perpendicular curb ramps** shall have a running slope that cuts through or is built up to the gutter grade break at right angles.
 b. **Parallel curb ramps** shall have a ramp running slopes that are in-line with the direction of sidewalk travel.
c. Directional curb ramps shall have a running slope that is in-line with the direction of sidewalk travel.

4. Curb ramps shall be aligned to fall within the boundaries of crosswalks, marked or unmarked, so that pedestrians who have vision or mobility impairments are not directed outside the crosswalk or into a vehicle travel lane.

5. As much as possible, curb ramps shall be aligned in-line with the direction of pedestrian travel. ADA/PROWAG compliant ramps shall be wholly within the City right-of-way.

6. During reconstruction projects on collector and arterial roadways, parallel or perpendicular curb ramps shall replace diagonal ramps, where feasible.
Ramps on the opposing side of the street shall be reconstructed to match newly installed parallel or perpendicular curb ramps.

7. Diagonal curb ramps and blended transition ramps are generally discouraged in new construction projects. They may be acceptable at the intersections of major local and normal local roadways. See Part 7-4(J) Local Streets for more information. All diagonal and blended transition ramps shall be ADA/PROWAG compliant.

8. Ramps for crossings at intersections shall be located as close to the intersection as practicable to make pedestrians more visible to turning vehicles.

9. The running slope of the curb ramp shall not exceed 8.3%. To ensure ADA/PROWAG compliance, it is recommended that the running slope be designed at a maximum of 7.5%. The City Engineer may allow exceptions to these requirements for road reconstruction projects if compliance is not feasible.

10. For connections to steep roadways the ramp does not need to exceed 15 feet in length. Refer to PROWAG for additional guidance.

11. The change in grade at the bottom of the curb ramp and adjoining road surface is typically 10% and shall not exceed 13.3%. The counter slope of the gutter or road at the-foot of a curb ramp is not to exceed 5.0%. See FIGURE 7.4.70 for the maximum allowed counter slope.

12. The maximum cross slope of a curb ramp is 2%. To ensure ADA/PROWAG compliance, it is recommended that cross slopes be designed at 1.5%.

13. Ramps shall be as wide as the adjoining sidewalk to the greatest extent feasible. The minimum width of the ramp, excluding side flares, is 4 feet.

14. For parallel ramps, a level landing shall be provided at the bottom the ramp within the pedestrian access route. The landing length and width shall be at least 4 feet. The running and cross slopes of the landing shall not exceed 2%. To ensure ADA/PROWAG compliance, it is recommended that running and cross slope be designed at 1.5%.

15. For perpendicular ramps, a level landing shall be provided at the top the ramp within the pedestrian access route. The landing length and width shall be at least 4 feet. The running and cross slopes of the landing shall not exceed 2%. To ensure ADA/PROWAG compliance, it is recommended that running and cross slope be designed at 1.5%.

16. The running and cross slopes for mid-block crossings may match the grade of the roadway.
17. Beyond the bottom grade break where the ramp meets the roadway, a clear space of 4 feet by 4 feet shall be provided within the width of the pedestrian street crossing (marked or unmarked crosswalk) and wholly outside of the parallel vehicle travel lane.

FIGURE 7.4.71 Curb Ramp Clear Space

18. The maximum slope of the side flares between the curb ramp and the sidewalk is 10% as measured parallel to the gutter.
19. Ramps shall not be obstructed by hydrants, signposts, poles, utilities, or other vertical obstructions. Manhole, water meters, or valve covers may need to be adjusted to match the ramp slope.
20. Surface materials used for curb ramps shall be firm, stable and slip-resistant.
21. Curb ramps shall include a detectable warning surface (DWS), measuring 2 feet in the direction of travel and the full width of the ramp, excluding the flares. The DWS shall be placed at the back of the curb, but is not required to follow a curb radius.
22. DWS are required on all curb ramps located in City right-of-way. They are required at driveway entrances that are wider than 24'.
23. Detectable warning surfaces shall contrast visually with the adjacent gutter, road or walkway surface, either light-on-dark or dark-on-light.

7-4(E)(1)(viii) Pedestrian Signal Devices

1. In accordance with PROWAG, all new or reconstructed pedestrian signal devices shall be installed to be accessible to pedestrians with vision or mobility impairments. Signal poles shall be located to not obstruct pedestrian movements.
2. Criteria for accessible pedestrian signals are provided in *Accessible Sidewalks and Street Crossings* by the U.S. Department of Transportation, Federal Highway Administration.

7-4(E)(1)(ix) Crosswalk Design

1. Crosswalks indicate to pedestrians where to safely cross a street. For more guidance on appropriate locations for crosswalks, see *Section 7-4(A)(7).*
2. See Part 7-4(C) Pavement Design for guidance on appropriate materials to be used in the crosswalk.

3. The running slope and cross slope shall meet ADA/PROWAG requirements.

4. In Centers, marked crosswalks should be at least 10 feet wide and should match the width of the sidewalk. In other areas, marked crosswalks should be no less than 6 feet wide.

5. Marked crosswalk lines should extend the full length of the crossing.

6. Curb extensions may be provided at crosswalks to reduce the crossing distance for pedestrians, depending on roadway conditions and appropriate curb return radius. See the NACTO Urban Street Design Guide or other accepted standards for additional guidance on curb extension design and appropriate situations for implementation.

7. See FIGURE 7.4.72 for acceptable crosswalk marking designs. See the MUTCD and City Standard Specifications for guidance on pavement markings.

FIGURE 7.4.72 Crosswalk Marking

7-4(E)(1)(x) Refuge Islands

1. Median refuges or pedestrian safety islands (referred to as “refuge islands”) are protected spaces in the center of the roads, and may be located at signalized or unsignalized intersections or at mid-block crossings. At unsignalized crossings median refuges enable bicyclists and pedestrians to safely cross a street halfway.

2. These features may be used in combination with other dedicated crossing elements, including marked crosswalks, signage, flash beacons, HAWK signals, and traffic signals. See the Designated Pedestrian Crossings discussion in Article 7-4 Design Standards for additional information.

3. Refuge islands are recommended for designated pedestrian crossings under the any of the following circumstances, as right-of-way allows:
 a. Where pedestrians must cross a total of 3 or more lanes.
 b. Along designated bicycle routes.
c. Where there are high-volume pedestrian and/or bicycle crossings.

d. On roads with speeds above 30 MPH and/or traffic volumes higher than 12,000 Average Daily Traffic (ADT) that provide impediments to safe crossing movements.

4. Refuge islands shall be a minimum of 6 feet wide, with a width of 8 feet to 10 feet preferred. If the minimum 6-foot wide median cannot be provided without conflicting with a pedestrian access route, the Traffic Engineer may approve a median modification eliminate the conflict.

5. A detectable warning surface is required for all refuge islands.

6. Refuge islands should provide a clear 6 foot level waiting area within the median. Median refuge islands should have clear signage, pavement markings, curbs, and/or raised elements, such as plantings or bollards, to protect pedestrians waiting in the center of the roadway.

7. Examples of refuge islands are provided in FIGURE 7.4.73 and FIGURE 7.4.74.

8. Analysis of vehicle access should be considered as the presence of refuge islands may result in restrictions to vehicle turn movements.

9. Additional design guidance for refuge islands is provided in the NACTO Urban Street Design Guide, the NACTO Urban Bikeway Design Guide, and other acceptable design guidance documents.

FIGURE 7.4.73 Refuge Island – At Grade
Section 7-4(E)(2) Pedestrian Walkways

1. All existing and proposed development shall provide safe, direct, and convenient pedestrian access routes (referred to as “pedestrian walkways”) connecting main entrances of buildings, establishments, or uses on a site that allow for public access, with all other such entrances and with available access points. This includes, but is not limited to parking sites, passenger loading zones, streets, sidewalks, and transit stops. On-site walkways shall also be provided to any abutting public park, trail, Major Public Open Space, or other civic or institutional use.

2. Per the IDO, the following uses are exempt from the above requirement:
 a. Single- or two-family dwellings
 b. Agricultural use
 c. Open space
 d. Cemetery
 e. Wireless Telecommunication Facility
 f. Minor utilities
 g. Other uses not containing a principal building on the premises (with the exception of a parking facility)

3. Pedestrian access on proposed developments shall consist of 6 foot wide accessible, direct, clearly discernible, and ADA/PROWAG-compliant walkway or multi-use path from the City right-of-way to main entrances.

4. Commercial or multi-family developments requiring 5 or fewer parking spaces shall provide a minimum 4 foot walkway.

5. Pedestrian walkways between buildings as required in IDO Subsection 5-3(D)(3) On-site Pedestrian Connections shall have a minimum width of 5 feet.

6. Pedestrian walkways located on private property shall be constructed of concrete, asphalt, or other firm, stable, and slip-resistant material, as approved by the City Engineer.

7. Pedestrian walkways that connect to the public rights-of-way shall be physically separated from vehicular surface areas, except where required to cross a drive aisle; such crossings shall be perpendicular wherever practicable.

8. Private walkways shall be required in areas served by any street. Private walkways shall provide general pedestrian access within the development
served and shall connect with all public sidewalks, public streets, parks, and open space. Each block, or each building in the case of multi-family dwellings, shall be served by a connection to the pedestrian access system.

9. Private ways that connects to the public roadway system and that are designed for travel speeds of 10 MPH or below may allow for pedestrians, bicyclists, and /or vehicles to share the same right-of-way, rather than providing discrete space for each user, as approved by the City Engineer.

Part 7-4(F) Bikeways and Trails

Section 7-4(F)(1) General Provisions

1. Guidance for the development of bikeways is rapidly evolving with new designs being explored, tested, and incorporated into national guidance. This section builds upon guidance provided by national design manuals and identifies locally-preferred standards and procedures.

2. For additional detail and guidance, refer to the latest version of the following guides: the AASHTO Guide for the Development of Bicycle Facilities, the NACTO Urban Bikeway Design Guide, the MUTCD, and the City BTFP.

3. NACTO and AASHTO guides shall be used as guidance on pavement markings intended to improve the visibility of bicycle lanes, striping of lanes and buffers, including use of dashed lines to mark driveway access points, traffic merging areas, and transit stops.

4. The MUTCD shall be used for standards related to bicycle lane symbols, pavement markings, and signage.

5. High bicycle activity areas include facilities approaching and within a Center or Premium Transit station area or near a school. Other high activity areas include neighborhoods with an average residential density of 10 dwelling units per acre or more.

Section 7-4(F)(2) Locations of Future Facilities

1. The location of future bikeways and trails is shown on both the LRBS and in the BTFP. These future system maps show the facilities necessary to provide an integrated bikeway and trail network. The most recently updated future system map, either in the LRBS or the BTFP, shall be used to require planned bikeways and trails as part of new development.

2. New bicycle infrastructure should be considered as part of all reconstruction and new roadway projects.

3. In locations not identified on the LRBS or the BTFP maps, bikeways and/or trails may be required if they connect or close a gap in the existing system.

Section 7-4(F)(3) Bicycle Lanes

1. A bicycle lane is a lane on the roadway that has been designated by striping and pavement markings for preferential or exclusive use by bicyclists.

2. Bicycle buffers are the physical space that separates bicycle lanes from vehicle lanes. Buffers may consist of pavement markings or some form of vertical separation. See Subsection 7-4(F)(3)(iii) for additional guidance.
3. Bicycle buffers are recommended on streets with higher speeds and traffic volumes, and/or as right-of-way allows.

4. Bicycle lanes are not required on local streets with speeds of 25 MPH or less, low traffic volumes, narrow right-of-way, or that provide access to single-family residences; on these streets, bicyclists should share lanes with vehicle travel. Common treatments to facilitate shared lanes include signage, pavement markings, and bicycle route and bicycle boulevard designations.

5. Bicycle lanes should be provided on all new collector roadways and evaluated on all new arterial roadways.

6. The addition of bicycle lanes as part of restriping, resurfacing, and rehabilitation projects on existing arterial and collector roadways must be evaluated, after reviewing network connectivity, and in accordance with the Complete Streets Ordinance (Part 6-5-6 ROA 1994).

7. Consult ABC Comp Plan Table 7-5: Priority Street Element Matrix for recommendations on bicycle lanes and bicycle buffers on Corridors.

8. Bicycle lanes may be implemented on existing roadways by reducing automobile travel lane and median widths, reducing the number of travel lanes, and/or reconsidering the need for parking. If reconstructed bicycle lanes cannot meet the requirements of this section, the bicycle lanes should be installed to meet minimum national guidance recommendations.

FIGURE 7.4.75 Bicycle Lane

7-4(F)(3)(ii) Design Considerations

1. Bicycle lane and buffer widths are provided in Table 7.2.29. Wider bicycle lanes and/or striped buffers are desirable on higher speed roadways (i.e. 35 MPH or greater). Following the ABC Comp Plan Table 7-5: Priority Street Element Matrix, wider widths for bicycle lanes and bicycle buffers should be included on Corridors where bicycle lanes are a priority.

2. Bike lanes narrower than those shown in Table 7.2.29 may be considered where bicycle lanes are desirable but available right-of-way is insufficient. In constrained right-of-way situations, the widths of bicycle lanes, general purpose travel lanes, and medians shall meet minimum national guidance recommendations.

3. The width of bicycle lanes is measured from the centerline of the painted edgeline to the edge of asphalt pavement. Lane width does not include the gutter pan.
4. Bicycle lanes shall be constructed or reconstructed level and flush with roadside gutter pans with no more than 5/8-inch vertical difference.
5. Bicycle lanes shall be constructed to avoid hazardous conditions that might force awkward or unsafe bicycle movements. Storm drainage and other utilities shall be designed and located to minimize impact.
6. Improvements to intersections with bicycle lanes, shall include bicycle-sensitive signal actuation where feasible. See NACTO Urban Bikeway Design Guide for marking detection area and detection operations.
7. The dropping of bicycle lanes at intersections is strongly discouraged. Where feasible, roadway designs shall incorporate bicycle treatments at intersections to reduce conflicts between cyclists and motorists. Options include bicycle boxes, intersection crossing markings, median refuge islands, dashed lines at the entrance to right turn lanes, and the use of sharrows for shared bicycle lane and right turn only lanes. See NACTO Urban Bikeway Design Guide, or other approved design manual, for additional guidance.
8. Where on-street parallel parking is present and bicycle lanes are located to the left of automobile parking, a minimum combined width of 13 feet is required, with a recommended 7 foot wide parallel parking stall and a 6 foot wide bicycle lane. The gutter pan may be included in the parking stall width.
9. Vertical delineators at intersections should be considered in situations where the bicycle lane is used as a turning bay for vehicles.

7-4(F)(3)(iii) Separated Bicycle Lane Design

1. Separated bicycle lanes, also called protected bicycle lanes or cycle tracks, include some form of vertical element to separate the bicycle lane from automobile travel lanes. The vertical element may include tubular markers, moveable planters, raised curb, or vehicle parking.
2. Separated bicycle lanes may be located at the street level, raised to an intermediate level between the roadway and the sidewalk, or at the same level as the sidewalks.
3. Separated bicycle lanes at the sidewalk level should have some form of buffer or visual means of differentiating between the bicycle lane and the sidewalk. See the NACTO Urban Bikeway Design Guide for additional information on raised bicycle lanes at intermediate levels.
4. Separated bicycle lanes are most appropriate along roadways with higher travel speeds and for connections between and within ABC Comp Plan Centers.
5. General recommended separated bicycle lane dimensions involve a 6.5-foot lane and a 3-foot buffer. The ranges provided in TABLE 7.2.29 allow sufficient flexibility for striped buffered bicycle lanes or cycle tracks to be implemented within the recommended dimensions.
6. Two-way cycle tracks are discouraged. See NACTO Urban Bikeway Design Guide for separated bicycle lane/cycle track design guidance.

Section 7-4(F)(4) Bicycle Routes

1. Bicycle routes are designated roadways in which cyclists share roadway space with motorists. There is no designated infrastructure, though directional and informational signage is recommended.
2. Bicycle routes are recommended on low-volume (i.e. below 3,000 ADT), low-speed roadways (i.e. posted speeds of 25 MPH or below). Bicycle
routes may feature some traffic calming elements, and may be marked with sharrows.

3. Bicycle route designations may be used on existing roadways with constrained rights-of-way and where existing bicycle lanes do not meet the minimum design standards. This option is only appropriate on roads with low average travel speeds and preferably with low traffic volumes.

4. The sign, “Bicycles May Use Full Lane,” or alternate as approved by the City Engineer, is the preferred signage to indicate shared-lane facilities. Sharrow lane markings also improve the visibility of cyclists on a shared roadway.

Section 7-4(F)(5) Bicycle Boulevards

1. Bicycle boulevards are enhanced bicycle routes designed to encourage the through-movement of bicycles, while maintaining local access for motor vehicle travel.

2. Bicycle boulevards are recommended on low-volume (i.e. below 3,000 ADT), low-speed roadways (i.e. posted speed of 25 MPH or below) with direct access to destinations. Ideally, they should be at least 2 miles long. Bicycle boulevards may be parallel to roadways with bicycle lanes to provide lower-stress alternative routes.

3. Traffic calming devices are used to control motor vehicle speeds and discourage through-vehicle trips. These devices may include diverters, speed humps, traffic circles, or planters that allow through-access by bicycles only. See Part 7-4(L) Traffic Calming for additional guidance.

4. If an existing roadway is designated as a bicycle boulevard, signal timing and stop control should be evaluated to prioritize bicycle movements.

5. Additional guidance on bicycle boulevards is provided in BTFP Section 7(C) (6).

Section 7-4(F)(6) Paved Trails

7-4(F)(6)(i) Definitions and General Provisions

1. Paved trails, also called multi-use trails or shared-use paths, are facilities that are dedicated for pedestrians and cyclists and are designed for use by people of all abilities for transportation and recreational purposes.

2. Trails are physically separated from vehicular traffic and are either within the roadway right-of-way or within an easement.

3. Consult the BTFP and the LRBS for future trail locations.
7-4(F)(6)(ii) Design Standards

1. The minimum trail width shall be 10 feet, excluding shoulders. The recommended trail width is 12 feet, or 14 feet for high-use areas and long-distance routes, as defined in the LRBS.

2. Exceptions to the minimum trail width may be approved by the City Engineer. If approved, a Trail Maintenance Agreement is required.

3. The minimum width required for a trail along a roadway is 18 feet, which includes minimum 10 feet for trail, 5 feet for setback from the curb, and 3 feet setback from any adjacent property line. The setbacks from the curb and the property line may include shoulders. (See FIGURE 7.4.76).

4. Whenever possible, easements for trails shall be configured so that a clear field of view for the trail user is provided from each end of the trail.

5. A minimum 2 foot shoulder adjacent to both sides of the trail is required to be constructed of compacted base course, subgrade, or crusher fines, with cross slopes no greater than 2%.

6. A minimum 3 foot buffer is required between the private property line or any vertical structures and the trail, which may include the compacted shoulder.

7. Trail cross slope shall not exceed 2%, unless approved by the City Engineer. To ensure ADA/PROWAG compliance, it is recommended that cross-slopes be designed for a maximum of 1.5% to allow for tolerance in construction. Trail design should carefully consider compound slopes when there is both a cross slope and running slope. See Part 7-4(E) Pedestrian Facilities for slope definitions and requirements.

8. Trails next to steep slopes shall follow the AASHTO Guide for the Development of Bicycle Facilities for protection requirements.

9. Permeable pavement may be used to address drainage and storm water run-off issues with approval by the City Engineer. Different pavement materials or colors may also be used to fit in with the natural context in locations near major public open spaces.

7-4(F)(6)(iii) Trail Running Slope

1. To the greatest extent feasible the trail running slope shall have a maximum grade of 5%. In constrained conditions, the trail may match but not exceed the general grade established by the adjacent roadway or right-of-way easement.
2. Landings and rest areas shall be provided on extended grades to allow users to stop and rest, particularly for steep trails and high-use trails. The landings should be located outside the trail through lanes. See PROWAG for guidance on the frequency of landing areas.

3. Advance warning signs shall be used to identify trail locations with slopes that greatly exceed ADA guidelines, due to the slope of the road or other unavoidable topographic constraints.

7-4(F)(6)(iv) Curb Ramps

1. Curb Ramps are required to provide access between elevated trails and road surfaces. See Subsection 7-4(E)(1)(vii) Curb Ramp Requirements in Part 7-4(E) Pedestrian Facilities for additional guidance.

2. For trails, ramp width should match the trail width, excluding side flares. (See FIGURE 7.4.77.) At no point should the access way or ramp be narrower than 10 feet at intersections where a trail is present. Ramps should be free of vertical obstructions.

3. Access ramps shall have a maximum running slope of 8.3%.

4. A slip ramp may be used to connect an on-street bicycle facility to an off-street bicycle facility.

FIGURE 7.4.77 Blended Transition Ramp with Matching Trail and Ramp Width

7-4(F)(6)(v) Equestrian Accommodations

Follow the BTFP recommendations for equestrian accommodations for trail and bridge design where there is known equestrian use and facilities near Open Space.
Section 7-4(F)(7) Trail Alternatives

Where future trails and bicycle lanes are shown in combination on the BTFP or LRBS, either of 2 alternative designs may be pursued, with approval of the City Engineer.

1. A sidewalk combined with one-way separated bicycle lanes. Sidewalk design for this alternative shall follow requirements specified in Part 7-4(E) Pedestrian Facilities. The one-way separated bikeway shall follow the NACTO Urban Bikeway Design Guide, in conjunction with other national guidance.

FIGURE 7.4.78 Trail Alternative 1, Vertical Separation

2. A trail may be constructed in lieu of a sidewalk on one side of the street, with a sidewalk on the opposite side of the street. (See FIGURE 7.4.79). The trail must meet recommended trail width dimensions (10-14 feet) and recommended landscape buffer from TABLE 7.2.29.
Part 7-4(G) Public Transit

Section 7-4(G)(1) General Provisions

1. The provisions of this section describe appropriate transit stop facilities by location and the layout of stop area features. Other considerations in this section include roadway design issues that should be addressed during reconstruction projects, as well as guidance for dedicated transit infrastructure.

2. Site development applications and City roadway projects may be reviewed by ABQ RIDE and/or Rio Metro Regional Transit District (Rio Metro) for the provision of transit stop amenities, where applicable. Contributions to transit stop amenities may be asked of a site developer as a mitigation measure. See the Part 7-5(B) Traffic Scoping Form and Traffic Impact Study and Article 7-5 Traffic Studies on mitigation measures for additional guidance.

3. Guidance for this section is derived from the sources listed below. Updated versions of these documents or equivalent sources may be used with the approval of the City Engineer and the affected transit provider.

Section 7-4(G)(2) Pedestrian Connections

1. Per IDO Section 14-16-5-3(D)(3)(b), all non-residential, mixed use, and multi-family developments adjacent to transit stops, stations, and park and ride facilities must provide pedestrian connections to those facilities.

2. Per the ABC Comp Plan Table 7-5: Priority Street Element Matrix, sidewalks along Premium Transit and Major Transit Corridors are recommended to be wider than the minimum standards in TABLE 7.2.29.

3. Additional guidance on pedestrian crossings is provided in Part 7-4(E) Pedestrian Facilities.
Section 7-4(G)(3) Boarding and Alighting Areas

1. At least 1 boarding area shall be provided at each stop or station. At high-volume stops, a similar area should be provided for the rear door(s) as well.

2. The boarding and alighting area shall be a clear space that is at least 5 feet wide in the direction parallel to the roadway and 8 feet wide in the direction perpendicular to the roadway. (See FIGURE 7.4.80).

3. The slope of the boarding and alighting area shall match the roadway grade in the direction parallel to the roadway. The grade perpendicular to the roadway shall be no more than 2%. (See FIGURE 7.4.80).

4. The boarding and alighting area shall be firm, stable, and slip-resistant.

5. The boarding and alighting area shall be connected to sidewalks, private pedestrian walkways, existing bus shelters, and roads by an ADA/PROWAG-compliant pedestrian access route. (See FIGURE 7.4.81).
6. All curbside bus stops shall be designed to accommodate at least one bus serving the boarding and alighting area. The length of the bus queueing space depends on the type of vehicle(s) expected to serve the route. If there are multiple routes and thus multiple buses serving the stop, the queueing space should be extended accordingly. Potential transit service expansion and future routes should also be considered.

Section 7-4(G)(4) Transit Stop and Station Types

This section provides guidance on transit stop types and desired amenities by location. It is expected that transit stops will be integrated into the pedestrian realm. Additional right-of-way or easements may be required to implement desired amenities along existing roadways.

Additional guidance on sidewalk widths is provided in Part 7-4(E) Pedestrian Facilities. Per IDO Section 14-16-5-3 (Access and Connectivity), pedestrian connections from adjacent developments to transit stops and stations shall be provided.

7-4(G)(4)(i) Basic Transit Stop

1. A basic transit stop consists of an accessible boarding and alighting area with easily identifiable signage indicating the location of the stop. Basic transit stops are most commonly associated with bus transit.
2. Basic stops are the minimum required transit stop infrastructure and are generally acceptable at locations where there no more than 2 buses arrive at the stop per hour in the weekday peak hour. Basic transit stops do not feature benches or shelters.
3. Transit stops should be located near marked or protected pedestrian crossings, where possible.
a. At near-side stops, at least 10 feet should be provided between the front of the transit vehicle and the edge of the crosswalk.
b. At far-side stops, least 10 feet should be provided between the back of the vehicle and the edge of the crosswalk; 35 to 50 feet is preferable.

7-4(G)(4)(ii) Transit Stop with Bench

1. A bench should be provided at transit stops on Major Transit Corridors, locations where at least 2 buses arrive at the stop per hour in the peak period, or where considered appropriate by ABQ RIDE and/or Rio Metro.
2. The bench must be located so that it does not block the clear sidewalk width, preferably with the sidewalk between the bench and the curb.
3. The front of the bench should not be placed closer than 4 feet from the back of the curb, or 6 feet from the back of the curb when a travel lane exists immediately adjacent to the curb.
4. Benches should be oriented toward the street or the direction of the approaching transit vehicle.
5. The bench site area should include pedestrian access route connections (minimum 4 feet wide) to the sidewalk and the boarding and alighting area.
6. The bench site should include a level 30 inch by 48 inch maneuvering space adjacent to the bench that is firm, stable, and slip-resistant.
7. ADA/PROWAG-compliant bench design requirements are shown in **FIGURE 7.4.82** and listed below:
 a. Seat length: 42 inches minimum.
 d. Seat back, top: 18 inches minimum above the seat.
 e. Seat back bottom: 2 inches maximum above the seat.
 f. Separation between the seating surface and the seat back: 2.5 inches minimum.
 g. The wall of a shelter may serve as the seat back.

FIGURE 7.4.82 ADA/PROWAG-compliant Bench Design Requirements

```
20-24 in.
max. 2 in.
min. 2.5” in.
```

7-4(G)(4)(iii) Transit Stop with Shelter

1. A shelter should be provided, where feasible, at any of the following transit stop locations:
 a. Along Major Transit Corridors.
b. Within Centers.
c. At locations where at least 3 buses arrive at the stop per hour in the peak period.
d. Where considered appropriate by ABQ RIDE and/or the Rio Metro RTD.

2. The shelter must be located so that it does not block the clear sidewalk width.
3. Shelters should not be placed closer than 4 feet from the leading edge of the roof of the shelter to the face of the curb. Where feasible, 6 feet is desired.
4. Shelters shall be oriented toward the street or the direction of the approaching transit vehicle.
5. The shelter site area shall include ADA-compliant pedestrian access route connections (minimum 4 feet wide) to the sidewalk and to the boarding and alighting area.
6. Shelters should include space to rest, such as a bench or leaning rail.
7. Shelters shall have a minimum clear floor space of 4 feet by 4 feet for wheelchair users. The clear space shall be located under the shelter roof adjacent to any seating areas and not in front of or behind the seating area.
8. Any protruding objects in the shelter shall comply with ADA requirements.
9. The shelter must be located so that it does not block any clear sight distance requirements in Section 7-4(I)(5) Sight Distance.

7-4(G)(4)(iv) Transit Station

1. Usually associated with a premium service such as Bus Rapid Transit, transit stations are distinguished from transit stops by having level-boarding platforms and passenger amenities, such as ticket vending machines and real-time transit information, as well as common transit stop amenities, such as seating, shelters, and/or leaning rails.
2. Transit stations are recommended along Premium Transit Corridors.
3. Transit stations may be located curbside or in the median. If a station is located in the median, marked or protected pedestrian crossings must be provided to the sidewalks on either side of the street.
4. Pedestrian crossings shall be provided directly to or within 100 feet of the transit station. See Article 7-4 Design Standards for additional guidance on pedestrian crossings.
5. Additional guidance on transit station design can be found in the NACTO Transit Street Design Guide or other documents considered appropriate by ABQ RIDE and/or Rio Metro.

7-4(G)(4)(v) Park and Ride Facilities

1. Parking lots or formal station facilities that allow commuters and other transit users to leave their vehicles and transfer to public transit vehicles. Park and ride facilities generally serve as transfer facilities for multiple routes. Park and rides should include space for picking up and dropping off passengers, bicycle racks, traveler information, shelters, and other station amenities.
2. Design for park and ride facilities is based on the available parcel or lot size and should follow general site development standards outlined in the DPM, including on-site circulation requirements and guidelines for pedestrian access from surrounding roads to boarding and alighting areas.
3. Pedestrian access should be provided from developments at sites adjacent to park and ride facilities.
4. Guidance on vehicle access to park and ride facilities is provided in Part 7-4(B) Site Access Points.

Section 7-4(G)(5) Roadway Design Considerations for Transit in Mixed Flow Traffic

7-4(G)(5)(i) Travel Lanes

1. Where transit operates in mixed flow traffic – generally the outside lane – widths at the higher end of the ranges provided in Table 7.2.29 in Part 7-2(D) Street Elements may be appropriate. Narrow lanes (i.e. at the lower end of the range provided in Table 7.2.29 in Part 7-2(D) Street Elements) may be provided for other lanes along the same corridor where transit does not operate.

2. Where transit operates adjacent to on-street parking, 12-foot travel lanes and 8-foot wide on-street parking spaces are preferred, though narrower widths may be considered under constrained circumstances. (See FIGURE 7.4.83.)

3. The buffer/landscape zone also serves to separate transit vehicles from pedestrians, utilities, and other elements in the Pedestrian Realm. See Part 7-4(E) Pedestrian Facilities for additional guidance on sidewalk dimensions and buffers along the corridors where transit operates.

FIGURE 7.4.83 Travel Lane

![Travel Lane Diagram]

7-4(G)(5)(ii) Bus Turnouts and Bus Bays

1. Additional right-of-way may be required for bus turnouts and bus bays on arterial and collector streets at locations determined by the City Engineer. The width of the additional right-of-way will be whatever is necessary to provide 10 feet from face of the curb along the bus bay, plus the additional area for a shelter. The length of the bus bay depends on the length of the vehicle(s) serving the route(s).

2. Dedication of right-of-way for transit amenities (e.g. bus bay, shelter, and sidewalk) may be required as a condition of approval for site plans. An easement for these purposes is satisfactory provided platting is not otherwise occurring on the property. Bus bay design must provide for conveyance of nuisance drainage flow by valley gutter or other approved means.

3. Bus turnouts consist of a dedicated zone on the side of a roadway for passenger boarding and alighting that prevents travel lanes from being
4. Bus turnouts may be used where sufficient space exists on the side of the road to allow a transit vehicle to fully exit the travel lane. Bus turnouts require zones for deceleration, stopping, and accelerating to ensure transit vehicles can safely enter and exit the turnout, and may require the restriction of on-street parking to provide acceleration and deceleration zones.

5. Bus bays are similar to bus turnouts in that they provide a dedicated space for passenger boarding and alighting at the side of a road. In contrast to turnouts, bus bays have a protected zone with entrance and exit tapers. Bus bays require setbacks to enable the transit vehicle to completely exit the travel lane. (See FIGURE 7.4.85).

6. Bus bays are most appropriate along corridors where the speed limit is 40 MPH or greater, or locations where maintaining efficient vehicle throughput is a high priority. Bus bays may be suitable in other situations.

7. Required locations for bus bays shall be determined by the City Engineer and ABQ RIDE and/or Rio Metro.

8. Bus bay dimensional requirements are provided in the City Standard Specifications.

FIGURE 7.4.84 Bus Turnout

Bus Turnout: Dedicated zone on the side of the roadway for passenger boarding and alighting.
7-4(G)(5)(iii) Pavement Design

1. A more durable pavement design (e.g., concrete) may be desirable for transit lanes, loading areas, station areas, and stops along Premium Transit and Major Transit Corridors with high-frequency bus service (i.e., at least 4 buses per hour).
2. Specific pavement design and thickness should be considered based on factors such as expected vehicle traffic and subgrade conditions.
3. Typical gross bus weights including vehicle and passengers are 40,000 lbs. for standard buses and 60,000 lbs. for articulated buses.

7-4(G)(5)(iv) Transit Conflicts with Bicycles

1. Parallel networks in which bicycle facilities are provided on a nearby street are an appropriate means of minimizing conflicts.
2. Where transit service operates in mixed-flow traffic and coincides with on-street bicycle lanes, signage and pavement markings should be provided to improve awareness for cyclists and bus drivers. Preferred treatments include dashed lines along bicycle lanes at the entrance to the bus stop area.
3. Rerouting of bicycle lanes and boarding islands that direct bicyclists behind a transit stop may be employed in areas with sufficient right-of-way and high levels of conflict. Additional guidance on boarding islands and other treatments to alleviate conflicts between bicyclists and transit vehicles can be found in the NACTO Transit Street Design Guide.

Section 7-4(G)(6) Dedicated Transit Infrastructure

1. Dedicated transit infrastructure refers to the portion of the road or right-of-way allocated exclusively for transit vehicles and associated improvements. This design approach reduces traffic delays and conflicts and improves transit travel time reliability.
2. Dedicated transit infrastructure may take the form of a separate lane or transit guideway and may be located curbside or in the median.
3. Dedicated transit lanes may be shared use under limited contexts, such as for emergency response, providing business access along a curbside lane, or through time-of-day restrictions.
4. Signage and pavement markings are necessary where physical separations between dedicated transit infrastructure and general purpose travel lanes do not exist.
5. Dedicated transit infrastructure is recommended along Premium Transit and Major Transit Corridors.
6. Additional guidance on dedicated transit infrastructure can be found in the NACTO Transit Street Design Guide or other documents considered appropriate by ABQ RIDE and/or Rio Metro.
7. Additional guidance on lane striping and pavement markings required for dedicated transit infrastructure can be found in the MUTCD.

7-4(G)(6)(i) Curbside Transit Lanes

1. Dedicated curbside bus transit lanes should be 10-12 feet wide, not including the gutter pan, with a recommended width of 11 feet. Narrower lanes are most appropriate when operating speeds are 25 MPH or below, or where right-of-way is severely constricted.
2. Lane widths at stop locations may be reduced to 10 feet.
3. Curbside lanes may be separated by concrete barrier or rumble strip, depending on the roadway design speed and available right-of-way.
4. If right-of-way is constrained and no landscape buffer currently exists, a minimum 2-4 feet, including the gutter, should be provided to separate the sidewalk and the curbside transit lane.
5. Curbside transit lanes may be used for business access or right turns. Alternatively, right turns may be restricted to signalized turning movements.

7-4(G)(6)(ii) Median Transit Lanes

1. Median transit lanes should be 11-13 feet wide, with a recommended width of 12 feet. The lane width may be reduced if there are guideways or tracks to steer transit travel.
2. Median transit lanes and center platform stations require a minimum of 28 feet for the boarding and alighting area and dedicated lanes on both sides. (See FIGURE 7.4.86).
3. Some form of separation, such as a raised curb or rumble strips, is recommended between the transit lane and adjacent general purpose lanes.
4. Roadway designs must accommodate left turns at regular intervals through dedicated turn lanes and protected signals.
7-4(G)(6)(iii) Queue Jump Facilities

1. Queue jump facilities are short transit-only facilities at intersections that are combined with signal prioritization to allow for buses to enter traffic flow ahead of general purpose travel lanes. Queue jump facilities can be applied in the curbside travel lane where stops are located adjacent to signalized intersections or in a short-length special bus-only travel lane.

2. Queue jump facilities may require additional right-of-way at intersections or the reallocation of a dedicated right-turn lane. Curbside queue jump facilities require right turns to be made from the nearest inside travel lane.

3. Queue jump facilities are most appropriate along Major Transit and Premium Transit Corridors.

4. Additional guidance on the design of queue jump facilities can be found in the NACTO Transit Street Design Guide or other documents considered appropriate by ABQ RIDE and/or Rio Metro.

Part 7-4(H) On-street Parking

Section 7-4(H)(1) General Provisions

Space within the travel way may be allocated to meet the parking needs of adjacent businesses and land uses. On-street parking also provides a buffer between pedestrians and moving traffic, reduces the need for off-street parking, and can serve as a speed management technique. On-street parking is generally located alongside the curb.

7-4(H)(1)(i) On-street Parking Location

1. On-street parking is generally permitted on local streets unless prohibited or restricted by street signage.

2. On collectors and above, on-street parking is recommended within designated Centers, along Main Street Corridors, and near other high
pedestrian activity areas. See ABC Comp Plan Table 7-5: Priority Street Element Matrix for recommendations for different Corridors.

3. On-street parking is generally prohibited outside of Centers and Main Street Corridors where posted vehicle speeds exceed 30 MPH and traffic volume is greater than 10,000 ADT, except at the discretion of the City Engineer.

4. Outside of Centers, Main Street Corridors, and other high pedestrian-activity areas, the City Engineer in its sole discretion may consider on-street parking along arterial roadways in limited circumstances. Areas that may be considered include Metropolitan Redevelopment Areas and other locations that support economic development.

5. Consideration of on-street parking may require studies of parallel routes, operating speeds, traffic volume, drainage concerns, sight lines, and available right-of-way.

7-4(H)(1)(ii) Types of On-street Parking

On-street parking options include reverse angle (also referred to as back-in angle), parallel, and head-in angle parking.

7-4(H)(1)(ii)(a) Reverse Angle Parking

1. Reverse angle parking is recommended by ABC Comp Plan Goal 7.4 Context-sensitive Parking for on-street parking where right-of-way permits. Reverse angle parking offers the clearest sightlines for motorists to see approaching bicyclists and other vehicles.

2. Where practical and where sufficient right-of-way exists, reverse angle parking should be used on bicycle routes, bicycle boulevards, and roadways with bicycle lanes.

3. Reverse angle parking is recommended on low-speed (25 MPH or less) and low-volume roadways.

7-4(H)(1)(ii)(b) Parallel Parking

1. Parallel on-street parking is recommended in locations with limited right-of-way and on higher volume streets.

2. Parallel parking is prohibited on streets with speed limits above 35 MPH.

7-4(H)(1)(ii)(c) Head-in Angle Parking

Head-in angle parking is the least preferred option, but may be used on roadways with speeds below 35 MPH and without bicycle facilities.

7-4(H)(1)(iii) ADA/PROWAG Accessible On-street Parking

See Section 7-4(K)(5) ADA Accessible Parking for ADA/PROWAG parking space dimensions. ADA/PROWAG accessible parallel on-street parking may be placed only where sufficient right-of-way exists for the loading/unloading area.
Section 7-4(H)(2) Design Guidance

1. The type of on-street parking treatment depends on the location, roadway conditions (e.g., vehicle travel speeds and traffic volume), Corridor designation or functional classification, and available right-of-way.
2. On-street parking may be combined with curb extensions to reduce pedestrian crossing distance, to create additional space in the landscape/ buffer zone, or to improve access to transit stops.
3. Adequate clear sight triangles must be provided for all on-street parking spaces.

7-4(H)(2)(ii) Reverse Angle Parking Design Guidance

1. Sufficient right-of-way is required to ensure 20 feet of clear roadway width located between the end of the parking stall and the face of curb or the parking stall on the opposite side of the street. (See FIGURE 7.4.87.)
2. Signage demonstrating the appropriate technique is strongly recommended for reverse angle parking.
3. The preferred angle for reverse angle parking is 60°.
4. The stall width should accommodate a minimum 8.5 foot wide and 18 foot long vehicle space. See FIGURE 7.4.87 and TABLE 7.4.60 for dimensions of angled parking.
5. Parking barriers and/or extended shy zones in the landscape/buffer zone are recommended to ensure that vehicles with long rear overhangs do not reduce pedestrian access route or strike streetside elements.

FIGURE 7.4.87 Dimensions for Angle Parking

TABLE 7.4.60 Dimensions for Angle Parking

<table>
<thead>
<tr>
<th>Angle (A)</th>
<th>Stall Length (L)</th>
<th>Stall Width (W)</th>
<th>Stall Depth (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45°</td>
<td>26.5 ft.</td>
<td>12 ft.</td>
<td>18.7 ft.</td>
</tr>
<tr>
<td>60°</td>
<td>22.9 ft.</td>
<td>9.8 ft.</td>
<td>11.5 ft.</td>
</tr>
<tr>
<td>75°</td>
<td>20.3 ft.</td>
<td>8.8 ft.</td>
<td>19.6 ft.</td>
</tr>
</tbody>
</table>
7-4(H)(2)(iii) Parallel Parking Design Guidance

1. The required width of on-street parallel parking stalls is 7 feet to 8.5 feet, with wider stalls recommended on commercial streets with higher levels of parking turnover and on streets with speeds greater than 25 MPH. (See TABLE 7.4.61)

<table>
<thead>
<tr>
<th>Speed Limit</th>
<th>Stall Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 MPH</td>
<td>7 ft.</td>
</tr>
<tr>
<td>30-35 MPH</td>
<td>8 ft.</td>
</tr>
</tbody>
</table>

2. The gutter pan may be used as part of the stall width.
3. Where parallel on-street parking is adjacent to a bicycle lane (and there is insufficient space for reverse angle parking), the minimum combined width for the bicycle lane and the parallel parking stall is 13 feet (with a recommended 7 foot wide parallel parking stall and a 6 foot wide bicycle lane).
4. The combined width of a parallel on-street parking stall and the adjacent travel lane should be a minimum of 18 feet.
5. A 1.5 foot shy zone space or offset shall be provided between the curb edge and any vertical elements in the landscape/buffer zone.
6. Individual stalls may be marked to increase the parking capacity. The minimum stall length is 20 feet for interior spaces and 18 feet for end spaces. (See FIGURE 7.4.88)
7. Per MUTCD, there shall be a 20-foot long space between the crosswalk or pedestrian crossing and the nearest on-street parking space. A curb extension may be used within that 20 foot area.
7-4(H)(2)(iv) Head-in Angle Parking Design Guidance

1. Recommended dimensions for angle parking are provided in **TABLE 7.4.60**.
2. Additional guidance on head-in angle parking can be found in **ITE Designing Walkable Urban Thoroughfares** or other manuals approved by the City Engineer.

7-4(H)(2)(v) On-street Bicycle and Motorcycle Parking

1. Excess space between the end parking space nearest to an intersection and the no-parking zone may be striped for on-street motorcycle or bicycle parking. (See **FIGURE 7.4.88**).
2. On-street parking for motorcycles or bicycles may be used in lieu of a parking stall at the discretion of the City Engineer.
3. On-street motorcycle parking stalls should have a minimum width of 4.5 feet.
4. In areas where on-street parking is regulated by parking meters, at least 3 on-street parking spaces shall be designated as free motorcycle, moped, or motor scooter parking for every 3 contiguous blocks of metered on-street parking. This provision does not apply if it would require the removal of any regular on-street metered parking space.
5. Bicycle parking should be in the form of a corral or other vertical feature that clearly demarcates the space as intended for bicycles only. Corrals are most appropriate at street corners. (See **FIGURE 7.4.89** for examples.)
Section 7-4(H)(3) Maintenance and Parking Agreements

7-4(H)(3)(i) Publicly Maintained On-street Parking

If the City elects to create on-street parking in the City right-of-way, the City will maintain the parking, including routine sweeping, debris removal, snow removal, ice removal, and any necessary re-striping and repaving.

7-4(H)(3)(ii) Private Parking Agreements

1. If an applicant develops or redevelops on-street parking in City right-of-way for its exclusive use, then the applicant shall enter into a parking agreement with the City. The parking agreement shall require the applicant to pay an annual fee to the City for the right to post signs permitting private, exclusive parking, and shall require the applicant to construct and maintain the parking spaces, including the routine sweeping, debris removal, snow removal, ice removal, and any necessary re-striping. Under the parking agreement, the City may repave the parking spaces when repaving the adjacent roadway.

2. If an applicant develops or redevelops on-street parking in City right-of-way for public, non-exclusive use, then the applicant shall enter into a parking agreement with the City. The parking agreement shall not require the payment of an annual fee, but shall require the applicant to construct and maintain the parking spaces, including the routine sweeping, debris removal, snow removal, ice removal, and any necessary re-striping. Under the parking agreement, the City may repave the parking spaces when repaving the adjacent roadway.

3. If the construction of on-street parking is shared by the City and an applicant, the parties shall enter into a parking agreement concerning the maintenance responsibilities of each party and the collection and payment of any fees.
Section 7-4(H)(4) Creation of New On-street Parking During Development

7-4(H)(4)(i) Procedures

1. The addition of on-street parking to support a development may be permitted as described in Subsection 7-4(H)(1)(i). A pre-design meeting with the City Engineer to review the conceptual layout is required.

2. For approval of new on-street parking to support a development, all of the following criteria must be met:
 a. The parking and adjacent sidewalk must be within City right-of-way or a public easement.
 b. Public notice must be given to property owners/tenants within 200 feet of the proposed parking area.
 c. The posted speed must be less than 35 MPH.
 d. A work order must be obtained for initial construction. Work orders require engineered plans. Barricading and excavation permits are required for the work order and for any maintenance.

3. Meeting the above criteria does not guarantee approval if there is a significant safety issue that would be created by allowing on-street parking. If approval is granted by the City, this approval does not grant vested rights for on-street parking. The City retains the right, at its discretion, to remove on-street parking and the applicant shall agree to waive any claim of damage if on-street parking is removed. The standard criteria for on-street parking credits in IDO Subsection 14-16-5-5(C)(4)(e), Parking & Loading shall apply.

Section 7-4(H)(5) Parklets

7-4(H)(5)(i) Definitions and General Provisions

1. Parklets, also locally referred to as parquitos, are small public areas or commercial spaces supporting an adjacent business in which a curbside parking space is replaced with a seating area or gathering space that encourages additional activity along a street. Parklets may span 1 or more on-street parking spaces (or the equivalent curbside space).

2. Parklets are generally the result of an agreement between the City and the business or property owner that is converting the parking space for commercial purposes. Coordination with the Department of municipal Development Parking Division is required, including agreement over fees associated with lost parking revenue.

3. Parklets require approval by the City Engineer and a revocable permit or other agreement to convert a public parking space for commercial use.

4. The City reserves the right to reject a parklet if it will interfere with upcoming street improvements, affect drainage, or create challenges for street maintenance.

5. Construction and maintenance is the responsibility of the property owner converting the space.

6. Parklets are most appropriate on streets with speed limits of 25 MPH or less, and may be considered on streets with speed limits over 25 MPH on a case-by-case basis.

7. Parklets may be sited along the curb on streets where on-street parking spaces exist, or where sufficient space for on-street parking is available.
7-4(H)(5)(ii) Design Guidance

1. The width of the parklet must not be greater than the designated on-street parking spaces. (See Figure 7.4.90)
2. Parklets may not be constructed over access points for utilities, such as manhole covers or storm drain inlets, or in front of fire hydrants.
3. Parklets shall not be located at street corners and shall be located a minimum 20 feet from the edge of the on-street parking zone.
4. A minimum buffer of 4 feet is required between the edge of the parklet and the adjacent parking space(s).
5. A minimum 2 foot buffer is required between the edge of the parklet and any active driveway.
6. All parklets must comply with the ADA/PROWAG and be accessible to all users. Parklets are generally not permitted on streets with a grade greater than 5%, unless the parklet provides safe access for all users.
7. The parklet shall be flush against the curb or connected via an ADA/PROWAG accessible ramp.
8. A vertical separation from the adjacent roadway is required. The separation shall be located adjacent to the roadway as well as on both ends of the parklet.
9. Where a parklet is located next to a bicycle lane, there must be a minimum 5 feet of space from the edge of the parklet to the nearest general purpose travel lane.
10. All parklets shall accommodate street drainage.
11. All parklet designs shall be approved by the City Engineer and should reference the San Francisco Parklet Manual or approved alternative for additional considerations.

Part 7-4(I) Geometric Design Criteria

The criteria in this section are major controlling factors in the design of streets. Designers shall carefully apply these criteria to individual design circumstances. Suitable transitional elements must be provided between changes in geometric configuration, pavement, curb, and drainage carrying aspects of the ultimate street design.
The following criteria are discussed in this section:
1. General Design Criteria
2. Horizontal Alignment
3. Superelevation
4. Vertical Alignment
5. Sight Distance
6. Intersection Design
7. Medians and Turn Lane Design

The standards contained in the DPM are intended to provide direction in the design of transportation facilities. While most of the design parameters that should be used are provided in the following pages, unusual conditions may occur in some projects.

Where additional guidance and explanation is needed, the designer should refer to the current version of publications from the following sources:
1. AASHTO
2. ITE
3. NACTO

Specific publications that may be referenced in the design process include:
1. AASHTO, Roadside Design Guide
2. Transportation Research Board, HCM
3. Federal Highway Administration, MUTCD

Section 7-4(I)(1) General Design Criteria

Streets shall be designed to avoid long straight segments on residential streets and abrupt, inconsistent changes in either horizontal or vertical alignment. Balance is necessary to avoid hazardous situations and help meet driver expectations.

The fundamental approach to street design is to first identify the design speed for the facility. (See TABLE 7.2.29.) The nominal vehicle type must also be considered. The design is accomplished by selecting the appropriate characteristics to accommodate the design vehicle at the design speed in a safe and efficient manner.

Section 7-4(I)(2) Horizontal Alignment

Normal crown is generally preferred in urban streets to promote control of drainage and nuisance stormwater flows. This preference will lead to the use of longer radius horizontal curves in most major street circumstances. TABLE 7.4.62 provides the minimum centerline radius for a normal road with a 2% crown or 2% maximum cross slope. For roads with superelevation, cross slopes greater than 2%, and design speeds greater than 45 MPH, refer to the current AASHTO Green Book.
TABLE 7.4.62 Minimum Centerline Radius for a Normal Road*

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Radius (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>107*</td>
</tr>
<tr>
<td>25</td>
<td>198*</td>
</tr>
<tr>
<td>30</td>
<td>333</td>
</tr>
<tr>
<td>35</td>
<td>510</td>
</tr>
<tr>
<td>40</td>
<td>762</td>
</tr>
<tr>
<td>45</td>
<td>1039</td>
</tr>
</tbody>
</table>

*A local residential street with 90° or near 90° turns may be designed with a minimum centerline radius of 75 with the approval of the Traffic Engineer.

Section 7-4(1)(3) Superelevation

The use of superelevation (i.e. outside edge of pavement higher than inside edge) should be limited in an urban setting due to the lower speeds of the roadways. Superelevation shall not be used on local streets. Refer to the current AASHTO Green Book for guidance on superelevation rates.

The use of superelevation requires the careful design of transitions leading to/from normal crown sections to and from superelevated sections. Designs involving such transitions should show sufficient detail to demonstrate that drainage is being accommodated (i.e. no low points) and to provide sufficient information for adequate construction staking to ensure the desired result. Vertical profile lines for all curblines as well as detailed superelevation run-out plans shall be provided for superelevation design. See FIGURE 7.4.91 for a visual representation of a superelevation runout plan.

FIGURE 7.4.91 Example Superelevation Runout Plan
Section 7-4(1)(4) Vertical Alignment

Long, flat gradients are undesirable because of poor drainage characteristics. The minimum desirable gradient consistent with acceptable drainage is 0.5 percent and, as such, should be observed as a general design principle. Long, steep gradients are also undesirable since they are difficult for heavier vehicles to negotiate at desirable traffic speeds. See DPM Article 6-9 Street Hydraulics for additional requirements.

Vertical curve criteria in TABLE 7.4.63 are from the AASHTO Green Book, 6th edition. In the application of these criteria, the designer will be expected to apply sound engineering judgment in combining vertical geometry with horizontal geometry. Extreme vertical undulation is not acceptable. Vertical changes in grade occurring simultaneously with horizontal alignment changes must be carefully considered to preserve the required sight distance consistent with the design speed of the street. Horizontal curvature should not be introduced at or near the top or bottom of a crest or sag vertical curve. Intersection sight distances must be maintained in all designs. Intersections on vertical curves should be placed at the crest where visibility in both directions can be maintained.

The values for K shown in the following tables for Crest and Sag Vertical Curves are to be used in determining the minimum length of vertical curve required by the use of the relationship

\[L = K \cdot A \]

where:
- \(L \) = Length of vertical curve in feet
- \(A \) = Algebraic difference in grades expressed in percent
- \(K \) = Design value indicative of rate of curvature

Lengths of vertical curves longer than the minimums resulting from the use of \(K \) values shown should be used wherever possible; however, \(K \) should not exceed 167 feet when curb and gutter is used.

If grade changes without vertical curves are used, as allowed in the following table, a minimum of 50 feet must be maintained between the vertical point of intersections.
TABLE 7.4.63 Design Controls for Vertical Curves

<table>
<thead>
<tr>
<th></th>
<th>Design Speed (MPH)</th>
<th>Minimum Vertical Curve (ft.)</th>
<th>K Value For Crest Stopping Sight Distance</th>
<th>K Value For Sag Stopping Sight Distance</th>
<th>Maximum Grade Change Allowed Without Vertical Curve</th>
<th>Maximum Grade Allowed %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterials/Collectors</td>
<td>50</td>
<td>150</td>
<td>84</td>
<td>96</td>
<td>0.4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>135</td>
<td>61</td>
<td>79</td>
<td>0.4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>135</td>
<td>44</td>
<td>64</td>
<td>0.4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>100</td>
<td>29</td>
<td>49</td>
<td>0.7</td>
<td>8</td>
</tr>
<tr>
<td>Major Local</td>
<td>30</td>
<td>100</td>
<td>19</td>
<td>37</td>
<td>0.8</td>
<td>8</td>
</tr>
<tr>
<td>Local Residential</td>
<td>25</td>
<td>75</td>
<td>12</td>
<td>26</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Local Residential: Access Streets, Cul-de-sacs, Alleys</td>
<td>20</td>
<td>60</td>
<td>7</td>
<td>17</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Local Leg of T Intersection</td>
<td>15</td>
<td>45</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Local Industrial/Commercial</td>
<td>30</td>
<td>90</td>
<td>19</td>
<td>37</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Section 7-4(I)(5) Sight Distance

7-4(I)(5)(i) General Provisions

1. Roadways, intersections, site entrances, and driveways shall have sufficient visibility to allow motorists to easily travel and enter or exit safely, as well as protect pedestrians and bicyclists.
2. Visibility must be maintained in accordance with the current AASHTO guidelines for roadway design intersection visibility. The information below is based on the 6th Edition of the AASHTO Green Book.
3. Depending on specific site conditions, adjustments to sight distances may be required. These factors may include, but are not limited to, side street approach grades greater than 3%, median widths of the crossing street, or skewed intersections. Waivers may also be granted in Downtown, Urban Centers, and Mixed-use zone districts.

7-4(I)(5)(ii) Stopping Sight Distance

1. Stopping sight distance is the length of roadway visible to the driver. The minimum sight distance available on the roadway should be sufficiently long to enable a vehicle traveling at or near the design speed to stop or change lanes before reaching a stationary object in its path.
2. The method of measuring stopping sight distance along a roadway is illustrated in FIGURE 7.4.92.
3. Minimum stopping sight distances, as shown in TABLE 7.4.64, shall be provided in both the horizontal and vertical planes for planned roadways as related to assumed driver’s eye height and position.

4. Adequate sight distance shall be provided at all driveway access points.

5. Where there are sight obstructions (such as walls, cut slopes, buildings, or other hazards) on the inside of curves, changes in roadway alignment may be required to obtain adequate stopping sight distance if the sight obstruction cannot be removed.

FIGURE 7.4.92 Stopping Sight Distance

TABLE 7.4.64 Minimum Stopping Sight Distance

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Upgrades</th>
<th>Flat</th>
<th>Downgrades</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9%</td>
<td>6%</td>
<td>3%</td>
</tr>
<tr>
<td>25</td>
<td>140 ft.</td>
<td>145 ft.</td>
<td>150 ft.</td>
</tr>
<tr>
<td>30</td>
<td>180 ft.</td>
<td>185 ft.</td>
<td>200 ft.</td>
</tr>
<tr>
<td>35</td>
<td>225 ft.</td>
<td>230 ft.</td>
<td>240 ft.</td>
</tr>
<tr>
<td>40</td>
<td>270 ft.</td>
<td>280 ft.</td>
<td>290 ft.</td>
</tr>
<tr>
<td>45</td>
<td>320 ft.</td>
<td>330 ft.</td>
<td>345 ft.</td>
</tr>
<tr>
<td>50</td>
<td>375 ft.</td>
<td>390 ft.</td>
<td>405 ft.</td>
</tr>
</tbody>
</table>
7-4(l)(5)(iii) Intersection Sight Distance

1. Intersections should be planned and located to provide as much sight distance as possible. A basic requirement for all controlled intersections is that drivers must be able to see the control device well in advance of performing the required action. Stopping sight distance on all approaches is needed at an all-way stop. Obstruction-free sight triangles shall be provided for both left and right turns.

2. Intersections of local streets with major streets classified as collector or above shall not be located at or near horizontal curves without special evaluation of intersection sight distance. The location of an intersection on the inside of a horizontal curve is a situation that will typically result in intersection visibility problems. The location of any property lines, fences, or other obstructions will need to be evaluated to ensure that the minimum sight distance is maintained. See Figure 9-15 Intersection Sight Triangles in the AASHTO Green Book, 2011 or latest edition.

3. Adjustments to the intersection sight distance must be made for side street approach grades greater than 3%, skewed intersections, and other types of roadway geometry in accordance with Section 9.5.3 Intersection Control in the AASHTO Green Book, 2011 or latest edition.

4. At any intersection of 2 roadways, a sight triangle shall be provided for an unobstructed path of sight. The sight distance triangle can be defined by connecting a point that is along the minor street’s edge of pavement and 15 feet from the edge of pavement of the major street, with a point that is distance (L) along the major street’s edge of pavement as shown in FIGURE 7.4.83.

5. TABLE 7.4.65 summarizes the required sight distance (L) along the major road for a stopped vehicle on the minor street to cross the major street. If a roadway is divided with a median width of 20 feet or more for passenger vehicle crossings or 40 feet or more for truck crossings, the required sight distance may be based on a two-stop crossing and consideration given to the width of each one-way section at a time.
FIGURE 7.4.93 Intersection Sight Distance

- **Drivers Eye**
- **Sight Line (typical)**
- **Area to be free from any visual obstruction**
- **Property Line**
- **Sight Distance Length (L)**

TABLE 7.4.65 Minimum Intersection Sight Distance

<table>
<thead>
<tr>
<th>Speed Limit (MPH)</th>
<th>2 Lane Undivided</th>
<th>3 Lane Undivided or 2 Lane Divided w/ 12 ft. Median</th>
<th>4 Lane Undivided</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Left Turn</td>
<td>Right Turn</td>
<td>Left Turn</td>
</tr>
<tr>
<td>20</td>
<td>230 ft.</td>
<td>200 ft.</td>
<td>240 ft.</td>
</tr>
<tr>
<td>25</td>
<td>280 ft.</td>
<td>240 ft.</td>
<td>300 ft.</td>
</tr>
<tr>
<td>30</td>
<td>340 ft.</td>
<td>290 ft.</td>
<td>360 ft.</td>
</tr>
<tr>
<td>40</td>
<td>450 ft.</td>
<td>390 ft.</td>
<td>480 ft.</td>
</tr>
<tr>
<td>45</td>
<td>500 ft.</td>
<td>430 ft.</td>
<td>530 ft.</td>
</tr>
<tr>
<td>50</td>
<td>560 ft.</td>
<td>480 ft.</td>
<td>590 ft.</td>
</tr>
</tbody>
</table>

7-4(l)(5)(iv) Mini Clear Sight Triangle

Driveways need to maintain the mini clear sight triangle as shown in **FIGURE 7.4.94**. This triangle starts at the sidewalk and measures 11 feet on a side.
7-4(I)(5)(v) Visibility for Site Entrances and Driveways

Site entrances and driveways shall be designed to preserve the clear sight triangle free of visual obstruction as described in Subsection 7-4(I)(5)(iii) Intersection Sight Distance and Subsection 7-4(I)(5)(iv) Mini Clear Sight Triangle above.

7-4(I)(5)(vi) Sight Distance Note

The following note is required on all site plans: “Landscaping, signage, walls, fences, trees, and shrubbery between 3 feet and 8 feet tall (as measured from the gutter pan) are not allowed within the clear sight triangle.”

7-4(I)(5)(vii) Objects Permitted in the Clear Sight Triangle

Objects that may be located in the clear sight triangle include, but are not limited to, hydrants, utility poles, utility junction boxes, and traffic control devices, provided that these objects are located to minimize visual obstruction. Objects under 8 inches wide may be allowed by the City Engineer.

Section 7-4(I)(6) Intersection Design

7-4(I)(6)(i) Intersection Traffic Control Typologies

1. Traffic control is applied at all locations where two or more roads intersect to manage the movement of multiple users and directions of traffic. The traffic control technique depends on the traffic volume, Corridor type, and functional class of the roadways, with greater control required on higher speed and higher use facilities.

2. All traffic control devices should be designed in accordance with the standards and specifications as published in the most recent versions of the MUTCD and City Standard Specifications.

(7-4(I)(6)(i)(b) Signalized Intersections)

1. A signal warrant analysis is required before a new traffic signal is added. See Article 7-5 Traffic Studies for further guidance.
Traffic signals may be removed and/or converted to a stop sign-controlled intersection if a signal warrant analysis is conducted and determines that a signalized intersection is unnecessary.

Where a development will cause traffic that warrants a signal, the developer will be financially responsible for all or a portion of the signal installation at the discretion of the City Engineer.

Guidance on the spacing of signalized intersections and signalized pedestrian crossings is provided in Part 7-4(A) Network Connectivity.

7-4(I)(6)(i)(c) Unsignalized Intersections
1. An unsignalized intersection is an at-grade intersection in which the flow of traffic is not controlled by a traffic signal. Unsignalized intersections may be stop-sign controlled, yield sign-controlled, or uncontrolled.
2. Unsignalized intersections are appropriate for locations where the vehicle and/or pedestrian volumes do not meet the thresholds set forth for new signals in the MUTCD.
3. The typical unsignalized intersection control shall be two-way stop control, which provides stop control on the secondary intersection approaches (i.e. side-street) and free flow on the primary street.
4. All-way stop control may be provided at intersections where traffic volumes or other conditions are consistent with the warrants set forth in the current edition of the MUTCD.
5. Yield sign controls may be placed as part of the entrance to a traffic circle, roundabout, channelized right turn, or at the intersection approach of a minor road.
6. Uncontrolled intersections (i.e. intersections without any signage or traffic control) are generally discouraged and are only appropriate at the intersection of 2 local streets.

7-4(I)(6)(i)(d) Neighborhood Traffic Circles
1. Traffic circles are small raised islands placed in intersections around which traffic circulates. Traffic circles are intended to manage speeds in neighborhood settings by impeding through movements and forcing drivers to travel at slower speeds through intersections.
2. Yield signs may be used as traffic control at the approaches of the traffic circle.
3. Traffic circles are most appropriate at intersections on local and major local streets where large vehicle traffic is not a major concern but speeds, volumes, and safety are recorded problems. Additional guidance on neighborhood traffic circles is provided in Part 7-4(L) Traffic Calming and the NTMP.

7-4(I)(6)(i)(e) Roundabouts
1. Roundabouts are a form of intersection control in which motorists and bicyclists travel counter-clockwise around a center island and yield at entry points to traffic already circulating the roundabout.
2. A roundabout may be constructed at intersection locations along collectors and arterials where it may be desired in order to enhance intersection capacity, reduce vehicle speeds along a corridor, reduce the incidences of severe crashes, address irregular intersection geometry, or enhance intersection aesthetics. Roundabout design and bicycle and pedestrian accommodations shall be designed in accordance with the criteria set forth in the most recent version of the FHWA NCHRP Report.
672: Roundabouts: An Informational Guide, or a more recent comparable document acceptable to the City Engineer.

3. Care should be taken to ensure that roundabouts are not located in close proximity to adjacent stop or signal controlled intersections where long queues may back up into the roundabout.

4. Additional right-of-way may be required for the construction of roundabouts. The purchase of right-of-way shall be considered as part of the design cost for roundabouts proposed on existing facilities.

5. See the current MUTCD for guidance on signage and pavement markings for bicyclists and pedestrians at roundabouts. Per the MUTCD, bicycle lanes are not permitted in roundabouts.

6. See NACTO, AASHTO, or other approved design guides for pedestrian and bicycle design considerations through roundabouts.

7-4(I)(6)(ii) Intersection Design Considerations

7-4(I)(6)(ii)(a) Angle of Intersections

1. Streets shall be designed to intersect at right angles.

2. If an angled intersection is unavoidable, the acute angles at intersections for all new streets shall be 80° or greater. Consult the AASHTO Green Book for additional guidance on the effects of skewed intersections, including changes to the sight triangle and curb radii.

3. Intersections at less than 80° require permission from the City Engineer.

4. Direction on intersection spacing is provided in Section 7-4(I)(7).

7-4(I)(6)(ii)(b) Spacing of Intersections

Guidance on the spacing of signalized and unsignalized intersections is provided in Part 7-4(A) Network Connectivity.

7-4(I)(6)(ii)(c) Intersection Grading

5. Intersections must be graded to provide characteristics consistent with the design speed of the through street. Projected curb flowline profiles through the intersection will be required for design review of intersections involving arterial and collector streets. Alignment of arterial streets through intersections must be continuous without breaks in grade and meet the criterion for vertical curvature in TABLE 7.4.63. Grades within the intersection need to be flat enough to minimize problems with turning vehicles and to keep stopping distances reasonable. Grades should also be steep enough to ensure that proper drainage occurs. Grades should be between 0.5% and 3%.

6. Minor leg approach tangent gradients to intersections should not exceed 4% from the projected curb flowline of the through street. Deviations from this standard will require approval by the City Engineer.

7. Street crowns should be reduced through intersections to promote driver comfort. Additional guidance on drainage requirements at intersections is provided in Chapter 6.
8. Grades intended to serve as drainage water blocks may only be designed on minor approach legs of intersections. Design of water blocks shall be per Chapter 6 and the approved grading and drainage plan.

9. The designer should specifically investigate intersection design to assure that design flows will not overtop curbs resulting in damage outside the right-of-way. Drop inlets should be located away from curb access ramps. Curb returns should be designed to avoid ponding.

10. Intersections should be located so as to avoid roadway segments that are highly superelevated. Intersection grading for superelevated roadways needs to take into account the issues of grade compatibility, cross-over crown, etc. to ensure that the intersection will operate properly.

7-4(I)(6)(ii)(d) Intersection Sight Distance

Intersections should be designed to ensure that drivers have an unobstructed view as they approach or depart an intersection. Standards related to intersection sight distance are provided in Section 7-4(I)(5)

7-4(I)(6)(ii)(e) Bicycle and Pedestrian Accommodations

1. Additional guidance for bicycle travel at intersections is provided in Part 7-4(F) Bikeways and Trails.

2. Additional guidance on sidewalks, curb ramp design, intersection pavement markings, and crosswalk design is provided in Part 7-4(E) Pedestrian Facilities.

7-4(I)(6)(ii)(f) Intersection Turn Lanes

Additional guidance on turn lane design at intersections is provided in Section 7-4(I)(7)

7-4(I)(6)(iii) Curb Return Radii

7-4(I)(6)(iii)(a) Definition

Curb returns are the curved corner formed by the intersection of 2 streets. Curb returns guide motor vehicle during turning movements, and are important for delineating pedestrian zones at intersections.
7-4(I)(6)(iii)(b) Design Considerations

1. Recommended ranges for curb return radii are provided in TABLE 7.4.66.

2. Important factors for determining the size of curb return radii are the Corridor type and the location (i.e. inside or outside of a Center). Curb return radii should be designed to ensure safe movement for all roadway users.

3. Desired curb return radii are organized by Corridor type in TABLE 7.4.66. The intersections of Corridors that carry higher traffic volumes at greater speeds generally have larger curb return radii. Turning radii of design vehicles should be checked during design. It is assumed that trucks and buses may need to swing wide to make right turns, but the design should discourage this movement where feasible. It is also assumed that large vehicles will turn into the middle or far lane if more than 1 lane is available.

4. Curb return radii are provided as ranges to ensure some flexibility, though the size of curb return radii should be minimized where possible. Smaller radii reduce vehicle speeds and reduce pedestrian crossing distance, and are recommended in Centers and Premium Transit station areas and along Multi-modal, Main Street, and Major Transit Corridors.

5. The design vehicle is generally an SU-30, though a smaller design vehicle is encouraged where feasible.

6. Curb return radii may be 15 feet or less within all designated Centers, regardless of Corridor type. If a 15 foot radius cannot be achieved in Centers or along desired Corridors, the curb return radius shall be the low value provided in TABLE 7.4.66.

7. The design standards for curb return radii reflect that local streets may serve commercial and industrial purposes, in which case larger radii may be required to support delivery vehicles and other large trucks.

8. Larger radii are appropriate in locations where large vehicles, including buses and delivery trucks, make regular turning movements.
TABLE 7.4.66 Curb Return Radii Table

<table>
<thead>
<tr>
<th>From/To</th>
<th>Commuter</th>
<th>Major Transit</th>
<th>Multi Modal</th>
<th>Main Street</th>
<th>Other Arterial</th>
<th>Minor Arterial</th>
<th>Collector</th>
<th>Local Commercial</th>
<th>Local Residential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Street</td>
<td>25-30 ft.</td>
<td>20-25 ft.</td>
<td>20-25 ft.</td>
<td>15-20 ft.</td>
<td>20-25 ft.</td>
<td>20-25 ft.</td>
<td>20-25 ft.</td>
<td>15-20 ft.</td>
<td>15-20 ft.</td>
</tr>
<tr>
<td>Collector</td>
<td>25-30 ft.</td>
<td>20-25 ft.</td>
<td>20-25 ft.</td>
<td>15-20 ft.</td>
<td>20-25 ft.</td>
<td>20-25 ft.</td>
<td>15-20 ft.</td>
<td>15-20 ft.</td>
<td>15-20 ft.</td>
</tr>
</tbody>
</table>

7-4(I)(6)(iii)(c) Effective Curb Radius

The presence of bicycle lanes, bicycle buffers, and/or on-street parking can increase the “effective” radius, which takes into account the available space for a turning movement, rather than just the curb return itself. Curb returns may be designed according to the effective curb radius rather than the actual curb radius.

FIGURE 7.4.96 Effective Curb Return Radii Diagram
7-4(l)(6)(iii)(d) Curb Extensions
1. Where on-street parking lanes are provided, curb extensions may be considered for reducing the effective crosswalk width for pedestrians.
2. Curb return radii may be adjusted to allow sidewalk curb extensions for street crosswalk areas at intersections with local residential streets.

7-4(l)(6)(iii)(e) Freight Accommodations
1. Curb return radii may be increased along corridors with high levels of freight travel, or if 1 or more of the streets in question is impacted by a major freight traffic generator. In these cases, the curb return radii should correspond to a larger design vehicle.
2. For roundabouts, designers may consider incorporating mountable curbs, truck aprons, or other features that avoid the need for larger radii.

7-4(l)(6)(iii)(f) Channelized Right Turn Lanes
1. Channelized right turn lanes accommodate high levels of turning movements and encourage turning movements at higher speeds. Channelized right turns may be acceptable in locations with limited pedestrian activity and in locations where efficient traffic flow is particularly desirable, such as a Commuter Corridor. Channelized right turn lanes should not be a standard design feature in high-pedestrian activity areas.
2. If such a turn lane is considered necessary, the designer should consult an accepted national design manual, including ITE Designing Walkable Urban Thoroughfares, and the City Engineer.
3. Additional guidance about restricted turning movements is provided in Section 7-4(l)(7).

Section 7-4(l)(7) Median and Turn Lane Design

7-4(l)(7)(i) Medians

1. Medians are the center portion of the roadway that separates general purpose travel lanes moving in opposite directions. Medians frequently incorporate features to improve safety and operations by providing space for turning vehicles.
2. Center turn lanes may be incorporated as part of a median and interspersed with median islands. Medians may also serve as pedestrian or bicycle refuges, whether as raised features or through physical barriers, pavement markings, and signage that distinguishes the pedestrian safe zone as part of a designated crossing. Options for medians and center turn lanes include:
 a. Two-way left-turn lanes (TWLTL)
 b. Raised medians with intersection turn bays
 c. Median refuges for pedestrians and cyclists
 d. Raised landscaped medians
3. Some form of raised or striped median is strongly preferred on principal and minor arterials, with wider medians required along segments with turn bays.
4. Median landscaping and pedestrian refuges are desirable in high pedestrian activity areas and as space allows.

7-4(I)(7)(i)(b) Design Considerations

1. Median widths are measured from curb face to curb face or center of pavement stripe to center of pavement stripe.
2. Median refuges shall be a minimum 6 feet wide, with a preferred width of 8 feet to 10 feet. Additional guidance on median refuge islands is provided in Part 7-4(E) Pedestrian Facilities. Additional guidance on See Article 7-4 Design Standards for guidance on pedestrian crossing locations.
3. For collector and arterial roadways where the median also serves as center turn lane space, the median turn lane width should be 10 feet to 12 feet, with wider turn lanes appropriate on higher speed roadways (i.e. above 35 MPH) and with an additional 2 feet to 4 feet separating traffic as indicated in FIGURE 7.4.97.
4. Narrow medians (i.e. less than 6 feet) are most appropriate for restricting turning movements and separating opposing traffic, and may be used for some landscaping purposes.
5. Medians should be a minimum of 6 foot wide for the placement of traffic signals.
6. Trees generally require a minimum 6 foot wide median. Placement and maintenance of street trees as part of median landscaping should ensure adequate clear zone and sight distance. See the current AASHTO Roadside Design Guide for clear zone recommendations, Subsection 7-4(I)(5)(iv) for sight distance requirements, and Chapter 11 Landscape and Irrigation for additional guidance on landscaping requirements.
7. Additional guidance on median-running transit infrastructure is provided in Part 7-4(G) Public Transit.
8. Raised medians may require drainage infrastructure, including a curb and gutter pan and drop inlet. See Chapter 6 Drainage, Flood Control, and Erosion Control for drainage requirements.

FIGURE 7.4.97 Median with Center Turn Lane
7-4(I)(7)(ii) Median Openings

1. Median openings, or median cuts, are an unobstructed section of a raised median that allow for left turns. Raised medians generally improve safety and traffic operations but reduce site access.
2. The frequency of median openings depends on the corridor type and the surrounding land use context.
3. Medians and access limitations shall be consistent with all restrictions contained in the MRCOG Inventory of Roadway Access Limitations.

7-4(I)(7)(ii)(b) Spacing and Access Control
4. Recommendations for spacing curb cuts and driveway frequency is provided in Part 7-4(B) Site Access Points.
5. Median openings shall follow guidance from Article 7-4 Design Standards and Section 7-4(I)(6).
6. Where a median opening is desired, access to both sides of the street shall be considered. If development exists on both sides of the street, left-turn bays for both directions may need to be constructed.
7. Where an access point exists on the opposite side of the street, the centerline of the new access points shall be as closely aligned as conditions allow.
8. If access points cannot be aligned, it is desirable to have them offset so potential left turn paths do not cross and AASHTO Case F Sight Distance is accommodated.
9. The minimum distance between the ends of adjacent median openings is 300 feet on local streets and collectors and 400 feet on minor arterials and principal arterials, with greater distances preferred on Commuter Corridors and other roadways where vehicle throughput is highly prioritized, as determined by the City Engineer. See FIGURE 7.4.98.

FIGURE 7.4.98 Median Opening Spacing

10. Only 1 road or driveway on each side of the roadway shall be served by the median opening. Where a property line falls within the median opening area, a common drive serving both properties shall be used.
11. A median opening will not be created or approved automatically because it meets the spacing requirements. The type of development, internal circulation and traffic operating conditions (existing or projected) on the street shall also be considered.
12. Consolidation of median openings should be considered during roadway reconstruction projects.
7-4(I)(7)(ii)(c) Design Considerations
1. Approval by the NMDOT is required for all median openings along state-owned and maintained roadways.
2. The construction of appropriate left-turn lanes must be included with any new median opening. The length of the turn bay approaching the median opening shall allow for anticipated queueing needs.
3. Additional guidance on turn lane design is provided in Subsection 7-4(I)(7)(iii).
4. All median opening designs must address drainage needs.

7-4(I)(7)(ii)(d) Median Opening Requests
1. Median cuts require approval by the City Engineer.
2. A work order shall be obtained for construction. Work orders require engineered plans and may be obtained from the DRC. Construction is the responsibility of the applicant.
3. Depending on the size of the development, a traffic scoping report or traffic impact study may be required for a median opening to be created. (See Article 7-5 Traffic Studies.)

7-4(I)(7)(iii) Turn Lanes

1. Separate turn lanes expedite the movement of through traffic, increase roadway capacity, allow the controlled movement of turning traffic, and promote the safety of all traffic.
2. Turn lanes for right and left turns into a driveway or street may be necessary for safety and capacity reasons, where roadway speeds and traffic volumes are high, or if there are substantial turning volumes.

7-4(I)(7)(iii)(b) Turn Lane Warrants
1. A turn lane or a taper is required on streets where the turn lane warrants in TABLE 7.4.67 are exceeded in the AM or PM peak. At locations that do not exceed the criteria, the City Engineer may still require a turn lane or taper to address known safety concerns.
2. The City may require additional turn lanes, tapers, or other improvements when the City Engineer believes that the absence of such improvement will create an unsafe condition.
3. Left-turn lanes shall be required if a drivepad or access point with a median opening is constructed. The turn lane shall provide for both the storage and deceleration of turning vehicles, where feasible.
4. Additional right-of-way for turn lanes, deceleration lanes, or tapers may need to be dedicated, as determined by the City Engineer.
TABLE 7.4.67 Turn Lane Warrants

<table>
<thead>
<tr>
<th>Design Speed (MPH)</th>
<th>Turning Volume per Hour</th>
<th>Design Speed (MPH)</th>
<th>Turning Volume per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>50</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>30-40</td>
<td>40</td>
<td>30-40</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>30</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

7-4(I)(7)(iii)(c) Turn Lane Design

1. The design elements that make up a turn lane are shown in FIGURE 7.2.41.

FIGURE 7.4.99 Turn Lane Design Elements

2. Turn lanes shall be designed based primarily on the following:
 - a. The length needed for drivers to decelerate to a speed that allows safe turning into the driveway or side street.
 - b. The amount of vehicular storage that will be required.

3. The total length of the turn lane and taper should accommodate storage requirements plus deceleration and taper. If this is not feasible, any of the following may be done to determine the length:
 - a. Include the transition length in the deceleration length.
 - b. Assume that vehicles slow down to 10 MPH below the roadway speed limit before entering the auxiliary lane and calculate deceleration needs based on this speed.
 - c. Calculate deceleration to a turning speed of 15 MPH rather than a full stop (more applicable to right turns).
 - d. If none of the above is feasible, the lanes should accommodate the 95th percentile queue length.

4. Turn lanes should be 11 feet wide; however, the lane width may be adjusted to be compatible with the adjacent roadway lane width. In no event shall the turn lane be less than 10 feet wide.
7-4(I)(7)(iii)(d) Right-turn Lane Design

The minimum storage and transition length requirements are provided in Table 7.4.68, using Figure 7.4.100 for right-turn lane design elements. The following assumptions are used to determine these requirements:

1. The minimum required lane length values assume the roadway has no more than 2% vertical grade. Longer deceleration lengths may be required on downgrades greater than 2%.
2. Required lane length assumes a 15 MPH speed differential.

Figure 7.4.100 Right-turn Lane Design Elements

![Right-turn Lane Design Elements](image)

Table 7.4.68 Right-turn Lane Design Criteria

<table>
<thead>
<tr>
<th>Design Speed of Roadway (MPH)</th>
<th>Minimum Storage Length (ft.)</th>
<th>Lane Transition Length (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>240</td>
<td>150-150 Reverse Curve</td>
</tr>
<tr>
<td>35 – 40</td>
<td>240 – 350</td>
<td>300-150 Reverse Curve</td>
</tr>
<tr>
<td>45 – 50</td>
<td>350 – 405</td>
<td>600-300 Reverse Curve</td>
</tr>
</tbody>
</table>

7-4(I)(7)(iii)(e) Right Taper Design

1. The use of tapers in lieu of dedicated right-turn lanes is strongly discouraged and requires approval of the City Engineer.
2. Minimum lane length and right-turn taper requirements are provided in Table 7.4.69 using Figure 7.4.101 for right taper design elements.

Figure 7.4.101 Right Taper Design Elements

![Right Taper Design Elements](image)
TABLE 7.4.69 Taper Design Criteria

<table>
<thead>
<tr>
<th>Design Speed of Roadway (MPH)</th>
<th>Required Taper</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 – 40</td>
<td>8:1</td>
</tr>
<tr>
<td>45 – 50</td>
<td>15:1</td>
</tr>
</tbody>
</table>

7-4(I)(7)(iii)(f) Left-turn Lane Design

1. Where traffic is to be controlled by a traffic signal, the turn lane should be of sufficient length to store the turning vehicles and clear the equivalent lane volume of all other traffic on the approach, where feasible.
2. This length is necessary to ensure that full use of the turn lane will be achieved and that the queue of the other vehicles on the approach will not block vehicles from the turn lane.
3. The minimum left-turn lane transition length requirements are provided in [TABLE 7.4.70](#).

TABLE 7.4.70 Minimum Left-turn Lane Transition Length

<table>
<thead>
<tr>
<th>Design Speed of Roadway (MPH)</th>
<th>Lane Transition (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><35</td>
<td>150 - 150 Reverse Curve</td>
</tr>
<tr>
<td>35 – 40</td>
<td>300 - 150 Reverse Curve</td>
</tr>
<tr>
<td>45 – 50</td>
<td>600 - 300 Reverse Curve</td>
</tr>
</tbody>
</table>

7-4(I)(7)(iv) Restricted Turning Movements

Restricted right and/or left turn movements may be required based upon factors such as one-way roadways or the necessary restriction of movements at a drive at the discretion of the City Engineer. (See FIGURE 7.4.102 through FIGURE 7.4.107 for illustrative examples of restricted turning movements.)

FIGURE 7.4.102 Right-in / Right-out
FIGURE 7.4.103 Right-in / Right-out and Left-in

FIGURE 7.4.104 Right-in / Right-out and Left-out

FIGURE 7.4.105 Restricted Median: Left-in Only

FIGURE 7.4.106 Restricted Median: Left-in and Left-out on One Side
7-4(I)(7)(v) Two-way Left-turn Lanes (TWLTL)

1. TWLTLs are continuous center lanes that allow motorists traveling in both directions to pull out of through lanes into a shared lane for left turns. TWLTLs offer spatial separation between opposing lanes of traffic and provide additional roadway capacity without adding general purpose lanes in each direction.

2. TWLTLs are recommended in locations with a high degree of land access, including a high intersection density and a large number of driveways, and where turning movements and business access on both sides of the street are desired.

3. TWLTLs are also appropriate where mid-block entrances are too close together to create dedicated turn lanes or turn bays.

4. Locations with few driveways or intersections are better served by medians and dedicated turn lanes.

5. TWLTLs are recommended in particular to preserve roadway capacity in the application of a road diet where a 4 or 6-lane roadway is converted to a 2 or 4 lane facility with a continuous center turn lane.

6. TWLTLs are not recommended in locations with traffic volumes above 30,000 ADT.

7-4(I)(7)(v)(b) Design Considerations
1. A TWLTL shall be 12-14 feet wide, measured from the middle of the striping on either side of the turn lane.

2. There should be no more than 2 through lanes in each direction adjacent to a TWLTL.

3. TWLTLs can create impediments for pedestrians as they add to crossing distance and may be incompatible with median refuge islands at mid-block crossings.
4. TWLTLs can lead to conflicting left-turn paths if driveways are poorly spaced and located. This situation may require raised medians in these areas to define left turn pockets and/or right-in right-out restrictions.

Part 7-4(J) Local Streets

This section provides guidance regarding the classification and design of local streets, private streets, stub streets, cul-de-sac, and single access to subdivisions. Local streets shall be designed to discourage high-speed driving and to support walking.

Section 7-4(J)(1) Local Street Classifications

There are 3 types of local streets, described below. The anticipated ADT for each type is provided in **TABLE 7.4.71**.

1. **Access Local**: Loop streets, cul-de-sacs, and short segments that provide connections to other streets. Access locals are not continuous for more than 1 or 2 blocks.
2. **Normal Local**: Streets that direct traffic to major local streets or may connect directly to collectors or arterials.
3. **Major Local**: A street that conveys traffic from other local streets to collector or arterial streets. The intent of major local streets is to provide sufficient space for 2 vehicles to travel unimpeded in opposite directions at the same time.

TABLE 7.4.71 ADT Parameters for Local Streets

<table>
<thead>
<tr>
<th>Street Type</th>
<th>ADT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Local</td>
<td><250</td>
</tr>
<tr>
<td>Normal Local</td>
<td>250 - 1,000</td>
</tr>
<tr>
<td>Major Local</td>
<td>>1,000</td>
</tr>
</tbody>
</table>
7-4(J)(1)(i) Trip Generation for Local Street Classification

A trip generation and distribution exhibit is required to classify new local streets. The traffic volumes shall be determined based on trip generation characteristics and the anticipated distribution of trips. The assumed ADT generated by different development types on local streets is provided in TABLE 7.4.72. Additional information regarding trip generation and traffic studies is provided in Article 7-5 Traffic Studies.

<table>
<thead>
<tr>
<th>Type of Development</th>
<th>ADT per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-family</td>
<td>10</td>
</tr>
<tr>
<td>Apartment/Townhouse</td>
<td>6</td>
</tr>
<tr>
<td>Non-residential or Mixed-use</td>
<td>Consult current ITE Trip Generation Manual</td>
</tr>
</tbody>
</table>

Section 7-4(J)(2) Local Street Design

7-4(J)(2)(i) Local Street Layout

1. Local street connectivity shall be consistent with standards in Article 7-4 Design Standards and the LRTS Guide.
2. Block lengths shall be designed per Part 7-4(A) Network Connectivity.
3. Block lengths of local streets in residential areas shall be no longer than 600 feet.

7-4(J)(2)(ii) Local Street Design Characteristics

1. Street design requirements for local streets are provided in TABLE 7.4.73.
2. Pavement widths for streets adjacent to schools, within 150 feet of arterial or collector streets, and adjacent to large neighborhood parks should be designed to the larger end of the range of the "All Other Areas" categories.
3. Three (3) vehicle lanes may be provided as needed within 150 feet of intersections with collector or arterial streets, with 2 lanes for vehicles exiting and 1 lane for vehicles entering the Major Local street.

4. Right-of-way width requirements for extensions of existing roadways may be adjusted by the City Engineer if necessary to match existing right-of-way on the same street or to conform to drainage and/or landscaping requirements.

5. Bicycles may share the roadway on local streets. For additional information about bicycle lanes and bicycle routes, see Part 7-4(F) Bikeways and Trails.

6. On-street parking is generally permitted on local streets, though on-street parking areas do not have to be designated (i.e. pavement markings, and signage), and additional right-of-way and pavement width are not required.

7. Bicycle lanes and designated on-street parking are discouraged on Access Local and Normal Local streets.

8. Additional road elements that may be added to the cross section for Major Local streets, depending on the context and location, include additional turning lanes, medians, bicycle lanes, designated on-street parking, and additional planting areas to accommodate large trees.

9. Intersections involving two local streets are generally served by stop or yield-sign controls or neighborhood traffic circles.

10. The following sections provide additional guidance on street element design:
 a. Part 7-4(E) Pedestrian Facilities for guidance related to pedestrian facilities.
 b. Part 7-4(F) Bikeways and Trails for bicycle facilities.
 c. Part 7-4(H) On-street Parking for on-street parking.
 d. Section 7-4(I)(6) for intersection design.
 e. Section 7-4(I)(7) for medians and turn lane design.

TABLE 7.4.73 Local Street Design Standards

<table>
<thead>
<tr>
<th>Corridor Type</th>
<th>Location</th>
<th>Design Speed (MPH)</th>
<th>Required Elements</th>
<th>Optional Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ROW Width (ft.)</td>
<td>Frontage Zone (ft.)</td>
<td>Sidewalk Width (ft.)</td>
</tr>
<tr>
<td>Access Local</td>
<td>Citywide</td>
<td>15-25</td>
<td>44 - 46</td>
<td>0</td>
</tr>
<tr>
<td>Normal Local</td>
<td>Single-family Residential Areas</td>
<td>18-25</td>
<td>48 - 52</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>All Other Areas</td>
<td>18-25</td>
<td>48 - 61</td>
<td>1-2.5</td>
</tr>
<tr>
<td>Major Local</td>
<td>Single-family Residential Areas</td>
<td>18-25</td>
<td>48 - 58</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>All Other Areas</td>
<td>18-30</td>
<td>50 - 73</td>
<td>1-2.5</td>
</tr>
</tbody>
</table>
FIGURE 7.4.110 Typical Access Local and Normal Local Street Cross Section

FIGURE 7.4.111 Major Local Street Cross Section with Designated Parking

FIGURE 7.4.112 Major Local Street Cross Section with bicycle Lanes
Section 7-4(J)(3) Stub, Cul-de-sac, and Loop Street Criteria

7-4(J)(3)(i) Stub Streets

1. Stub streets are the extension of a street past an intersection where a turnaround is not required. The length of a stub street is measured from the centerline of the intersecting street to the end of the stub street.
2. See additional requirements in IDO Section 5-3(E)(1)(d) Stub Streets and Cul-de-sacs.
3. Stub streets shall follow design guidance for access local streets in Section 7-4(J)(2) Local Street Design.

7-4(J)(3)(ii) Cul-de-sac and Hammerhead Streets

1. Cul-de-sac and hammerhead streets are short streets intersecting another street at one end and terminating at the other end with a vehicular turnaround. FIGURE 7.4.113 and FIGURE 7.4.114 show typical dimensions.
2. See IDO Subsection 5-3(E)(1)(d) Stub Streets and Cul-de-sacs and Article 7-4 Design Standards for appropriate locations and restrictions.
3. Cul-de-sacs and hammerhead streets shall follow design guidance for access local streets in Section 7-4(J)(2) Local Street Design.
4. The maximum length permitted in a hammerhead or cul-de-sac street is as shown in TABLE 7.4.74 and is measured from the centerline of the intersecting street to the center of the turnaround.

<table>
<thead>
<tr>
<th>TABLE 7.4.74 Maximum Cul-de-sac Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. F-F Street Width*</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>20 ft.</td>
</tr>
<tr>
<td>26 ft.</td>
</tr>
</tbody>
</table>

* Roadway width is measured from face of curb to face of curb.

FIGURE 7.4.113 Cul-de-sac Dimensions
7-4(J)(3)(iii) Loop Streets

1. Loop streets shall have a maximum length of 1,320 feet, measured along a centerline, and shall be designated an access local street as described in TABLE 7.4.73.
2. Loop streets shall be designed to prevent excessive speeds and have straight sections no longer than 600 feet.

Section 7-4(J)(4) Emergency Service Access to Local Streets

1. Fire access roads shall be designed per Article 14-2 Fire Code (ROA 1994).
2. A maximum of 30 dwelling units in a single- or two-family (i.e. duplex) residential subdivision may be served by a single point of access.
3. A maximum of 100 dwelling units in a single- or two-family (i.e. duplex) residential subdivision may be served by a single point of access combined with a strategically located emergency access.
4. Single- or two-family residential subdivisions that contain over 100 units must provide 2 or more non-emergency access points.
5. An emergency access shall have all of the following:
 a. Minimum 20 feet width with 28 foot radii at intersections with streets.
 b. Improved low-maintenance surface (i.e. asphalt, concrete, or other approved driving surface capable of supporting 75,000 pounds).
 c. Breakaway gate for closure during non-emergency times.
Section 7-4(J)(5) Private Streets

1. All private streets providing access to 8 or more dwelling units shall be built per City Standard Specifications and DPM requirements for local streets. Any deviation must be approved by the City Engineer.

2. The use of private streets in the design of exclusive access to lots is limited by the following requirements:
 a. The length, width, and permanent character of the private street must be suitably and legally defined by the plat establishing the lots being served. The lots served must abut or front the proposed private street.
 b. The City Engineer shall determine that the proposed private street will always function as a street classified as a local street and designed per Section 7-4(J)(1) and that a City right-of-way would not better serve public purposes.
 c. Easements for public utilities may be required.
 d. Private streets shall be created by legal instrument that ensures future maintenance and operation as a private street.

Section 7-4(J)(6) Private Ways

1. Private ways may be built for small subdivisions with 8 or fewer dwelling units.

2. Private ways shall be created by legal instrument that ensures future maintenance and operation as a private way. This may be done on a subdivision plat.

3. Private ways may be built per the DPM and City Standard Specifications.

4. Private ways may be constructed of gravel or pavement.

5. The initial 25 feet behind the sidewalk on the intersecting street shall be paved, at a minimum, with 2 inches of asphalt on compacted subgrade as shown in the City Standard Specifications.

6. The minimum design standards for private ways are provided in TABLE 7.4.75.

7. The required access easement radii for a right angle turn in the easement as well as the connection to the public street is provided in TABLE 7.4.76.

<table>
<thead>
<tr>
<th>TABLE 7.4.75 Private Way Design Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Dwelling Units with Direct Access</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2 - 3</td>
</tr>
<tr>
<td>4 - 8 (One Side Frontage)</td>
</tr>
<tr>
<td>4 - 8 (Two Side Frontage)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 7.4.76 Easement Radii for Private Access Easements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easement Width</td>
</tr>
<tr>
<td>------------------------------------</td>
</tr>
<tr>
<td>15 ft. - 22 ft.</td>
</tr>
<tr>
<td>29 ft. - 34 ft.</td>
</tr>
</tbody>
</table>
Section 7-4(J)(7) Entrance and Gate Requirements for Private Ways and Streets

1. All gated communities must include a turnaround for visitors at the gate so that the vehicle does not stand in or back into the City right-of-way.
2. Where a single gate is provided, the minimum width shall be 20 feet. For divided streets, the minimum width shall be 12 feet.
3. Additional entrance and gate requirements may be required by the Fire Marshal.

Part 7-4(K) Off-street Parking and Site Design

This section provides guidance on site design and off-street parking layout. The overall site design shall accommodate all modes of transportation including automobiles, pedestrians, bicyclists, and motorcyclists. To facilitate efficient parking operations, the designer shall also consider the interface of the site with adjacent development areas.

Section 7-4(K)(1) General Provisions

1. All sites and off-street parking areas shall be designed to comply with ADA/PROWAG standards.
2. The number of off-street, vehicle, bicycle and motorcycle parking spaces shall be provided as established in the IDO Section 14-16-5-5 Parking and Loading.
3. Site design shall comply with design requirements and landscape buffers established by the IDO Part 14-16-5 Dimensional Standards.
4. Parking and site layout shall be designed such that vehicles do not back into the City right-of-way, except single-family dwellings may back into local streets.

Section 7-4(K)(2) Bicycle Parking

Off-street bicycle parking location, layout and rack options vary widely. The following guidelines shall be considered when placing and designing bicycle parking areas and choosing rack options. Alternative rack design, placement, or installation methods not meeting the guidelines below may be considered and are reviewed on a case-by-case basis by the City Engineer.

1. All bicycle racks shall be designed according to the following guidelines:
 a. The rack shall be a minimum of 30 inches tall and 18 inches wide.
 b. The bicycle frame shall be supported horizontally at two or more places. Comb/toaster racks are not allowed.
 c. The rack shall be designed to support the bicycle in an upright position. See the IDO Section 14-16-5-5(E) for additional information.
 d. The rack allows varying bicycle frame sizes and styles to be attached.
 e. The user is not required to lift the bicycle onto the bicycle rack.
 f. Each bicycle parking space is accessible without moving another bicycle.

2. Bicycle parking spaces shall be located in a well-lit area, visible from and, where feasible, located within 50 feet of the primary pedestrian entrance it serves. Bicycle rack placement shall meet the following placement requirements. (See FIGURE 7.4.115 for direction on bicycle stall layout.)
a. Bicycle parking shall be separated from vehicle parking areas and driveways by a barrier, such as a curb, rail, or bollard, or be located to minimize the possibility of vehicles striking parked bicycles.
b. Bicycle racks shall be placed in a designated area and shall not infringe upon the width of the required clear pedestrian access route. (See Part 7-4(E) Pedestrian Facilities.)
c. Bicycle racks shall not be placed directly in front of entrances or in locations that impede pedestrian flow.

3. Bicycle racks shall be sturdy and anchored to a concrete pad.
4. A 1-foot clear zone around the bicycle parking stall shall be provided.
5. Bicycle parking spaces shall be at least 6 feet long and 2 feet wide.

FIGURE 7.4.115 Bicycle Parking Stall Layout Options

![Bicycle Parking Stall Layout Options](image)

Section 7-4(K)(3) Motorcycle Parking

1. Motorcycle parking shall be a minimum of 4 feet wide and 8 feet long. (See TABLE 7.4.77 and FIGURE 7.4.116.)
2. Motorcycle parking spaces shall be located in a well-lit area that is visible from the primary building entrance on the site.
3. Motorcycle spaces shall be designated with a posted upright sign, either free standing or wall mounted. Each sign shall be no smaller than 12 inches by 18 inches and shall have its lower edge no less than 4 feet above grade.

Section 7-4(K)(4) **Standard and Small Car Parking**

1. Minimum parking stall dimensions are provided in [TABLE 7.4.77](#) and [FIGURE 7.4.116](#).
2. If the premises contains more than 20 spaces, ¼ of the spaces may be compact parking spaces for small cars with dimensions per [TABLE 7.4.77](#).
3. Compact parking spaces shall be identified by the word “Compact” on the pavement of each space.
4. Vehicles may overhang walkways and landscape areas as long as the overhang does not negatively impact the proposed landscape or reduce the required pedestrian access route to less than 4 feet wide.
5. The maximum overhang of parking spaces are 2 feet for standard parking spaces and 1.5 feet for small car spaces.
6. Vehicles shall not overhang City right-of-way or access ramps.
7. Parking spaces shall not cross over lot lines.
8. All parking spaces must be clearly identified through use of parking blocks, stripes, or other acceptable means.

TABLE 7.4.77 Parking Stall Dimensions

<table>
<thead>
<tr>
<th>Type of Parking</th>
<th>Min. Width</th>
<th>Min. Length</th>
<th>Max. Overhang*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>8.5 ft.</td>
<td>18 ft.</td>
<td>2 ft.</td>
</tr>
<tr>
<td>Small Car/Compact</td>
<td>7.5 ft.</td>
<td>15 ft.</td>
<td>1.5 ft.</td>
</tr>
<tr>
<td>Motorcycle</td>
<td>4 ft.</td>
<td>8 ft.</td>
<td>N/A</td>
</tr>
<tr>
<td>ADA Accessible</td>
<td>8.5 ft.</td>
<td>18 ft.</td>
<td>2 ft.</td>
</tr>
</tbody>
</table>

* Overhang not acceptable at ADA ramps.

FIGURE 7.4.116 Parking Stall Dimensions

![Diagram of parking stall dimensions](#)
Section 7-4(K)(5) ADA Accessible Parking

1. ADA accessible parking shall be a minimum of 8.5 feet wide and 18 feet long. (See TABLE 7.4.77 and FIGURE 7.4.117.)
2. Accessible parking spaces shall be located closest to the building entrances and dispersed among the various types of parking facilities and uses.
3. All accessible parking spaces shall include an access aisle.
4. Van access aisles shall be a minimum 8 feet wide; all others shall be a minimum 5 feet wide.
5. Access aisles shall not overlap the vehicular way.
6. Two (2) parking spaces may share a common access aisle.
7. Each access aisle must adjoin a pedestrian access route.
8. Angled van parking spaces shall have access aisles located on the passenger side of the parking spaces.
9. The accessible route cannot be located at the rear of the parking stall or adjacent to a vehicle route.
10. Access aisles shall have blue diagonal striping and the words “NO PARKING” in capital letters, each of which shall be at least 1 foot high and at least 2 inches wide, placed at the rear of the parking space so as to be close to where an adjacent vehicle’s rear tires would be placed.
11. Accessible parking spaces shall have a clearly visible, blue, International Symbol of Accessibility painted on the pavement within the rear of the space.
12. A 12 inch by 18 inch sign with the International Symbol of Accessibility shall be provided at the head of each ADA accessible parking space. The sign must have the required language per 66-7-352.4C NMSA 1978: “Violators Are Subject to a Fine and/or Towing.”
13. Where the total number of parking spaces provided is 4 or fewer, the International Symbol of Accessibility pavement marking is not required in the required accessible parking space.

FIGURE 7.4.117 ADA Accessible Parking Stall and Access Aisle Dimensions
Section 7-4(K)(6) **Angled Parking**

1. Angled parking stalls should accommodate a minimum 8.5’ wide and 18’ long vehicle space. (See FIGURE 7.4.118 and TABLE 7.4.78 and for additional information on layout options and dimensions.)
2. Parking barriers and/or extended shy zones are recommended to ensure that vehicles with long rear overhangs do not intrude into the required clear pedestrian access route.

FIGURE 7.4.118 Dimensions for Angle Parking

TABLE 7.4.78 Dimensions for Standard Angle Parking

<table>
<thead>
<tr>
<th>Angle (A)</th>
<th>Stall Length (L)</th>
<th>Stall Width (W)</th>
<th>Stall Depth (H)</th>
<th>Drive Aisle (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>32.7 ft.</td>
<td>17 ft.</td>
<td>16.4 ft.</td>
<td>11 ft.</td>
</tr>
<tr>
<td>45°</td>
<td>26.5 ft.</td>
<td>12 ft.</td>
<td>18.7 ft.</td>
<td>11 ft.</td>
</tr>
<tr>
<td>60°</td>
<td>22.9 ft.</td>
<td>9.8 ft.</td>
<td>19.8 ft.</td>
<td>15 ft.</td>
</tr>
<tr>
<td>75°</td>
<td>20.3 ft.</td>
<td>8.8 ft.</td>
<td>19.6 ft.</td>
<td>22 ft.</td>
</tr>
<tr>
<td>90°</td>
<td>18 ft.</td>
<td>8.5 ft.</td>
<td>18 ft.</td>
<td>24 ft.</td>
</tr>
</tbody>
</table>

TABLE 7.4.79 Dimensions for Compact Angle Parking

<table>
<thead>
<tr>
<th>Angle (A)</th>
<th>Stall Length (L)</th>
<th>Stall Width (W)</th>
<th>Stall Depth (H)</th>
<th>Drive Aisle (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30°</td>
<td>28 ft.</td>
<td>15 ft.</td>
<td>14 ft.</td>
<td>11 ft.</td>
</tr>
<tr>
<td>45°</td>
<td>22.5 ft.</td>
<td>10.6 ft.</td>
<td>15.9 ft.</td>
<td>11 ft.</td>
</tr>
<tr>
<td>60°</td>
<td>19.3 ft.</td>
<td>8.7 ft.</td>
<td>16.7 ft.</td>
<td>15 ft.</td>
</tr>
<tr>
<td>75°</td>
<td>17 ft.</td>
<td>7.8 ft.</td>
<td>16.4 ft.</td>
<td>22 ft.</td>
</tr>
<tr>
<td>90°</td>
<td>15 ft.</td>
<td>7.5 ft.</td>
<td>15 ft.</td>
<td>24 ft.</td>
</tr>
</tbody>
</table>
Section 7-4(K)(7) Off-street Loading Spaces

7-4(K)(7)(i) Dimensions of Off-street Loading Spaces

If off-street loading spaces are required by IDO Subsection 5-5(H)(1), the required dimensions of those spaces are provided in TABLE 7.4.80.

TABLE 7.4.80 Off-street Loading Space Dimensions

<table>
<thead>
<tr>
<th>Zone District (per IDO)</th>
<th>Min. Width</th>
<th>Min. Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-residential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First required space</td>
<td>12 ft.</td>
<td>65 ft.</td>
</tr>
<tr>
<td>Additional spaces</td>
<td>10 ft.</td>
<td>25 ft.</td>
</tr>
<tr>
<td>Residential / Mixed-use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All spaces</td>
<td>9 ft.</td>
<td>25 ft.</td>
</tr>
</tbody>
</table>

7-4(K)(7)(ii) Design and Layout of Off-street Loading Areas

Off street loading areas shall comply with all of the following standards:
1. Trucks using the loading area shall not be required to back into a public street to leave the site.
2. Truck and loading operations shall not encroach into any pedestrian walkway, bicycle lane, City right-of-way, fire lane, or required setback.
3. Loading spaces shall not be located in a required front or side setback abutting any City right-of-way and, to the maximum extent feasible, shall be located to the rear of a site and away from adjacent residential areas.
4. For a site adjoining an alley that does not abut any Residential zone district, required loading spaces shall be accessed from the alley.
5. The design and layout shall comply with all applicable provisions in IDO Subsection 5-5(H).

Section 7-4(K)(8) Pavement of Parking Areas

Parking areas shall be paved per the following standards:
1. Pavement shall be maintained level and serviceable.
2. Where a site has 4 or more off-street parking spaces that require access off of an alley, the full width of the alley shall be paved from the parking access drive to a street, per the City Standard Specifications.
3. Designated ADA accessible parking spaces and pedestrian pathways must be paved with a minimum 2 inch asphalt pavement over a 4 inch compacted subgrade or equivalent per City standards to ensure compliance with federal guidelines.
4. Additional requirements and information of acceptable pavement materials are provided in Part 7-4(C) Pavement Design.

Section 7-4(K)(9) Curbing in Parking Areas

1. Curbing should be installed to delineate landscape, parking, and pedestrian ways and identify points of access.
2. Parking areas shall have barriers to prevent vehicles from extending over public sidewalk, City right-of-way, or abutting lots.
3. Additional requirements are provided in Part 7-4(D) Curb and Gutter.

Section 7-4(K)(10) Grading in Parking Areas

1. The maximum grades in parking areas should not exceed 8%.
2. For major circulation aisles and adjacent to major pedestrian entrances, the grade shall be 5% or less.
3. ADA accessible parking spaces, access aisles, and access routes shall not exceed 2% in any direction.
4. Curb ramps shall not extend into any ADA accessible parking access aisle.

Section 7-4(K)(11) Sidewalk Connections

A separate pedestrian access route, referred to as a private walkway, shall be included connecting the public sidewalk to the buildings within the development. Additional requirements are provided in Part 7-4(E) Pedestrian Facilities and IDO Subsection 5-3(D)(3) On-site Pedestrian Connections.

Section 7-4(K)(12) Site Access

Parking lot access shall be designed to reduce conflicts with pedestrians and vehicular traffic and allow efficient ingress and egress of a parking area. Additional site access requirements are provided in Part 7-4(B) Site Access Points.
1. Adequate turning radii and queuing areas shall be maintained to provide continuous flow of traffic.
2. The design of the site access point should not impede pedestrian circulation and should facilitate efficient movement of pedestrians across the site access area.
3. Landscaped islands at the site access point may be provided to create a buffer and allow an adequate turning area.
4. At the site access point, a 15-foot radius should be used where only cars are to be accommodated.

FIGURE 7.4.119 Site Access Design

Section 7-4(K)(13) Fire and Emergency Access

Fire and emergency vehicle access shall be provided per Article 14-2 Fire Code (ROA 1994).

Section 7-4(K)(14) Solid Waste Access

Refuse vehicle maneuvering shall be contained on site. The refuse vehicle shall not back into the City right-of-way.
Section 7-4(K)(15) Access Throat Length and Queuing

1. For all new development projects, queuing needs and the number of lanes for site access shall be evaluated.
2. The location of any access aisle shall preserve the queuing area for peak traffic generation periods.
3. TABLE 7.4.81 shall be used to determine the access point throat lengths necessary to make adequate provisions for queuing.
4. For those land uses that are not represented, comparable lengths should be established based on traffic generation characteristics contained in the ITE Trip Generation Manual.

FIGURE 7.4.120 Throat Length

<table>
<thead>
<tr>
<th>TABLE 7.4.81 Minimum Throat Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
</tr>
<tr>
<td>Light & Heavy Industrial</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Commercial Development</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Multi-family Development</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Section 7-4(K)(16) Site Layout and Circulation

1. Parking areas must provide internal circulation with a logical pattern that the driver can easily understand and follow.
2. The parking lot area should allow efficient movement of vehicles, bicyclists, and pedestrians.
3. Circulation shall be designed to avoid conflicts between vehicular, bicycle, and pedestrian traffic.
4. The parking layout should provide continuous flow of traffic through the lot.
5. Where a large number of compact parking spaces are provided, these spaces should be spread throughout the parking area instead of being clustered in one area.

6. A 5 foot keyway is required for dead-end parking aisles. (See FIGURE 7.4.121).

7. The minimum drive aisle dimensions are shown in TABLE 7.4.82.

8. See additional requirements in IDO Subsection 5-5(F) Parking Location and Design.

FIGURE 7.4.121 Keyway in Parking Area

![Keyway in Parking Area](image)

TABLE 7.4.82 Minimum Drive Aisle Width

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Min. Drive Aisle Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Way Traffic</td>
<td>22 ft.</td>
</tr>
<tr>
<td>Main Circulation Road</td>
<td>24 ft.</td>
</tr>
<tr>
<td>Fire Lane*</td>
<td>20 ft.</td>
</tr>
</tbody>
</table>

* The Fire Marshal may require additional width adjacent to tall buildings.

Section 7-4(K)(17) Parking Islands

1. In parking areas of 50 spaces or more, the ends of parking aisles shall be defined by parking islands. These islands define the parking stalls and provide adequate radii for vehicle turns and visibility.

2. Where the design vehicle is a passenger car, the radius should be 15 feet. (See FIGURE 7.4.122)

3. Where the aisles will function for deliveries by larger trucks, refuse, and/or fire vehicles, a 25-foot radius or larger should be used.
Section 7-4(K)(18) Service Areas

1. Service areas and service vehicle circulation requirements shall be accommodated in the site layout.
2. Site layout shall consider the circulation, backing, and storage requirements of the expected design vehicle.
3. Truck ramps, refuse/compactors, and similar facilities should be separated from the circulation aisles.
4. Visibility for parking and drive aisles shall be maintained in service areas.
5. Service vehicles shall not back into or from the City right-of-way.

Section 7-4(K)(19) Signage & Striping

1. Adequate signing and striping shall be incorporated into the design of the parking area to convey to the motorist the proper use of the facility.
2. All one-way drives shall have “ONE WAY” and “DO NOT ENTER” signage and pavement markings.

Section 7-4(K)(20) Drive-through Facilities

1. Drive-through facilities shall be designed in accordance with requirements established by the [IDO Subsection 14-16-5-5(I)].
2. Drive-through queuing characteristics shall be accommodated in the site design.
3. Queuing of drive-through facilities should not interfere with either the access to the site, parking and circulation aisles, or the City right-of-way.
4. Each stacking space in the queuing lane shall be 20 feet long.
5. Queuing lanes shall be a minimum of 12 feet wide with a 25 foot minimum radius (inside edge) for all turns. A 15 foot radius may be used with an increase in lane width to 14 feet.
6. Uses not specified in [IDO Subsection 14-16-5-5(I)] shall feature the queue lengths associated with a similar use, as approved by the City Engineer.

Section 7-4(K)(21) Layout of Large Parking Areas

1. In large developments with more than 400 parking spaces a 24 foot wide circulation roadway shall be established to accommodate two-way traffic and emergency vehicles, and to facilitate loading and unloading activities.
2. No parked vehicles shall back into the circulation roadway.
3. The maximum drive aisle length is 400 feet, with 300 feet recommended, to discourage excessive vehicular speeds. Design that introduces curves...
and/or breaks in the parking lot pattern should be used to help control speeds.

Section 7-4(K)(22) Traffic Circulation Layout (TCL)

1. The TCL site plans are required for commercial and institutional buildings, multi-family residential buildings, and commercial additions of 500 square feet or more. Information about TCL submittal requirements can be obtained from the City website.
2. The TCL must be stamped, signed, and dated by an engineer or architect licensed in the state of New Mexico.

Part 7-4(L) Traffic Calming

Section 7-4(L)(1) Neighborhood Traffic Calming

The Department of Municipal Development operates the City of Albuquerque Neighborhood Traffic Management Program (NMTP). The purpose of the program is to address speeding and cut-through traffic on local residential streets using a set of traffic-calming tools. These include physical tools, such as lane narrowing, turn restrictions, curb bulb-outs, and speed dips, as well as non-physical tools like radar speed signs and targeted enforcement. Further information about available strategies can be found in the Traffic Calming Toolkit.

The application process, warrants, and the procedure for implementing traffic calming requests can be found in the NTMP Policy Manual.

Some traffic calming tools (e.g. speed humps, bulb-outs, lane narrowing, etc.) will reduce the hydraulic capacity of streets and may cause flows to exceed curb height. A hydraulic analysis of street flows may be required by the City Hydrologist prior to construction.

Section 7-4(L)(2) Speed Management on Major Roads

Traffic calming, or speed management techniques, may be considered on collector and arterial roadways depending on the location, the desired function of the roadway, roadway geometry including considerations such as sight distance, and/or observed traffic characteristics. Speed management on major roads should be implemented in a targeted manner since collectors and arterials also play a role in regional mobility and must balance the needs of all users. Any improvements shall consider LOS as well as ABC Comp Plan Table 7-5: Priority Street Element Matrix and are subject to approval by the City Engineer.

7-4(L)(2)(i) Definition

Speed management involves elements along a roadway that physically narrow the road and improve visual awareness among motorists. These techniques are intended to discourage high speed travel in locations with high levels of pedestrian activity. Beyond reduced speed and improved safety, benefits include additional space in the pedestrian realm for utilities, street furniture, and other amenities.
7-4(L)(2)(ii) Appropriate Locations

Though some speed management techniques, such as signal coordination and lane width reductions, can be introduced in most contexts, the introduction of certain speed management techniques depends on the location and context. In general, speed management techniques may be introduced in the following situations:
1. Within Centers
2. Near pedestrian generators, such as schools and retail centers
3. Along bicycle routes and bicycle boulevards
4. Along other Major Transit, Multi-modal, and Main Street Corridors as appropriate

7-4(L)(2)(iii) Speed Management Toolkit

Provided below are general speed management techniques that may be appropriate along collector and arterial roadways. Speed management measures are most effective when used in combination, and must be accompanied by appropriate signage.
1. **Intersection geometry improvements:** Physical changes that narrow a roadway to encourage slower vehicle speeds and reduce the crossing distance for cyclists and pedestrians. Examples include curb extensions and median refuge islands. See the NACTO Urban Street Design Guide for curb extension concepts.
2. **Median refuge islands:** Technique used to narrow roads, provide visual prompts to motorists, and allow for shorter pedestrian crossings. See the Pedestrian Facilities section for guidance on median refuge islands and the application of curb extensions at intersections.
3. **Road diets:** A range of techniques to encourage slower travel speeds and create space for other users. Concepts are divided into two categories:
 a. **Road reconfiguration:** Redesign of roadways to produce narrower and fewer travel lanes and increase the space within the right-of-way allocated for bicyclists and/or pedestrians. Redesigns may include other features to reduce travel speeds, including on-street parking, signage, and street trees or landscaping. Road reconfigurations may be achieved through restriping and reallocation of roadway space or as part of a reconstruction project.
 b. **Restriping and narrowing of travel lanes:** Approach that maintains the same number of travel lanes, but narrows general purpose lanes to create space to add or widen bicycle lanes, insert marked buffers, and/or widen sidewalks. Travel lanes and protected turn lanes may be reduced to 10-11 feet.
4. **Traffic signal timing:** Technique that sets signals for a target speed and requires moderate travel speeds for drivers to hit each traffic light in succession.
5. **Signage and radar speed signs:** Use of signage and technology to improve awareness and provide motorists feedback on their travel speeds.
6. **Roundabouts:** Intersection design in which all movements are one-way. Roundabouts can reduce crash severity while decreasing overall delay. See section 7-4(I)(6)(i) Intersection Traffic Control Typologies for information on traffic circles and roundabouts.
7. **Vertical elements:** Design elements that cause motorists to slow down through deflection techniques such as chicanes as road narrowing medians, or vertical speed control elements such as speed humps, speed cushions, and speed tables (which may be applicable to streets outside of neighborhood contexts).
Part 7-4(M) Street Lighting

Section 7-4(M)(1) Roadway Lighting Criteria

7-4(M)(1)(i) Definition of Terms

1. **Average Maintained Illuminance:** The output of the lamp and luminaire, after being reduced by maintenance factors (e.g. light loss depreciation and dirt depreciation), expressed in average-foot-candles (ft-cd or lux) for the pavement area.
2. **Correlated Color Temperature (CCT):** A characteristic of visible light describing the color a light emits comparable to that of the light source.
3. **IESNA RP-8:** Illuminating Engineering Society of North America (IESNA) provides recommended roadway design criteria in its document called Recommended Practice 8, Roadway Lighting (IESNA RP-8).
4. **Light Emitting Diode (LED):** A light source shown to have lower energy consumption and longer lifetime than incandescent light sources.
5. **Light Loss Depreciation:** The decline in the light lumen that occurs as a lamp is operated over time.
6. **LM-80-08:** IESNA Approved Method for Measuring Lumen Maintenance of LED Light Sources.
7. **Luminaire Dirt Depreciation:** The process of dirt accumulating on luminaires, decreasing the total output of light and lowering the overall efficiency of the system.

1. The City of Albuquerque adheres to IESNA RP-8 guidelines for roadway illuminance, uniformity ratios, and veiling luminance ratios. Also see IDO Section 14-18-5-8 Outdoor Lighting for more guidelines.
2. Low-power LED lights shall be installed on all streets.
3. All streets shall be illuminated to IESNA standards. Street lights shall be located at all intersections, on cul-de-sac streets over 200 feet in length, at right angle turns, and at mid-block locations where block lengths exceed 500 feet.
4. Street light electrical infrastructure wiring shall be aluminum with the standard aluminum label permanently affixed to the exterior of the street light pole above the electrical service hand-hole.
5. All street light poles shall be steel, aluminum, or other City approved and UL listed materials.
6. New wood and fiberglass poles are prohibited to be used for City assets.
7. **TABLE 7.4.83** shows the minimum average illuminance to be maintained in the City of Albuquerque.
TABLE 7.4.83 Minimum Average Maintained Illuminance, \(E_h \)

<table>
<thead>
<tr>
<th>Pavement Classification</th>
<th>R1</th>
<th>R2-R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_h) (ft-cd)</td>
<td>1.4</td>
<td>2.0</td>
<td>1.8</td>
</tr>
</tbody>
</table>

R1 = Portland cement concrete
R2 = asphalt, aggregate consists of minimum 60% gravel passing 3/8-in. sieve
R3 = asphalt, rough texture (typical highway)
R4 = asphalt, smooth texture

TABLE 7.4.84 Minimum Average Maintained Illuminance

<table>
<thead>
<tr>
<th>Pavement Classification</th>
<th>(E_h) (ft-cd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland cement concrete</td>
<td>1.4</td>
</tr>
<tr>
<td>Asphalt (aggregate minimum 60% gravel passing 3/8 in. sieve)</td>
<td>2.0</td>
</tr>
<tr>
<td>Asphalt (rough texture - typical highway)</td>
<td>1.8</td>
</tr>
</tbody>
</table>

8. The City recommended ranges for the average maintained illuminance levels for various roadway classifications is provided in TABLE 7.4.85. The table is derived for all types of road surface classification.

TABLE 7.4.85 Illuminance Method - Recommended Values

<table>
<thead>
<tr>
<th>Roadway & Pedestrian Conflict Area</th>
<th>Pavement Classification (Minimum Maintained Average Values)</th>
<th>Uniformity Ratio (\frac{E_{avg}}{E_{min}})</th>
<th>Veiling Luminance Ratio (\frac{L_{\text{max}}}{L_{avg}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commuter Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>R1 lux/fc 12.0/1.2, R2-R3 lux/fc 17.0/1.7, R4 lux/fc 15.0/1.5</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Medium</td>
<td>R1 lux/fc 9.0/0.9, R2-R3 lux/fc 13.0/1.3, R4 lux/fc 11.0/1.1</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Low</td>
<td>R1 lux/fc 6.0/0.6, R2-R3 lux/fc 9.0/0.9, R4 lux/fc 8.0/0.8</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Major Transit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>R1 lux/fc 8.0/0.8, R2-R3 lux/fc 12.0/1.2, R4 lux/fc 10.0/1.0</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Medium</td>
<td>R1 lux/fc 6.0/0.6, R2-R3 lux/fc 9.0/0.9, R4 lux/fc 8.0/0.8</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Low</td>
<td>R1 lux/fc 4.0/0.4, R2-R3 lux/fc 6.0/0.6, R4 lux/fc 5.0/0.5</td>
<td>4.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Local</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>R1 lux/fc 6.0/0.6, R2-R3 lux/fc 9.0/0.9, R4 lux/fc 8.0/0.8</td>
<td>6.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Medium</td>
<td>R1 lux/fc 5.0/0.5, R2-R3 lux/fc 7.0/0.7, R4 lux/fc 6.0/0.6</td>
<td>6.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Low</td>
<td>R1 lux/fc 3.0/0.3, R2-R3 lux/fc 4.0/0.4, R4 lux/fc 4.0/0.4</td>
<td>6.0</td>
<td>0.4</td>
</tr>
</tbody>
</table>

9. These illuminance guidelines are subject to the spacing to mounting height ratio.
10. The target spacing to mounting height (S/MH) ratio for highway, arterial, and collector streets is 3:5.
11. For local streets and alleys, pole heights and spacing will often be insufficient to achieve IESNA recommended illuminance levels without violating uniformity and veiling recommendations. The intent of these pole locations is to alert drivers to upcoming intersections and provide a source of orientation.
Section 7-4(M)(2) New Lighting System Considerations

1. Pole configurations and luminaires should be selected to distribute light in accordance with ANSI/IESNA standards for the most current Recommended Practice for Design and Maintenance of Roadway and Parking Facility Lighting. See also the U.S. Department of Energy (DOE) Model Specification for LED Roadway Luminaires.

2. Luminaire mounting height (MH) should vary in proportion with road width (RW).
 a. As a default, the RW/MH ratio may vary between 1.0 and 2.75. In these scenarios, with a unilateral pole configuration, the S/MH ratio must be <5.
 b. Higher RW/MH Ratios will need shorter S/MH Ratios, between 3 and 5. Different solutions are possible depending on luminaire photometric distribution types, arm lengths, over hang, and luminaire tilt.
 c. Software calculations using IESNA files, lighting depreciation factors (LLF) to verify maintained lighting levels, and appropriate roadway reflectance values for luminance may be required for verification.

Section 7-4(M)(3) Distribution Criteria

7-4(M)(3)(i) Vertical Light Distribution

1. For residential areas, mixed-use and commercial areas, all luminaires must have a full cutoff luminaire light distribution with zero candelas (intensity) at an angle of 90 degrees or above, or a Cutoff luminaire light distribution where the candela per 1,000 lumens does not exceed 25 (2.5%) at an angle of 90 degrees or above.

2. By establishing the standards for lighting fixtures in residential, intermediate, and commercial areas, rear obtrusive light can be minimized.

7-4(M)(3)(ii) Lateral Light Distribution

1. LED luminaire manufacturers generally offer light distributions based on National Electrical Manufacturers Association (NEMA) distribution types ranging from Type I to Type VII.

2. Roadway luminaires typically fall between Type II and Type V.

3. The selected optic type will depend on the specific configuration that the luminaire is deployed in.

4. Relevant variables include road width, pole spacing, and mounting height.

5. Light distributions for the same optic type may also vary from manufacturer to manufacturer.

Section 7-4(M)(4) Correlated Color Temperature (CCT)

1. A hierarchy of CCTs corresponding to roadway type and usage may provide benefits to citizens and tourists alike through improved wayfinding and ambience.

2. In general, lower traffic areas such as residential neighborhoods should receive warmer white (lower kelvin) luminaires, whereas higher traffic areas (major roads, highways) should receive cooler white (higher kelvin) luminaires.

3. Exceptions may be made for specific locations, such as Historic Old Town or Hunning Highland.
4. Lower color temperatures should be given preference in order to comply with American Medical Association (AMA) and International Dark-Sky Association (IDA) recommendations.

5. CCTs above 4000K shall be avoided.

6. The CCT hierarchies listed below shall be deployed for similar visual perception goals:

<table>
<thead>
<tr>
<th>Local / Residential Street</th>
<th>Collector Street / Major Transit Corridor</th>
<th>Commuter Corridor</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000K</td>
<td>3500K</td>
<td>4000K</td>
</tr>
</tbody>
</table>

7. LED technologies and CCT availabilities and efficacies are routinely evolving. These standards should be revised in accordance with industry best practice.

Section 7-4(M)(5) Luminaire Criteria

Luminaires shall satisfy all system design criteria listed above. In addition, all luminaires should meet or exceed the following luminaire level criteria.

7-4(M)(5)(i) Performance Criteria

1. Efficacy (lumens/Watt): > 90 lm/W
2. Color Rendering Index (CRI): > 65
3. Lumen Maintenance (L70): L70 > 50,000 hours as supported by LM-80 and TM-21 documentation.
4. CCT: As specified in ANSI C78.377

NOTE: Adapted from ANSI C78.377.

<table>
<thead>
<tr>
<th>Manufacture Rated Nominal CCT (K)</th>
<th>Allowable IESNA LM-79 Chromaticity Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured CCT (K)</td>
</tr>
<tr>
<td>3000</td>
<td>2870 to 3220</td>
</tr>
<tr>
<td>3500</td>
<td>3220 to 3710</td>
</tr>
<tr>
<td>4000</td>
<td>3710 to 4260</td>
</tr>
</tbody>
</table>

7-4(M)(5)(ii) Controls Criteria

1. Luminaire shall be fully prewired and shall incorporate an ANSI C136.41 compliant 7-pin receptacle.
2. If a dimmable LED driver is specified, its 0-10V or DALI control wires shall be connected to the receptacle pads as specified in ANSI C136.41; connection of the two remaining pads shall be by Supplier, as directed by Owner.

7-4(M)(5)(iii) Identification Criteria

1. Luminaire shall have an external label per ANSI C136.15.
2. Luminaire shall have an internal label per ANSI C136.22.
7-4(M)(5)(iv) Interference and Power Quality Criteria

1. Luminaire shall comply with FCC 47 CFR Part 15 interference criteria for Class A (non-residential) digital devices.
2. (For residential areas) FCC 47 CFR Part 15 interference criteria for Class B shall be required. Reference FCC 47 CFR 15.105.
3. Luminaire shall comply with section 5.2.5 (luminaires rated for outdoor use) of ANSI C82.77 at full input power and across specified voltage range.

7-4(M)(5)(v) Electrical Safety Testing Criteria

1. Luminaire shall be listed for wet locations by a U.S. Occupational Safety Health Administration (OSHA) Nationally Recognized Testing Laboratory (NRTL).
2. Luminaire shall have locality-appropriate governing mark and certification.
3. Luminaire shall meet the performance requirements specified in ANSI C136.2 for dielectric withstand, using the DC test level and configuration.

7-4(M)(5)(vi) Electrical Immunity Criteria

1. Luminaire shall meet the performance requirements specified in ANSI C136.2 for electrical immunity.
2. Manufacturer shall indicate on submittal form whether failure of the electrical immunity system can possibly result in disconnect of power to luminaire.

7-4(M)(5)(vii) Painted or Finished Surfaces Exposed to the Environment

1. Shall exceed a rating of 6 per ASTM D1654 after 1000 hours of testing per ASTM B117.
2. The coating shall exhibit no greater than 30% reduction of gloss per ASTM D523, after 500 hours of QUV testing at ASTM G154 Cycle 6.

Section 7-4(M)(6) Street Lighting Development Build out Requirements

1. In new subdivisions, the developer is required to adhere to the National Electrical Code (NEC) and the International Building Code (IBC) when designing streetlight infrastructure associated with the new development. This includes wiring, voltage drop method, and circuit sizing. The City adopts the most recent versions of the NEC and IBC.
2. The developer shall install a Public Service Company of New Mexico (PNM) Metered Service for all street lighting to allow full measurement of all electrical usage for street lighting luminaires.
3. NEMA 3R - Electrical service disconnecting equipment shall be required to provide life safety to all future maintenance associated with the streetlight infrastructure.
4. Design load calculations shall be required along with permitting and code inspections on all new subdivision developments.
5. In new subdivisions, the developer submits a copy of the plat with required street lighting marked the Traffic Engineer.
6. Once approved, the Traffic Engineer will then forwarded the street light installation plat to PNM for design of the street lighting system.
7. The developer shall install the street lights and work with PNM on the installation of electrical service to the subdivision.
8. The developer is responsible for charges PNM accesses on customer built / sales agreement contracts to energize subdivision.
9. In new subdivisions, the developer is required to submit 1 hard copy and 1 electronic copy of the final as-built plat (city owned street light facilities only) with required street lighting, junction boxes, termination points, and wire sizing to the Traffic Engineer.
10. The developer shall submit 1 hard copy and 1 electronic copy of the final as-built plat of all facilities installed on behalf of PNM (including existing easements noted).
11. The developer is fully responsible for the construction of the streetlight infrastructure as well as all coordination required with PNM for a completed project. Reference this DPM for required location of streetlights and any specific infrastructure list requirements as applicable.
12. Street light electrical infrastructure wiring shall be aluminum with the standard aluminum label permanently affixed to the exterior of the street light pole above the electrical service hand-hole.
13. All street light poles shall be metal, aluminum, or other approved UL listed materials. Wood poles are prohibited to be used for City assets.

Part 7-4(N) Traffic Control and Development Requirements

Section 7-4(N)(1) Traffic Control & Phasing Plan

1. A critical element to maintaining safe conditions during street construction activities includes traffic control plans and phasing of construction activities. All construction activities shall address these elements through a plan that will identify the phasing of construction activities and the necessary traffic control devices in accordance with the latest edition of the MUTCD.
2. Roadway projects often impede drastically on the pedestrian, bicycle and transit routes. Provisions shall be included in all traffic control and phasing plans for reasonable and continuous access to these modes of traffic.
3. The right-of-way for a street typically accommodates many different underground and overhead utilities. The designer of a construction project needs to coordinate design activities with the other users of the right-of-way including existing and future utilities. The traffic control and phasing plans need to incorporate provisions for these other users.
4. Construction activities within the right-of-way require an excavation permit. Prior to the issuance of the permit, plans must be submitted with appropriate approvals that define the construction activities, appropriate traffic control measure, and evidence of notification through the [811 Call Before You Dig](http://www.call811.org).
Section 7-4(N)(2) Traffic Construction and Fees

1. The Department of Municipal Development Construction Services Division (DMD/CSD) is responsible for coordinating most activities conducted in the City right-of-way, including issuance of barricade and excavation permits, inspection of all barricaded sites, etc.

2. During large City construction projects, special events, and during the holiday season, construction moratoriums are instituted to ensure safe and efficient road conditions for the traveling public. Contact SMS/CSD for additional information on construction moratoriums prior to construction.

3. Restoration fees are required on any street that has been newly constructed or has received major reconstruction or maintenance within the past 5 years.

Part 7-4(O) Naming Streets

1. The naming of streets within the City of Albuquerque shall follow Part 6-5-1 Street Names (ROA 1994). The policy applies to all streets that normally provide primary access to abutting property, whether by City right-of-way or by private way.

2. The City Engineer shall approve every new or changed name of a street within its planning and platting jurisdiction.

3. Where a street is or clearly will be both within and outside of the City of Albuquerque, the City shall confer with other local governments and seek a mutually satisfactory name.

Section 7-4(O)(1) Method of Naming

All street names in the city shall be named using any of the following methods:

1. By plat dedicating City right-of-way for an unnamed local or collector street, or by the continuation of a named principal or minor arterial.

2. By the adoption of a surveyed street line with name pursuant to Part 6-5-3 Future Street Lines (ROA 1994).

3. By adoption of a resolution by the City Council concerning the name of a specific principal or minor arterial street.

Section 7-4(O)(2) Street Designations

1. New or the continuation of a principal and minor arterial as defined by LRTS shall be designated “Boulevard”.

2. Local and collector streets that run essentially North-South shall be designated “Street” or “Drive.”

3. Local and collector streets that run essentially East-West shall be designated “Road” or “Avenue.”

4. Local street cul-de-sacs may be designated “Court” or “Place”, depending on the length of the cul-de-sac. (“Place” is to be used for cul-de-sacs at or near maximum length).

5. Circular turn-arounds with fewer than 6 lots may not require a street name.

6. An additional street name may be required where the change in direction of the street is greater than 90 degrees in order to comply with Part 6-5-1 Street Names (ROA 1994).

7. In places where the appropriate street designation is not clear, the City Engineer shall determine the designation.
Section 7-4(O)(3) Street Names

1. The name of a new street should be the name of an existing, nearby street that is essentially in line with it, unless the City Engineer finds that such name continuation would not be helpful to motorists searching for an address.

2. If this does not apply, new streets shall be named per the following policies:
 a. Grouping of names with similar content, such as: cities, trees, names, etc., is desirable.
 b. Alphabetical sequences of street names, such as: Arizona St., California St., Carolina St., etc., is desirable.
 c. Names with double meaning or names that are difficult to spell or pronounce are usually undesirable.
 d. Names already in use for streets in another area and not essentially in line with the new street are unacceptable.
 e. Names over 13 letters, including spaces, are unacceptable. Street designations, such as Boulevard and Drive, and quadrant designations, such as NE, are not counted toward the 13 allowed letters.

Section 7-4(O)(4) Procedure

1. To change the name of an existing street, a request is filed with the City Surveyor as the designee of the City Engineer.

2. For new streets, the developer will apply for and submit a preliminary plat for review and approval by the City Surveyor. The City Surveyor will accept the developer's proposal for street names that are consistent with Part 6-5-1 Street Names (ROA 1994) and the previous guidelines. The City Engineer reserves the right to name streets where the City Engineer finds that the developer's name or designation is not consistent with City policies and/or the public welfare.

3. Appeal of the City Engineer's decision is to the Environmental Planning Commission (EPC). The EPC decision may be appealed to the City Council.

Section 7-4(O)(5) Markings

1. Street markings in accordance with the MUTCD and current City Standard Specifications shall be included in the construction of new streets.

2. The layout of these markings need to be shown in the plans and included in the work to be performed by the contractor.

Section 7-4(O)(6) Signage

1. Signs shall be installed in accordance with MUTCD and current City Standard Specifications in the construction of new subdivisions.

2. For new construction, the layout of these signs need to be shown in the plans and included in the work performed by the contractor.

3. All signs are installed by the developer at the developer's expense.

4. The developer of a subdivision pays a street name sign fee for each intersection at the time of application as set forth in IDO Section 14-16-5-4 [Subdivision of Land].

Section 7-4(O)(7) Traffic Signals

1. See Section 7-4(I)(6) for design guidelines and Part 7-5(C) Traffic Study Warranting Criteria for signal warranting information. The determination of
appropriateness and location of traffic signals shall be at the discretion of the City Engineer.

2. The latest edition of the MUTCD and current City Standard Specifications shall be used to define the design of these elements. Where traffic signals may be warranted at a future date, the installation of a portion of the future signal elements including foundations, needs to be included in the construction of the streets.

3. Where signalization is not likely in the near future, only the underground conduit and pull boxes need to be constructed.

Section 7-4(O)(8) Barricades at Ends of Pavements

Signage

1. A Type III barricade (per MUTCD) is required at the end of any street pavement within or at the limits of a project regardless of the class of street involved or how soon additional pavement will be placed beyond the current project limits.

2. The only exception is where the Traffic Engineer determines that the unpaved portion of the street beyond the project limits has been and will continue to be open to and used by through traffic.

3. The installation of the barricade must be shown on the plans and included as a part of the street improvements.
ARTICLE 7-5 TRAFFIC STUDIES

Part 7-5(A) Background and Purpose

The City of Albuquerque requires that traffic impacts be considered as part of the development review process. There are two types of traffic analyses that may be required:

1. **Traffic scoping form (TSF):** includes a basic overview of roadway and transportation conditions.

2. **Traffic impact study (TIS):** requires an in-depth examination of the potential impacts of new development on nearby roadways.

The purpose of these studies is to assess the changes to the transportation system that a proposed development may create and to identify transportation improvements (i.e. mitigation measures) to be provided by the site developer to address the impacts of additional traffic associated with the development. This section clarifies the purpose and need of a TSF and a TIS, when such analyses are required, and the expected structure and contents of a TIS.

TSFs and TISs vary in complexity based on the scale, location, and type of development, and are ultimately intended to ensure that new developments can be accommodated and integrated within the City’s transportation system. Design solutions and mitigation measures should be appropriate for the situation, financially reasonable, and balance the needs for site access, through traffic, and the safety of all travelers.

Where a TIS is required, the Traffic Engineer shall work with the project developer on the scope and parameters of the TIS and to review the findings of the report.

Traffic scoping forms and traffic impact studies play an important role in identifying appropriate motor-vehicle related improvements, but those strategies must be complementary with other roadway needs. The ABC Comp Plan establishes transportation policies and priorities that vary based on land development forms and the desired transportation infrastructure for the location. In particular, there are several types of Centers and Corridors where accommodating transit, bicycle, and pedestrian travel must be considered alongside vehicle throughput. (See Article 7-3 Roadway Design Context for additional information on Centers and Corridors.) Considering the site context is important as not all locations should be treated equally and not all roads should serve the primary function of moving large volumes of cars long distances. Accordingly, acceptable LOS, the typical measure of roadway performance in a TIS, may vary depending on the location, and the same standards cannot be applied equally in all situations.
Part 7-5(B) Traffic Scoping Form and Traffic Impact Study

Section 7-5(B)(1) Traffic Scoping Form (TSF)

The first step in the evaluation of potential roadway impacts of a new development is a Traffic Scoping Form (TSF). All development projects and sites that involve construction of greater than 5,000 square feet of commercial space or generate traffic above basic thresholds require a traffic scoping form. The information provided in the TSF has 2 purposes:

1. To allow the Traffic Engineer to identify reasonable modifications that can be made to site plans that support the function of the transportation system and ensure safe and efficient access to and from the site to the adjacent roadway.
2. To determine if the site's impacts will meet the thresholds requiring a Traffic Impact Study (TIS). See Part 7-5(C) Traffic Study Warranting Criteria.

The traffic scoping form contains information regarding the proposed development, including description of the project uses and expected number of daily visitors. A TSF must be included alongside the site plan as part of an EPC, DRB or building permit application.

The applicant must submit an estimated number of daily trips generated by the site, as well as during the AM and PM Peak if known; assumptions will be made by the Traffic Engineer if such information is not provided. Depending on the location or magnitude of impacts a full TIS may be required; otherwise only a TSF is required. The traffic scoping form should be completed by the applicant and does not require the certification of a licensed engineer. The TSF shall be submitted before a building permit is issued.

City of Albuquerque staff will review the TSF and estimated trip generation levels to determine if further actions by the developer are required, including a TIS. Based on the findings of the traffic scoping form, the Traffic Engineer may require mitigation measures for roadway improvements or investments in transit, bicycle, or pedestrian infrastructure.

The TSF can be found on the City of Albuquerque website at the following link: http://documents.cabq.gov/planning/DesignReviewServices/TrafficScopingForm.pdf

Section 7-5(B)(2) Traffic Impact Study (TIS)

Where weekday levels of traffic are expected to exceed certain thresholds, a TIS shall be required. (See TABLE 7.4.75 and Part 7-5(C) Traffic Study Warranting Criteria.) Unlike a traffic scoping form, where the requirements include a basic assessment of existing conditions, the expectations for a TIS are much greater. In particular, the TIS must consider the LOS for roadway segments affected by the proposed development. In addition to the impacts of the proposed development, potential mitigation measures on travel patterns in the project "influence area" should be evaluated. If the scale of the project is large enough, a traffic impact study may require analysis utilizing socioeconomic forecasts.
and should consider travel demand model results from the most recent approved dataset from MRCOG.

A TIS includes all of the following:

1. Review of existing conditions
2. Proposed site characteristics, including land uses and projected phasing of the development
3. Vehicle trips generated by the development site
4. Traffic analysis of affected intersections and roadways as a result of planned development
5. Site access requirements
6. Summary of findings
7. Mitigation measures

The TIS must be completed by a professional engineer licensed in the State of New Mexico, preferably with a PTOE certification and experience in preparing Traffic Impact Studies. A TIS shall be considered valid for 3 years from the date of approval by the Traffic Engineer.

An update to the trip generation analysis may be required if there is a change in the development or land use from the approved TIS. Upon approval by the Traffic Engineer, an update to the trip generation analysis may also be used in lieu of a new TIS if more than 3 years have passed since the approval of the original TIS and no significant changes to the site or surrounding area have taken place.

See Part 7-5(E) TIS Report Elements below for the full set of requirements for a TIS.

Part 7-5(C) Traffic Study Warranting Criteria

Warranting criteria are used to determine if a TSF or a TIS is required as part of the following development activities:

1. Zoning Map Amendment (Rezoning)
2. Building permit for new building or change of use resulting in traffic above the levels in TABLE 7.5.87
3. Site plan
4. Subdivision
5. Master Development Plan

A TIS is generally required based upon the scale of the project and expected levels of traffic generation. TABLE 7.5.87 indicates the conditions that warrant a TSF or TIS by location. In all instances where “TIS” is indicated in the table, a traffic scoping form must first be completed by the applicant and reviewed by the Traffic Engineer before a TIS should begin. The trip generation levels indicated in TABLE 7.5.87 are based on site characteristics provided by the developer and reviewed by the Traffic Engineer. Volume-to-capacity (V/C) levels are calculated by the MRCOG Congestion Management Process and based on current roadway conditions. This data is available for all collector and arterials roadways in the City of Albuquerque through the Transportation Analysis & Querying Application (TAQA) tool.
Projects may be exempt from a TIS depending on their location or if the impacts are below certain thresholds. Regardless of the expected trip generation rates, large development projects are exempt from a TIS if the site is located Downtown, in an Urban Center, or within 660 feet of a Premium Transit station. The locations exempt from a TIS are marked by high degrees of non-automobile travel, lower parking requirements, and are typically zoned for mixed-use development, which reduces trip generation levels.

<table>
<thead>
<tr>
<th>TABLE 7.5.87 Traffic Analysis Requirements by Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-100 AM or PM peak hour trips</td>
</tr>
<tr>
<td>Premium Transit Station</td>
</tr>
<tr>
<td>Downtown</td>
</tr>
<tr>
<td>Urban Center</td>
</tr>
<tr>
<td>Activity Center</td>
</tr>
<tr>
<td>Employment Center</td>
</tr>
<tr>
<td>Major Transit</td>
</tr>
<tr>
<td>Multi-modal</td>
</tr>
<tr>
<td>Commuter</td>
</tr>
<tr>
<td>Other / No Designation</td>
</tr>
<tr>
<td>Main Street</td>
</tr>
</tbody>
</table>

Section 7-5(C)(1) TSF Warranting Criteria

A TSF is required for the following projects or sites:

1. Project/site generates 10 total trips during the AM or PM peak hour
2. Project/site contains more than 10 residential units
3. Project/site where uses have not yet been identified
4. Project/sites with a drive thru lane (e.g. fast food restaurant)
5. Project/sites with gas station and/or convenience center
6. Project/site contains a non-residential use of more than 5,000 feet
7. Tenant improvement application generating additional 10 total trips during the AM or PM peak hour

A TSF may also be required or waived at the discretion of the Traffic Engineer. The Traffic Engineer will review the results of the traffic scoping form and make a determination if a TIS is required. Generally, a TSF only – and not a TIS – is required under any of the following circumstances:

1. The project will result in fewer than 100 AM or PM peak hour trips.
2. The project is located Downtown, within an Urban Center, or within 660 feet of a Premium Transit station.
3. The project is located along a Main Street Corridors.
4. The project will generate more than 100 weekday AM or PM peak hour trips and is located along a roadway where the existing AM or PM peak hour volume-to-capacity (V/C) ratios are below an average of 0.5.

If the Traffic Engineer determines that a roadway abutting a project site is fully constructed and auto-oriented mitigation measures are impractical or unlikely to improve vehicle LOS, a traffic scoping form only may be required instead of a TIS. In these circumstances, the project may still be subject to non-auto oriented mitigation measures as determined by the Traffic Engineer, such as improved sidewalks, transit amenities, etc. See Section 7-5(E)(9) Recommendations & Mitigation Measures for more information on potential mitigation measures.

Section 7-5(C)(2) TIS Warranting Criteria

A TIS may be required depending on the results of the TSF. A TIS is warranted under either of the following conditions:

1. The project will generate more than 100 AM or PM peak hour trips per day and is located along a Commuter Corridors or non-designated or “other” corridors.
2. The project will result in more than 100 AM or PM peak hour trips per day and is located in a Center or along a Corridor where the AM or PM peak hour volume-to-capacity ratios already exceed 0.5. Exceptions include Downtown, Urban Centers, Premium Transit station areas, and Main Street Corridors.

Part 7-5(D) Traffic Analysis Procedures

Section 7-5(D)(1) Traffic Scoping Form

A TSF contains an initial analysis performed by the site developer and reviewed by the Traffic Engineer to consider general impacts associated with the site. The following items are required in a traffic scoping form:

1. Development information, including proposed land use and site activities
2. Facility type(s), including square footage and number of residential and/or commercial units.
3. Traffic considerations, including estimated number of daily trips to the site (i.e. trip generation).
4. Presence and general condition of pedestrian and bicycle facilities within and across the study area.
5. Preliminary site plan (include building size in square feet).
6. Other items as requested by the Traffic Engineer.
7. The Traffic Engineer will review the traffic scoping form to determine if a full TIS is required. Additional considerations in the determination of whether a TSF is sufficient or if a TIS is required include:
8. Location in a Center or along a Corridor
9. Daily traffic volume and peak hour link volume-to-capacity ratios (most current existing – available via the TAQA tool)
10. Presence of transit, bicycle, and pedestrian infrastructure
Section 7-5(D)(2) Traffic Impact Study (TIS)

7-5(D)(2)(i) Draft TIS Scoping Letter

If a TIS is deemed necessary, the site developer must prepare a draft TIS scoping letter that proposes the parameters for the TIS and identifies a study area. Potential parameters in the scoping letter may include:

1. Study area limits
2. Single or multi-phases of development
3. Site trip generation assumptions, including pass-by and internal capture trips
4. Adjacent developments
5. Other growth estimates
6. Build-out phases/horizon year
7. Capacity analysis/LOS analysis
8. Multi-modal considerations
9. Crash/safety considerations
10. Other planned or programmed roadway improvements
11. Other planned developments with background traffic
12. Neighborhood concerns
13. Applicable codes and public policies

7-5(D)(2)(ii) TIS Scoping Meeting

The Traffic Engineer will review the TIS scoping letter and schedule a TIS scoping meeting with the site developer and affected agencies to confirm the parameters of the TIS. Data collection needs will be defined at this time. Vehicular and non-motorized traffic counts may be required for intersections within the study area, or as directed by the Traffic Engineer. All additional topics and the agreed upon TIS parameters shall be summarized in a final TIS scoping letter. This document shall be included in the appendix of the TIS.

7-5(D)(2)(iii) TIS Report Preparation and Review

The developer shall collect traffic data and prepare a TIS according to the agreed upon parameters. The developer will prepare the TIS with the elements listed in Part 7-5(E) and begin identification of and traffic, transit, or pedestrian mitigation measures. The City will review the TIS and provide comments as needed.

7-5(D)(2)(iv) Mitigation Measures

Mitigation measures should be proposed in the draft TIS as a way to moderate traffic generated by the development. Recommendations shall follow Section 7-5(E)(9) Recommendations & Mitigation Measures and consider a complete streets solution. The City and the developer will come to an agreement on the extent and nature of mitigation measures, and those measures will be included in the final TIS.
Steps in TSF and TIS Report Preparation and Review (in order):

a. TSF submitted by developer.
b. Review of TSF by City Traffic Engineer (Follow steps c-j if a TIS is required).
d. City review of TIS scoping letter.
e. TIS scoping meeting to confirm TIS parameters.
f. TIS report preparation and submittal by developer.
g. Review of draft TIS report by City staff. Staff comments provided.
h. Identification and agreement of mitigation measures (additional meeting for negotiation may be required).
i. Submit final TIS report.
j. City approval of TIS.

Part 7-5(E) TIS Report Elements

The TIS shall include the following elements. Revision of requirements may be requested on a case-by-case basis at the TIS scoping meeting.

Section 7-5(E)(1) Executive Summary

The Executive Summary should include the following items:

1. Site location and study area
2. Development description and timeframe for completion
3. Summary of findings
4. Recommendations and mitigation measures

Section 7-5(E)(2) Introduction

7-5(E)(2)(i) Study Purpose

A general statement describing the intent of the report, and the reason it is being submitted (e.g. in support of a site plan, subdivision, etc.).

7-5(E)(2)(ii) Study Procedures

1. Information sources: The applicant must provide documentation of their sources for trip generation and other factors related to expected travel demand within the influence area(s).
2. Scope: The influence area encompasses the roadway elements that are assumed to be impacted by the proposed development. The influence area must be confirmed by the Traffic Engineer in the initial scoping meeting with the study preparer. The scope should consider the timeframe for site development.
3. LOS: The desired LOS for signalized intersections varies depending on the location, with lower levels of service and higher levels of congestion acceptable in Centers and along certain Corridors as generally identified in ABC Comp Plan Policies 6.1.4 through 6.1.9. This approach acknowledges that vehicle throughput and reduced auto delay is not the only objective in many situations. See TABLE 7.5.88 for acceptable LOS by location and...
TABLE 7.5.89 for acceptable LOS along Main Street Corridors.

4. Outside of designated Centers, the standard LOS for most arterials shall be LOS D where the roadway is controlled by traffic control devices (i.e. signalized or stop controlled intersections). For intersections, this applies to the average for each approach; however, the LOS for all approaches and movements must be reported in the TIS.

TABLE 7.5.88 Desired LOS by Location and Corridor Type

<table>
<thead>
<tr>
<th>Functional Classification & Roadway Type</th>
<th>ABC Comp Plan Center Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transit Station Area</td>
</tr>
<tr>
<td>Premium Transit</td>
<td>E-F</td>
</tr>
<tr>
<td>Major Transit</td>
<td>E</td>
</tr>
<tr>
<td>Multi-modal</td>
<td>E</td>
</tr>
<tr>
<td>Commuter</td>
<td>E</td>
</tr>
<tr>
<td>Other Arterial</td>
<td>E</td>
</tr>
<tr>
<td>Minor Arterial</td>
<td>E</td>
</tr>
<tr>
<td>Collector</td>
<td>E</td>
</tr>
</tbody>
</table>

TABLE 7.5.89 LOS for Main Street Corridors

<table>
<thead>
<tr>
<th>LOS</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed</td>
<td>25-30</td>
</tr>
<tr>
<td>Priority Travel Mode</td>
<td>Pedestrian</td>
</tr>
</tbody>
</table>

Section 7-5(E)(3) Existing Conditions

The description of existing conditions should refer to data that is no more than 3 years old. This information should include all of the following:

7-5(E)(3)(i) General Area Characteristics

1. Location within the City of Albuquerque (vicinity map).
2. General land use development adjacent to and at the site.
3. Existing zoning at the site and for adjacent lands.
4. Site plan including existing and proposed access locations.
5. Other planned and approved developments, including description of the location and type of other planned and approved developments in the influence area (the City will provide required information).

7-5(E)(3)(ii) Area Street Network

A detailed description of the street network in the influence area, including major roadways, and all information necessary for capacity analysis.
7-5(E)(3)(iii) Existing Traffic Volumes

The TIS may use data from the MRCOG Traffic Counts Program for link-level data for all arterials and collectors in the influence area. (See the TAQA tool.) An applicant should collect their own data if conditions have changed since the most recent count or if there is reason to believe the available counts are inaccurate.

For intersections where existing traffic counts and/or turning movement counts are not available, the applicant may be required to collect traffic counts data. The duration of the traffic counts and location of turning movement counts will be determined in consultation with the Traffic Engineer during the TIS scoping meeting. As the peak hours are the primary interest in the TIS, the turning movement counts can generally be limited to a 4-hour turning movement count, with 2 hours in the AM peak period and 2 hours in the PM peak period. Longer count times may be required by the Traffic Engineer if the existing intersection is known or expected to warrant a traffic signal; additional traffic volume data may also be requested to evaluate the need for traffic signalization.

7-5(E)(3)(iv) Existing Levels of Service

A description of the existing LOS for the study intersections using the latest version of a traffic analysis software approved by the Traffic Engineer.

7-5(E)(3)(v) Existing Transit Service

A description of the existing services, including frequency and span of weekday service, regional destinations served by adjacent transit service, as well as transit service amenities and bus stops in the project influence area. All proposed transit services in the influence area should be described.

7-5(E)(3)(vi) Bicycle and Pedestrian Considerations

A description of the type and quality of pedestrian and bicycle infrastructure, including pedestrian access to transit stops. Gaps in the bicycle and pedestrian network in the influence area must be identified. Bicycle and pedestrian counts are required for sites or projects located in high pedestrian or bicycle activity areas (see section 23-3.5), and may be requested by the Traffic Engineer as part of vehicle counts data collection efforts.

7-5(E)(3)(vii) Safety Evaluation/Crash Data

An evaluation of crashes over the 3-5 most recent years for which data is available and other safety considerations may be required.

Section 7-5(E)(4) Future Traffic Conditions and Analysis Years

7-5(E)(4)(i) Project Implementation Year

Traffic forecasts shall be developed for the year the development is expected to be completed. Phased analysis may be required depending on the size and scale of the project, or as directed by City staff. Large projects with regional
impacts may require that additional phases of development be evaluated, including horizon year analysis. Traffic volumes must account for 3 conditions: Site traffic, Growth in through traffic, other planned development.

7-5(E)(4)(ii) Site Traffic

The sum total of traffic attributable to the site development in the implementation year. The site traffic, or build traffic, plus the background traffic represents the total traffic on the study area roadway system.

7-5(E)(4)(iii) Growth in Through Traffic

Through traffic can be estimated using growth factors based on the most recent 10 years of historical volume data. The use of growth factors is most appropriate for development periods of 5 years or less.

Growth rates should be based on a 10-year historical growth derived from the MRCOG Traffic Flow Maps. The minimum annual growth rate to be used is 0.5%. Growth rates should be defined in the TIS scoping letter and reviewed with respect to reasonableness in comparison to roadway capacity limitations and the long-range traffic forecast from the MRCOG regional travel demand model. Growth rates may also consider recent developments and their impacts on traffic volume patterns in the study area.

7-5(E)(4)(iv) Other Planned Development

Other off-site development that is to occur prior to the project implementation year must be accounted for, and the traffic associated with this development must be included in the analysis. Where previous impact studies have been produced, the City will provide relevant data to the applicant.

The sum of the existing traffic, growth in through traffic, and the traffic generated by off-site development in the study area represents the background traffic for the implementation year analysis.

7-5(E)(4)(v) Consideration of Programmed Roadway Improvements

Transportation system improvements in the influence area that are programmed or committed to occur during the forecast period should be included in the analysis. The study should cite all projects in the influence area included in the City’s Capital Improvement Program and the region’s Transportation Improvement Program (facilitated by MRCOG).

Section 7-5(E)(5) Proposed Site Traffic Characteristics

7-5(E)(5)(i) Site Development Characteristics

The development characteristics must include the following:
1. An estimate of implementation phasing of the proposed development, to include the location and estimated year of occupancy of each phase
2. The specific type of land use to be implemented in each project phase; for example, gas station, hotel, residential dwelling units, etc., and the size and of type of proposed development (e.g. square feet of commercial space, number of dwelling units, etc.). The land use type and intensity should be expressed in the same terms as indicated in the ITE Trip Generation Manual for a given land use type.

3. Proposed access locations for each project phase, indicated on a drawing of the roadway network and showing intersections of interest, as defined in the scoping letter, and proximity to existing or proposed signalized intersections on the adjacent roadway system.

7-5(E)(5)(ii) Trip Generation

Provide a table showing the trips generated for the proposed development, and other planned developments in the influence area. Data for other planned developments may be provided by the City, including previous impact studies, as appropriate. The source of trip generation rates shall be from the current edition of the ITE Trip Generation Manual or other resources sponsored by the ITE Transportation Planning Council. Assumptions regarding the types of trips (e.g. pass-by, diverted link, primary, etc.) must be clearly stated, and discussed with City staff at the scoping meeting. The influence area varies depending on the size of the development.

Other trip generation rates that represent local or site-specific conditions (e.g. mixed-use trip generation rates) may be used as prescribed by the Traffic Engineer, or as suggested by the study preparer and agreed to by the Traffic Engineer. In the latter case; however, the burden of justifying the validity and use of trip rates other than those in the ITE manual is on the study preparer.

7-5(E)(5)(iii) Other Trip Generation Considerations

1. Pass-by Traffic and Internal Capture

 a. Pass-by refers to the existing trips along a route that may visit the site

 b. Internal capture is the result of mixed-use activity in which 1 trip to the site results in visits to multiple businesses, or if there are trips to the new development that are generated within the site, such as in a development with a residential component. See ITE Trip Generation Manual for additional guidance.

 These assumptions shall be reviewed by the City, with Traffic Engineer approval documented in the response to the scoping letter or other formal written communication.

2. Transit

 For sites in Centers or along Premium Transit and Major Transit Corridors, a percentage of trips to the site may be assumed to be completed via transit. This rate should be consistent with transit mode share data for the region or the corridor, if available, or based on a national study or reference manual.

7-5(E)(5)(iv) Trip Distribution

Trip distribution shall be the percentage of traffic travelling a specific route to or from the site that passes through the intersections of study determined in the
TIA scoping letter. The trip distribution informs the traffic assignment discussed below. This distribution is to be determined using the most recently-approved socioeconomic forecast from the MRCOG and will be based upon appropriate radii or distribution areas around the site, depending on the type of development. Land uses that serve regional markets should consider potential trips generated from a larger radius. The study area(s) and trip distribution methodology must be approved by the Traffic Engineer at the scoping meeting.

7-5(E)(5)(v) Traffic Assignment

The number of trips entering and exiting the study site. These assignments will generally be required for both the morning and evening peak hour conditions. Assignment to specific movements and intersections will use logical routing onto the major street system and intersections of study. All trips shall be assigned to the access points, and all primary trips shall be assigned to the off-site intersections that will be evaluated within the study area. Pass-by trips should only be assigned to the site access points and internal capture trips should not be assigned to an access.

Section 7-5(E)(6) Traffic Analysis

7-5(E)(6)(i) Intersection and Roadway Analyses

1. Identify intersections and roadways to be studied (includes all site access points).
2. Identify existing signal timing patterns for signalized intersections (to be provided by the Traffic Engineer).
3. Calculate intersection LOS and link-level volume-to-capacity ratios for the AM and PM peak periods under the following conditions:
 a. Existing traffic (link-level data available through the TAQA tool)
 b. Project implementation year (includes other planned developments)
 i. Baseline scenario, without proposed development (background traffic only)
 ii. Build scenario, with proposed development (background plus site traffic)
4. The analysis of existing, or other warranted, signalized intersections shall be based on the operational/design procedures in the HCM or equivalent document as approved by the Traffic Engineer for the project implementation year.
5. Analysis of unsignalized locations, including major access driveways shall be based on the methodology contained in the HCM, or an alternative approach approved by the Traffic Engineer.
6. Assumptions regarding vehicle queuing, peak hour factors, heavy vehicle percentages, arrival types, right-turns-on-red, etc. may be included in the TIS report as needed.

7-5(E)(6)(ii) Identify Alternative Intersection and Roadway Designs

Alternative configurations shall be proposed for each intersection and roadway that fails to maintain the standard levels of service in the implementation year when considering either of the following conditions:

1. Background traffic only
2. Background plus site traffic

General description of roadway and intersection improvements are required for the implementation year, as deemed appropriate by the Traffic Engineer. The Traffic Engineer may waive this requirement if additional capacity is not feasible.

7-5(E)(6)(iii) Evaluate Alternative Intersection and Roadway Designs

The link-level capacity and intersection LOS of each of the alternative intersection and roadway designs shall be determined using the operational/design procedures of the most current *HCM* for the implementation year. Intersection analysis may be performed for the horizon year using the planning or operational methods of the most current *HCM*, or as deemed appropriate by the Traffic Engineer.

7-5(E)(6)(iv) Perform Signalization and Stop Sign Warrant Analyses

All locations meeting signal and stop sign warrants based on traffic volume in the implementation year should be identified. If an intersection is found to meet signal warrants based on the criteria contained in the *MUTCD* in the project implementation year, a signalized intersection operational analysis shall be performed using the procedures contained in the *HCM*. Recommendations for signal installation should be made as signal warrants are met. Upon review of the recommendations contained in the *TIS*, the Traffic Engineer will make a determination of whether the signal should be installed and/or provisions made for future signal installation. This determination shall be included in the final copy of the *TIS*.

Section 7-5(E)(7) Site Access Requirements

A description of the improvements needed to meet design and operational standards both on and off site. Required contents include the following:

1. Site Access and Circulation Plan
2. Roadway improvements
 a. On-site
 b. Off-site
 c. Implementation phasing
3. Transportation System Management actions
4. Site design features such as turning lanes, median cuts, queuing requirements and site circulation, including driveway signalization and visibility.

Section 7-5(E)(8) Summary of Findings

A summary of the major implications of the proposed site development, including potential changes in LOS and other transportation conditions. Other considerations in this section may include discussion of illumination, traffic control alternatives, and observed deficiencies that are not identified through the analyses.
Section 7-5(E)(9) Recommendations & Mitigation Measures

Actions required to ensure that the roadway(s) affected by the project meet design and operations standards and to provide appropriate accommodations for bicyclists and pedestrians in the project area. Recommendations and mitigation measures should respond to the summary findings from the TIS.

Mitigation measures may be related to roadway improvements, including intersection improvements or changes to the roadway configuration, as well as infrastructure for alternative travel modes (i.e. transit, bicycle, or pedestrian improvements). Appropriate mitigation measures depend on the location and the desired infrastructure improvements in the project location. See ABC Comp Plan Chapter 7 Urban Design (7.A.6.2) and Article 7-3 Roadway Design Context for additional information.

Multi-modal LOS analysis should be used as a diagnostic tool when identifying alternative mode mitigation measures and for evaluating the potential impacts of roadway-oriented mitigation measures in high bicycle and/or pedestrian activity areas.

7-5(E)(9)(i) Roadway Mitigation Measures

Mitigation measures may be requested following the completion of the traffic scoping form and a TIS, and must be proposed as part of a TIS if the impacts of project cause the roadway LOS to exceed the standards prescribed for the project location.

The Traffic Engineer may determine that auto-oriented mitigation measures are not required because the roadway is fully constructed, no additional right-of-way is available, or if no measures are practical because the LOS cannot be substantially improved. In such cases alternative mode mitigation measures may be required.

Roadway mitigation measures may include, but are not limited to, the following:
1. Access management: closure of access points as part of a new development on a fully built-out street.
2. Geometric improvements: turn lanes and other auxiliary lanes
3. Street restriping: additional travel lanes within existing right-of-way or reallocation of lane widths.
4. Street widening and other physical improvements: additional travel lanes or other capacity expansion techniques; these measures must be demonstrated to be physically feasible.
5. Traffic signal operations improvements – upgraded signals, signalization of un-signalized intersection, signal optimization, etc.
6. Transit capacity improvements – contributions toward expanded transit service.
Alternative Mode Mitigation Measures

The goal of non-motorized mitigation measures is to reduce the demand for trips by single-occupancy vehicles and to increase opportunities for travel by alternative modes.

Mitigation measures may be related to the desired infrastructure improvements for the corridor type. Improvements to sidewalks and the pedestrian realm, transit amenities, and bicycle infrastructure may be requested as a mitigation measure in lieu of a roadway improvement.

Alternative mode mitigation measures are most appropriate along the corridor fronting the site or at adjacent intersections in Centers and Premium Transit station areas and along Major Transit, Multi-modal, and Main Street Corridors.

Multi-modal accommodations are required in all circumstances for the frontage to the site and City right-of-way within the development. These accommodations may include:

- Bicycle infrastructure – bicycle lanes, bicycle buffers, bicycle paint
- Connect sidewalk to curb for transit landing area
- Mid-block pedestrian crossings / HAWK signals
- On-site bicycle racks
- On-street parking
- Pedestrian connection from site to transit stop
- Restriping plan with narrower traffic lanes
- Street trees/landscape buffers
- Transit station amenities (e.g. bus stop bench or shelter)
- Widen sidewalks/bring sidewalks into ADA/PROWAG compliance

Transportation demand management strategies may be proposed to offset or reduce trip generation through carpool or ridesharing programs, contributions to transit service, on-site facilities for bicyclists, among other options.

Part 7-5(F) Neighborhood Impact Assessment (NIA)

The Curb cut ordinance requires the preparation of an NIA for all public, private or charter schools requesting access to City of Albuquerque streets.

- Charter school: A public school established under the authority of §§ 22-8B-1 to 22-8B-17.1 NMSA 1978.
- Private school: A school established, conducted and primarily supported by a non-governmental entity in which instruction is offered by 1 or more teachers and is discernible as a building or group of buildings generally recognized as an elementary, middle, junior high or high school or any combination of those.
- Public school: As defined at § 22-1-2 NMSA 1978 a part of a public school district that is a single attendance center in which instruction is offered by 1 or more teachers and is discernible as a building or group of buildings generally recognized as either an elementary, middle, junior high or high school or any combination of those and includes a charter school.
Section 7-5(F)(1) NIA Purpose/Scope

A NIA is a process to evaluate the overall effects that may result from the approval of curb-cut applications to allow access to public rights-of-way from public, private or charter schools, and to identify methods to mitigate such impacts to a reasonable level.

1. The permit applicant shall schedule an NIA scoping meeting for the NIA following the procedures as listed in Section 7-5(D)(2) Traffic Impact Study (TIS).

2. The traffic engineer will determine at the NIA scoping meeting whether a Site Traffic Assessment (STA) or a TIS is required.

3. An STA: analysis of site access (driveways), the need for turn lanes in advance of the site and impacts on signals downstream and upstream of the site. An STA is a lower level of analysis than a TIS.

Section 7-5(F)(2) NIA Minimum Requirements

An NIA shall include, at a minimum, all of the following:

4. A description of the project.

5. The baseline community data that identifies existing conditions with respect to adjacent land uses, traffic patterns, traffic turning movements and volumes, nearby multimodal transportation options, area pedestrian movements, and any other relevant information as determined at the time of scoping.

6. An analysis of the neighborhood impacts, if any, including but not limited to:
 a. Impacts on pedestrian and bicycle circulation, and pedestrian and bicycle routes.
 b. Potential automobile and pedestrian conflict points.
 c. Potential noise and air quality impacts resulting from stacking of idling vehicles or vehicle circulation.
 d. Consistency with existing or planned transit routes and stops.
 e. Other potential impacts as determined by the Planning Director, City Engineer, or their designees.

7. If required, a TIS as described in Section 7-5(B)(2).

8. An STA, shall be conducted by a professional engineer licensed in the State of New Mexico with traffic engineering experience. The STA shall include an appendix with support data for analysis and capacity analysis and shall be signed and sealed in compliance with city standards by the engineer that prepared the report. At minimum and as more fully defined at the time of NIA scoping, it shall address all of the following:
 a. The impact that motorists arriving and departing from the school site will generate on traffic operations in the general vicinity.
 b. The site’s total capacity for student enrollment.
 c. Anticipated student enrollment.
 d. Scope of required analysis.
 e. Need for a student drop off and pick-up queuing lane.

9. An evaluation of reasonable alternatives, if any, and their anticipated effectiveness in mitigating potential impacts. The NIA shall include a justification by the applicant for the selection of a particular alternative or why no other reasonable alternatives existed.
Article 7-6 Definitions

A

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Local Street</td>
<td>Access local streets are loop streets, cul-de-sacs, and short segments that provide connections to other streets. Access locals are not continuous for more than 1 or 2 blocks. Anticipated ADT for access locals is 250 vehicles per day or less.</td>
</tr>
<tr>
<td>Activity Center (ABC Comp Plan)</td>
<td>Activity Centers provide convenient, day-to-day services at a neighborhood scale to serve the surrounding area within a 20-minute walk or a short bicycle ride.</td>
</tr>
<tr>
<td>ADA Accessible Parking</td>
<td>An area on street or in a private property delineating a vehicular parking spot that is accessible to all, including those with physical disabilities.</td>
</tr>
<tr>
<td>Angled Parking</td>
<td>An area on street or in a private property delineating a vehicular parking spot at an angle from the curb or access aisle.</td>
</tr>
<tr>
<td>Arterial/Collector Spacing</td>
<td>The distance between major roads along a corridor.</td>
</tr>
<tr>
<td>Average Daily Traffic (ADT)</td>
<td>The average 24 hour volume of vehicles, being the total volume during a stated period divided by the number of days in that period. Normally, this would be periodic daily traffic volumes over several days, adjusted for days of the week or seasons of the year.</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Definition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Transit Stop</td>
<td>Consists of an accessible boarding and alighting area with easily identifiable signage indicating the location of the stop.</td>
</tr>
<tr>
<td>Bicycle Boulevard</td>
<td>Enhanced bicycle routes designed to encourage the through-movement of bicycles while maintaining local access for motor vehicle travel.</td>
</tr>
<tr>
<td>Bicycle Buffer</td>
<td>The physical space that separates bicyclists from motorists.</td>
</tr>
<tr>
<td>Bicycle Facilities</td>
<td>Facilities including on-street bicycle lanes, separated multi-use paths, and buffers that provide additional comfort and safety for cyclists.</td>
</tr>
<tr>
<td>Bicycle Lane</td>
<td>A lane on the roadway that has been designated by striping and pavement markings for preferential and exclusive use by bicyclists.</td>
</tr>
<tr>
<td>Bicycle Parking</td>
<td>An area on street or in a private property delineating a bicycle parking spot with a bicycle rack.</td>
</tr>
<tr>
<td>Bicycle Route</td>
<td>Designated roadways in which cyclists share roadway space with motorists.</td>
</tr>
<tr>
<td>Block length</td>
<td>The length of roadway between two intersections.</td>
</tr>
<tr>
<td>Bus Bays</td>
<td>A dedicated zone on the side of a roadway for passenger boarding and alighting that prevents travel lanes from being blocked when buses stop to pick up and drop off passengers. Bus bays have a protected zone with entrance and exit tapers.</td>
</tr>
<tr>
<td>Bus Turnouts</td>
<td>A dedicated zone on the side of a roadway for passenger boarding and alighting that prevents travel lanes from being blocked when buses stop to pick up and drop off passengers.</td>
</tr>
</tbody>
</table>
C

Center (ABC Comp Plan) Area of relatively intense development characterized by a variety of uses that allow for many different activities. When capitalized, refers to Centers as designated by the ABC Comp Plan.

Channelized Right Turn Lanes An intersection type that provides for free-flow or nearly free-flow right turn movements usually with the use of curb islands.

Charter School A public school established under the authority of NMSA 1978 §§ 22-8B-1 to 22-8B-17.1.

Community Principal Arterial An arterial street designed to ensure that a particular mode is not to be prioritized at the expense of others, and that the corridor is meant to bring people to an area as opposed to through the area (as is the case with regional principal arterials).

Commuter Corridor (ABC Comp Plan) A higher-speed and higher-traffic volume route for people traveling across town, usually via limited-access roadways.

Corridors (ABC Comp Plan) A network of roadways that collectively meet the travel needs of Albuquerque and Bernalillo County residents.

Complete Streets Roadway(s) with cross sections built at a human scale, designed and operated for equal access by all users, including pedestrians, bicyclists, motorists and transit riders of all ages and abilities, to allow comfortable and convenient street crossings, and pedestrian access to adjacent land uses.

Controlled Pedestrian Crossing A location where vehicles are managed with traffic control devices that may facilitate pedestrian crossing.

Corral A pen or enclosure for use in bicycle or motorcycle parking.

Cross Slope The slope measured perpendicular to the direction of travel.

Cul-de-sac Short streets intersecting another street at one end and terminating at the other end with a vehicular turnaround.

Curb and Gutter The area along the edge of a street that separates the elements in the Pedestrian Realm from the Travel Way and serves an important role in stormwater management.

Curb extensions A traffic calming measure, primarily used to extend the sidewalk, and to reduce the crossing distance for pedestrians.

Curb Radius The curvature along the curb line.

Curb Ramp Provides access between elevated pedestrian facilities and road surfaces at pedestrian crossings.

Curb Ramp Counter Slope The change in grade at the bottom of the curb ramp and adjoining road surface.

Curb Return The curved section of curb connecting a street to an intersecting street or driveway.

D

Dedicated Transit Infrastructure The portion of the road or right-of-way allocated exclusively for transit vehicles and associated improvements.
<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Speed</td>
<td>The speed motorists are intended to travel under free-flow traffic conditions.</td>
</tr>
<tr>
<td>Design Vehicle</td>
<td>The least maneuverable vehicle that routinely uses a street or a facility.</td>
</tr>
<tr>
<td>Designated Pedestrian Crossing</td>
<td>The location where pedestrians are encouraged to cross a roadway, as indicated by a combination of signal devices, signage, or pavement markings.</td>
</tr>
<tr>
<td>Detectable Warning Surfaced</td>
<td>Distinctive surface pattern of domes detectable by cane or underfoot that alert people with vision impairments of their approach to street crossings and hazardous drop-offs, such as elevated transit loading area.</td>
</tr>
<tr>
<td>Diagonal Curb Ramps</td>
<td>A curb ramp located at the corner of an intersection that directs the user to the center of the intersection.</td>
</tr>
<tr>
<td>Directional Curb Ramps</td>
<td>A curb ramp with a running slope that is in-line with the direction of sidewalk travel.</td>
</tr>
<tr>
<td>Downtown</td>
<td>Albuquerque’s Downtown serves as a regional hub for concentrated job and commercial activity supported by high-density housing and includes a wide variety of land uses.</td>
</tr>
<tr>
<td>Drivepad</td>
<td>The portion of a driveway in the right-of-way that connects a street to a commercial or residential driveway.</td>
</tr>
<tr>
<td>Driveway</td>
<td>An area on private property where vehicles and bikes are operated or allowed to stand.</td>
</tr>
<tr>
<td>Effective Curb Radius</td>
<td>The curvature vehicles follow when turning at an intersection.</td>
</tr>
<tr>
<td>Employment Center</td>
<td>Employment Centers are intended to remain predominately industrial, business, and retail centers.</td>
</tr>
<tr>
<td>Frontage Zone</td>
<td>The segment between the sidewalk and the property line, which may be located within City right-of-way.</td>
</tr>
<tr>
<td>Hammerhead Street</td>
<td>Short street intersecting another street at one end and terminating at the other end with a vehicular turnaround.</td>
</tr>
<tr>
<td>High Bicycle Activity Areas</td>
<td>Facilities approaching and within an ABC Comp Plan Center, Premium Transit station area, or school. Other high activity areas include neighborhoods with an average residential density of 10 units per acre or more.</td>
</tr>
<tr>
<td>High Pedestrian Activity Areas</td>
<td>ABC Comp Plan Centers, Main Street Corridors, and Premium Transit station areas, as well as areas surrounding big box stores or clusters of retail activity, school zones, locations where buildings with zero setback are present, and neighborhoods with an average density of 10 units per acre. Multi-modal and Major Transit Corridors may also be considered high pedestrian activity areas depending on the surrounding land uses.</td>
</tr>
<tr>
<td>High Volume Traffic Generators</td>
<td>A site with over 25 vehicles entering or exiting per hour.</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Intersection</td>
<td>The location where two roadways (public or private) intersect.</td>
</tr>
<tr>
<td>Intersection Crosswalk</td>
<td>The pedestrian path across an intersection, whether it is marked or not.</td>
</tr>
<tr>
<td>Intersection Sight Distance</td>
<td>The distance required for drivers to be able to see a control device well in advance of performing a required action.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyway</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscape/Buffer Zone</td>
</tr>
<tr>
<td>Level of Service (LOS)</td>
</tr>
<tr>
<td>Long Range Bikeway System (LRBS)</td>
</tr>
<tr>
<td>Long Range Roadway System (LRRS)</td>
</tr>
<tr>
<td>Low-density Residential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Street Corridor (ABC Comp Plan)</td>
</tr>
<tr>
<td>Major Local Street</td>
</tr>
<tr>
<td>Major Roads</td>
</tr>
<tr>
<td>Major Transit Corridor</td>
</tr>
<tr>
<td>Medians</td>
</tr>
<tr>
<td>Mid-block Crossing</td>
</tr>
<tr>
<td>Mini Clear Sight Triangle</td>
</tr>
<tr>
<td>Mitigation Measures</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Motorcycle Parking</td>
</tr>
<tr>
<td>Multi-modal Corridor (ABC Comp Plan)</td>
</tr>
<tr>
<td>Neighborhood Roadway Network</td>
</tr>
<tr>
<td>Neighborhood Traffic Circles</td>
</tr>
<tr>
<td>Normal Local Streets</td>
</tr>
<tr>
<td>On-street Parking</td>
</tr>
<tr>
<td>Parallel Curb Ramps</td>
</tr>
<tr>
<td>Parallel Parking</td>
</tr>
<tr>
<td>Park and Ride Facilities</td>
</tr>
<tr>
<td>Parking Islands</td>
</tr>
<tr>
<td>Parklet</td>
</tr>
<tr>
<td>Paved Trails</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Pedestrian Access Route</td>
</tr>
<tr>
<td>Pedestrian Realm</td>
</tr>
<tr>
<td>Permeable Pavement</td>
</tr>
<tr>
<td>Perpendicular Curb Ramps</td>
</tr>
<tr>
<td>Premium Transit Corridor (ABC Comp Plan)</td>
</tr>
<tr>
<td>Private school</td>
</tr>
<tr>
<td>Private Street</td>
</tr>
<tr>
<td>Private Ways</td>
</tr>
<tr>
<td>Public School</td>
</tr>
<tr>
<td>Queue Jump Facilities</td>
</tr>
<tr>
<td>Queuing</td>
</tr>
<tr>
<td>Refuge Islands</td>
</tr>
<tr>
<td>Regional Principal Arterial</td>
</tr>
<tr>
<td>Term</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Regional Roadway Network</td>
</tr>
<tr>
<td>Reverse Angle Parking</td>
</tr>
<tr>
<td>Right-of-way</td>
</tr>
<tr>
<td>Road Diet</td>
</tr>
<tr>
<td>Roadway Reconstruction</td>
</tr>
<tr>
<td>Roundabouts</td>
</tr>
<tr>
<td>Running Slope</td>
</tr>
<tr>
<td>Separated Bicycle Lanes</td>
</tr>
<tr>
<td>Sharrow</td>
</tr>
<tr>
<td>Shoulder</td>
</tr>
<tr>
<td>Sidewalks</td>
</tr>
<tr>
<td>Signalized Intersection</td>
</tr>
<tr>
<td>Signalized Pedestrian Crossing</td>
</tr>
<tr>
<td>Slip Ramp</td>
</tr>
<tr>
<td>Stopping Sight Distance</td>
</tr>
<tr>
<td>Stub Street</td>
</tr>
<tr>
<td>Super-elevation</td>
</tr>
</tbody>
</table>
Traffic calming Devices also speed management techniques, used to control motor vehicle speeds and discourage through-vehicle trips.

Traffic Impact Study (TIS) An in-depth examination of the potential traffic impacts of new development on nearby roadways.

Traffic Scoping Form (TSF) An overview of roadway and transportation conditions at proposed development.

Transit Station Usually associated with a premium service such as Bus Rapid Transit, transit stations are distinguished from transit stops by having level-boarding platforms and passenger amenities such as ticket vending machines and real-time transit information, as well as common transit stop amenities such as seating, shelters, and/or leaning rails.

Travel Lane Dedicated area for vehicle traffic.

Travel Way Area that includes the curb-to-curb area used for vehicle and bicycle travel.

Trip Generation Analysis Analysis of the vehicular trips generated for a proposed development.

Turn Lane A dedicated space for vehicles to complete a turning movement without blocking the flow of traffic.

Two-way Left-turn Lane (TWTL) A continuous center lane that allows motorists traveling in both directions to pull out of through lanes and into a shared lane for left turns.

Uncontrolled Pedestrian Crossing A location where pedestrians may cross a roadway where vehicles are not controlled.

Unsignalized Intersections An at-grade intersection in which the flow of traffic is not controlled by a traffic signal. Unsignalized intersections may be STOP-sign controlled, YIELD sign-controlled, or uncontrolled.

Urban Center Urban Centers are walkable districts that incorporate a mix of employment, service, and residential uses at a density and intensity lower than Downtown but higher than neighborhood-serving Activity Centers.

Walkways A passage or path for walking located on private property, which often connects the sidewalk to a building entrance or connects between different buildings on a site.
TRANSPORTATION DESIGN/
CHAPTER 8
SANITARY SEWER DESIGN CRITERIA

This chapter presents the criteria, standards, and regulations related to the design of sanitary sewer systems for general development service. This chapter does not cover the criteria necessary for design of major interceptor sewers, lift stations, or treatment facilities. The material is directed to the competent design professional and is not intended to be a detailed design handbook. Criteria and standards presented are those determined to be the minimum acceptable values necessary to result in system designs with satisfactory functional characteristics, durability, and operational suitability. The designer is expected to strive for the best design to suit the circumstances involved; designs are to reflect sound professional judgment at all times.

CONTENTS

ARTICLE 8-1 GOVERNING REGULATIONS ...8-2
ARTICLE 8-2 AVAILABILITY STATEMENTS ...8-2
ARTICLE 8-3 DESIGN CAPACITY CRITERIA SECTION, DEVELOPMENT AND DEVELOPMENT SERVICE ...8-3
ARTICLE 8-4 MANHOLE CRITERIA ..8-4
ARTICLE 8-5 LINE CRITERIA ...8-6
ARTICLE 8-6 CURVILINEAR SEWERS ..8-14
ARTICLE 8-7 SERVICE CONNECTIONS CRITERIA8-15

FIGURES

FIGURE 8.5.123 Primary Utility Locations: Arterial Streets 8-8
FIGURE 8.5.124 Primary Utility Locations: Collector Streets (86 Feet of Right-of-Way) ... 8-9
FIGURE 8.5.125 Primary Utility Locations: Collector Streets (66 Feet of Right-of-Way) ... 8-10
FIGURE 8.5.126 Primary Utility Locations: Residential Streets 8-11
FIGURE 8.5.127 Primary Utility Locations: Estate Type Streets 8-12
ARTICLE 8-1 GOVERNING REGULATIONS

Ordinances and policies related to the design and operation of public water systems are listed in the Public Water Systems Governing Regulations Summary, found on the Albuquerque/Bernalillo County Water Utility Authority (ABCWUA) website: http://abcwua.org/.

ARTICLE 8-2 AVAILABILITY STATEMENTS

A Water and Sanitary Sewer Availability Statement issued by the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) within the past 12 months is required for any proposed development, subdivision plat, or site plan within or outside of the Service Area. Availability Statements will identify the water and sanitary sewer infrastructure needs (public/private; on-/off-site) to provide a proposed development with services and fire protection. In addition, any time constraints for development plans, or other requirements to receive services, will be identified in the Availability Statement.

A request for an Availability Statement should be made as early as possible in the planning of a project to allow sufficient time for response and to enable the developer to include the necessary water and sanitary sewer infrastructure in the project plans. Requests for Availability Statements should include the following information:

1. The precise location of the proposed development, with a marked Zone Atlas map or legal description of the property.
2. The type of development proposed, such as single-family residential, shopping center, office, etc., with a proposed schedule of development or phasing, if applicable.
3. The scope or size of the project and utility demands, if known (e.g. the number of units in a residential project, number of beds in a nursing facility, square footage for a shopping center or industrial development, etc.).
4. A copy of the Instantaneous Fire Flow Requirements from the Fire Marshal’s Office. If a private sprinkler system is to be installed, state the flow requirements for that system, as well.
5. A Utility Plan.
6. Any other information pertinent to project planning.

Availability Statements on Water and Sewer Service should be requested via the ABCWUA website: http://abcwua.org/.

In cases of complicated or very large development proposals, additional study time may be required to prepare an Availability Statement. In such cases, the requester shall be notified of the extra time needed and advised of the status of the statement.

Where a proposed project is not sufficiently defined to provide all of the information required for an Availability Statement, the developer may request a Serviceability Letter in an effort to identify the water and sewer utilities nearest...
to the property and to ascertain the general feasibility of the project; however, in no case shall a Serviceability Letter replace the need for an Availability Statement.

No water or sanitary sewer service accounts shall be sold to any development project prior to issuance of a Water and Sanitary Sewer Availability Statement for that specific project. No property may develop or take service in such a manner that leaves adjacent un-serviced properties without means to obtain service. In accordance with the Water and Sewer Expansion Policies, line extensions are required to cover all frontages of the property requesting service unless all adjacent properties have other means of being served.

Unless modified for a specific project, specifications for pipe and other construction materials and specifications for construction will be as required in the ABCWUA’s current Standard Specifications and Drawings.

ARTICLE 8-3 DESIGN CAPACITY CRITERIA SECTION, DEVELOPMENT AND DEVELOPMENT SERVICE

1. Off-site flows will be typically determined by the consultant (i.e. developer’s engineer).

2. In areas with a mix of residential, commercial, industrial, etc., roughly representative of the city as a whole, the population of the contributing area is determined and the design flows are calculated as follows:
 - Average Flow = \(75 \times \frac{\text{Population}}{10^6} \), in MGD
 - Peak Flow = \(2.5 \times (\text{Avg.})^{0.8875} \), in MGD
 - Design Flow = \(1.2 \times \text{Peak} \), in MGD

 \[
 \text{Where } \text{cfs} = \text{MGD} \times 1.547
 \]

3. Population loadings are assumed to be:
 - 2.4 persons per dwelling unit (DU) for apartments, townhouses and mobile homes
 - 2.4 persons per DU for R-1 single-family homes

4. In primarily non-residential areas, design flows are determined by other methods as may be appropriate with the approval of the ABCWUA. Contact the ABCWUA for the latest values for water demand and sanitary sewer flows for various land used categories.

5. Design is for full pipe flow at the design flow.

6. Manning’s equation (EQUATION 6.66) is to be used for determination of pipe flow velocities and capacities using a value for Manning’s “n” = 0.013.
 - Peak velocity = Velocity at peak flow conditions
 - Average velocity = Velocity at average flow conditions
Article 8-4 Manhole Criteria

1. Manholes must generally be located on the centerline of street right-of-way, or of street width, if the street is not concentric with the right-of-way. Manholes for straight lines in curved streets may be located as much as 5 feet off from centerline of street or right-of-way; however, required clearances from other utilities must be maintained. The offset of such manholes is to be dimensioned from center of manhole barrel to the centerline of the street or right-of-way. In narrow, curving, residential streets, greater than 5 feet offset may be appropriate to maintain separation from other utilities. Avoid locating manholes in the “wheel path” on arterial and collector roadways, and keep them out of “parking” lanes and spaces. Manhole locations that conflict with centerline monumentation required for subdivisions should be shifted, when practical, to eliminate the conflict. Manholes will not be allowed outside of public right-of-way within residential areas, except in private streets or within multi-family housing with public easements. All manholes must be accessible by sewer maintenance truck. Manhole locations in residential rear or side yards are not acceptable.

2. Standard minimum manhole depth is 6.0 feet, measured from rim to invert. Manhole depths greater than 20 feet should be avoided.

3. The required inside diameter for a manhole is determined as follows:
 a. Minimum inside diameter is 4.0 feet.
 b. A shelf a minimum of 9 inches wide must be provided on each side of each main line within the manhole.
 c. Where the main flow changes direction at a manhole, the manhole must be large enough so that the centerline radius of a curvature of the flow invert will be larger than the pipe diameter.

4. Minimum manhole diameters for direction changes shall be required as indicated in Table 8.4.90.

<table>
<thead>
<tr>
<th>Pipe ID</th>
<th>0°</th>
<th>5°</th>
<th>45°</th>
<th>50°</th>
<th>75°</th>
<th>80°</th>
<th>85°</th>
<th>90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>21"</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
</tr>
<tr>
<td>24"</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>6'</td>
</tr>
<tr>
<td>27"</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>6'</td>
<td>6'</td>
</tr>
<tr>
<td>30"</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>4'</td>
<td>6'</td>
<td>6'</td>
<td>6'</td>
</tr>
<tr>
<td>36"</td>
<td>6'</td>
<td>6'</td>
<td>6'</td>
<td>6'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>42"</td>
<td>6'</td>
<td>6'</td>
<td>6'</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

5. Flow will not be allowed to change horizontal flow direction by more than 90 degrees in a manhole. Under the following conditions, the maximum horizontal change in flow direction allowed will be 50 degrees, although special design considerations will be made as warranted by any of the following situations:
 a. Lines larger than 36 inches.
 b. Lines with a design flow greater than 3.0 MGD and a design velocity of 5.0 fps or greater.
 c. Any junction of two flows, each with design flow greater than 3.0 MGD, where one line has a design pipe velocity of 5.0 fps or greater.
6. Invert elevations will be called out for each inlet and outlet at a manhole.
7. Drops across manholes will be provided as follows:
 a. Where the main flow does not change direction at the manhole, the
design will provide both of the following:
 i. A slope across the manhole at least equal to the average of the slopes of
 the incoming and outgoing lines.
 ii. The minimum drop will be 0.10 feet for lines 36 inches and smaller.
 b. Where the main flow changes direction at the manhole, the design will
 maintain the average of the slopes of the incoming and outgoing lines
 and compensate for the loss of velocity head caused by the turn.
 i. The slope component will be equal to the average of the slopes of the
 incoming and outgoing lines times the diameter of the manhole.
 ii. The velocity head component will be calculated by EQUATION 8.1.

\[
EQUATION \ 8.1 \ \ h_b = K_b \left(\frac{V^2}{2g}\right)
\]

where:
- \(h_b \) = required drop to compensate for loss of velocity head (ft)
- \(K_b \) = bend coefficient, use 0.4 for 90° turn, 0.32 for 45° turn and linear
 proportioning for other deflection angles (dimensionless)
- \(V \) = design velocity of incoming line based on design flow, ft/sec.
- \(g \) = 32.17 ft/sec²

 iii. The total drop required through the manhole will be the sum of the
 slope component and velocity head component.
 iv. The minimum drop through a manhole will be 0.10 feet.
 c. Where flows converge at a manhole, the inverts should be designed
 to produce a smooth water surface at design flow with no backwater
 conditions in any of the incoming lines. Excessive drops that cause
 turbulence are to be avoided.
 d. The use of drop connections to manholes (drop manholes) will be allowed
 when approved by the ABCWUA and in conformance to Standard
 Specifications and Drawings.
8. When required by the ABCWUA, drop manholes and other manholes with
 high potential of sulfide gas generation must be designed with corrosion
 resistant interior walls.
9. The maximum distance allowed between manholes is as follows:
 a. 8 inches to 21 inches mains: 450 feet maximum
 b. 24 inches & larger: 500 feet maximum for average velocities of 3.0 fps or
 less
10. When an interim line extension is to be built for a distance less than the
 reasonable spacing for a manhole installation, the ABCWUA may allow
 installation of a plug and temporary clean out. The design drawings for
 such installation must provide a design to the next anticipated, upstream
 manhole location, with line and manhole beyond the temporary clean out
 depicted as “Future.”
11. Manhole steps will not be allowed in new manhole construction.
ARTICLE 8-5 LINE CRITERIA

1. Sanitary sewer materials must comply with the requirements set forth in the ABCWUA’s Standard Specifications and Drawings, latest edition.

2. Minimum line size allowed: 8 inches inside diameter.

3. The minimum slope considered necessary in non-curvilinear lines shall provide a minimum design velocity of 2.2 ft/sec. Greater slopes than minimum are desirable and are to be provided where possible. Maximum slopes should never result in super critical flow.

4. Sections of line that are flat relative to the upstream line are to be avoided. As much as possible, continuous flow velocity and capacity will be provided. The energy gradient should slope generally parallel to the slope of the invert with no abrupt changes nor slopes opposite to the direction of flow.

5. Line depth should be sufficient to provide gravity service to property contiguous to the line. Additional depth may be required to provide for service. Generally, house services shall be a minimum of 4 feet below the top of curb at the property line as measured from the top of curb to the invert of the services.

6. Low pressure force mains shall not be allowed unless approved by the ABCWUA. As determined by the ABCWUA, variances may be given in some instances for minimum slopes and manhole depths to allow for a gravity system in lieu of a low pressure for main system.

7. The main lines are to be located within public right-of-way except as noted in Subsection 8 below and are to be aligned in accordance with the Primary Utility Locations (FIGURE 8.5.123 through FIGURE 8.5.127), unless the Primary Utility Locations do not apply, in which case the following criteria apply:
 a. The New Mexico Environment Department policy on the proximity of water and sewer lines applies, with ABCWUA amendments as follows:
 i. Sewer lines should be laid at least 10 feet horizontally from any existing or proposed water main. In situations where it is not feasible to maintain a 10 foot separation, the distance may be reduced on a case-by-case basis, if supported by information from the Design Engineer. The water main must be in a separate trench or on an undisturbed earth shelf located on one side of the sewer line and at an elevation such that the bottom of the water main is at least 18 inches above the top of the sewer line.
 ii. Sewer lines crossing water mains should be laid to provide a minimum vertical separation of 18 inches between the outside of the water main and the outside of the sewer line. This separation should be maintained where the water main is either above or below the sewer line. The crossing should be arranged so that the sewer line joints will be equidistant and as far as possible from the water main (~10 feet).
 iii. When it is impractical to obtain proper horizontal and vertical separation, the sewer line should be designed and constructed of pressure rated (125 psi), plastic pipe, and should be pressure tested similar to a water line to assure water tightness. When pressure rated pipe is required for a sewer crossing, it shall be installed the entire distance between the adjacent manholes.

b. Main lines must be located so that they can be maintained without disturbing any sidewalk, curb, gutter or any other utility. The required trench must be totally within the paved roadway or public sanitary sewer easement.
c. ABCWUA approval must be obtained for any deviations from the Primary Utility Locations.
FIGURE 8.5.123: Primary Utility Locations: Arterial Streets

Notes:
1. For sanitary sewer and/or waterlines greater than 10" in diameter, utility locations must be adjusted for a minimum separation outside to ensure, between sewer and waterlines in which case the sanitary sewer will be relocated to the south or east.

2. A minimum of 6' separation between waterline and telephone, electric or cable TV lines is required. A 5' separation is allowed between waterline and manholes for these utilities.

3. Strict adherence to these locations may not always be practical; locations will be resolved between the involved utilities.

4. Minimum cover will be measured from finished grade to top of underground lines.
FIGURE 8.5.124 Primary Utility Locations: Collector Streets (86 Feet of Right-of-Way)
FIGURE 8.5.125 Primary Utility Locations: Collector Streets (66 Feet of Right-of-Way)
FIGURE 8.5.126 Primary Utility Locations: Residential Streets
FIGURE 8.5.127
Primary Utility Locations: Estate Type Streets

Notes:
1. For sanitary sewer and/or waterlines greater than 16" in diameter, utility locations must be adjusted for a minimum separation distance to curbs, between sewer and waterlines in which case the sanitary sewer will be relocated to the south or east.
2. A minimum of 3' separation between waterline and telephone, electric or cable TV lines is required. A 3' separation is allowed between waterline and manholes for these utilities.
3. Strict adherence to these locations may not always be practical; locations will be resolved between the involved utilities.
4. Manhole cover will be measured from finished grade to top of underground lines.
5. Sidewalks may be installed.

Approvals:

Frank A. Kleinhans
City of Albuquerque

Paul L. Massaro
Southern Union Gas Company

Santona Dorn Telephone Company

Public Service Company of New Mexico
8. Sanitary sewer main lines may be located outside public right-of-way only if all of the following conditions are met:
 a. Approval is given by the ABCWUA.
 b. The main line must be located as follows:
 i. In a paved or graveled, permanent access easement, or
 ii. In a planned landscaped area with access suitable for sewer line maintenance equipment. Trees are not allowed to be planted within 10 feet of the centerline of the sewer.
 iii. If Subsections i and/or ii above are impossible due to prior platting, the situation will be handled on a case-by-case basis, as approved by the ABCWUA.
 c. A permanent easement will be granted for exclusive use of water and sanitary sewer, unless shared use with other utilities is coordinated and approved in advance by the ABCWUA Utility Development design representative. A minimum width easement of 20 feet is required for a single utility and 25 feet for water and sewer. Additional easement width may be required where soil type, trench depth, or other conditions dictate greater trench width. Appropriate forms of easement dedication language are available at ABCWUA, Utility Development.
 d. A public water and/or sanitary sewer easement granted across private land cannot be split by a lot line. The easement must be contained entirely within a single lot.
 e. The following structures and obstructions are prohibited within ABCWUA water / sewer easements:
 i. Buildings
 ii. Walls and fences that run parallel to, and are contained within, the easement
 iii. Trees
 iv. Curb, gutter, and/or sidewalks that run parallel to, and are contained within, the easement
 v. Any other structure that would be damaged or destroyed if the utility lines needed to be exposed for maintenance or repair.
 f. When in compliance with the New Mexico Environment Department policy on the proximity of water and sewer lines, ABCWUA amendments noted in Subsection 7.a above, must be achieved.
 g. In private streets, Primary Utility Locations apply.
 h. No manholes are to be located outside of roadways unless provisions are constructed for sewer maintenance truck access.

9. In developments where sewer mains and/or services are constructed and the developer files a replat, these facilities will be reconstructed and/or relocated to conform to these guidelines unless an exception is granted by the ABCWUA.

10. A sanitary sewer interceptor is a sanitary sewer that receives flow from a number of collectors, large sewers, or outlets, and conducts the waters to a point for treatment or disposal. For public line connections to sanitary sewers classified as interceptors, the following shall apply except in special cases or as approved by the ABCWUA:
 a. At the manhole, the hydraulic grade line (HGL) of the connecting line shall match or be above the HGL of the interceptor. In lieu of HGL determination, the invert of the connecting line shall match the soffit of the interceptor.
 b. To trap sewer gases, an inverted siphon may be required at public and private line connections to the interceptor manhole.
ARTICLE 8-6 CURVILINEAR SEWERS

Straight line sewers should be used as much as possible. Straight line systems are often possible with no increase in the number of manholes by allowing the line to vary a maximum of 5 feet to the inside or outside of the centerline, depending on the location of the water line and of other utilities.

Curvilinear sewers that follow all of the following criteria may be allowed, as approved by the ABCWUA:
1. The pipe length to be used, deflection angle, joint length and offset, and radius of curvature must be stated on the plans.
2. Manholes must not be placed within 5 feet of the beginning and the end of street centerline curves to allow for street centerline monumentation.
3. The minimum radius of curvature must follow the standards in TABLE 8.6.91.
4. The maximum distance between manholes on a curvilinear sewer is 300 feet.
5. The slope of the curvilinear sewer must be at least 5% greater than the upstream straight line sewer. Additionally, the minimum slope for curvilinear sewers must follow the criteria in TABLE 8.6.92.

<table>
<thead>
<tr>
<th>Pipe Type</th>
<th>Pipe Diameter</th>
<th>Joint Length (NOM)</th>
<th>Minimum Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIP</td>
<td>8" - 12"</td>
<td>18'</td>
<td>300'</td>
</tr>
<tr>
<td>PVC</td>
<td>8"</td>
<td>20'</td>
<td>275'</td>
</tr>
<tr>
<td>PVC</td>
<td>10"</td>
<td>20'</td>
<td>330'</td>
</tr>
<tr>
<td>PVC</td>
<td>12"</td>
<td>20'</td>
<td>400'</td>
</tr>
<tr>
<td>VCP</td>
<td>8" - 12"</td>
<td>4'</td>
<td>130'</td>
</tr>
<tr>
<td>VCP</td>
<td>8" - 12"</td>
<td>6'</td>
<td>200'</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sewer I.D.</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>8"</td>
<td>0.0066</td>
</tr>
<tr>
<td>10"</td>
<td>0.0030</td>
</tr>
<tr>
<td>12"</td>
<td>0.0024</td>
</tr>
<tr>
<td>15"</td>
<td>0.0018</td>
</tr>
</tbody>
</table>
ARTICLE 8-7 SERVICE CONNECTIONS CRITERIA

Private collection systems and individual service connections shall meet all of the following criteria:

1. Service connections must be made to the main line, except at the end of cul-de-sacs, where connection to a manhole is allowed in the manner shown in the ABCWUA's Standard Specifications and Drawings.
2. Service connections to a manhole are to be made with the invert of the service at the elevation of the top of the main line.
3. Service connections to mains shall be constructed following the sizing indicated in TABLE 8.7.93.

4. Drop connections at manholes shall be constructed as shown on Standard Details.
5. Service connections shall not be made to lines with peak design flow capacity greater than 3.0 MGD or with diameter greater than or equal to 15 inches.
6. All service connections shall be made such that the service is perpendicular or radial to the sewer main.
7. All service connections shall have a minimum slope of ¼ inch per foot toward the main within the public right-of-way and shall have a minimum depth of 4 feet below the top of curb elevation from the finished surface projected to the property line measured to the pipe invert.

<table>
<thead>
<tr>
<th>Service Size</th>
<th>Main Size</th>
<th>Connection Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>4”</td>
<td>8”</td>
<td>Insert manufactured TEE/WYE</td>
</tr>
<tr>
<td>4”</td>
<td>8”</td>
<td>Core drill main and install saddle</td>
</tr>
<tr>
<td>6”</td>
<td>8”</td>
<td>Insert manufactured TEE/WYE</td>
</tr>
<tr>
<td>6”</td>
<td>8”</td>
<td>Install manhole</td>
</tr>
<tr>
<td>6”</td>
<td>10” and greater</td>
<td>Insert manufactured TEE/WYE</td>
</tr>
<tr>
<td>6”</td>
<td>10” and greater</td>
<td>Core drill main and install saddle</td>
</tr>
<tr>
<td>8”</td>
<td>8” and greater</td>
<td>Install manhole</td>
</tr>
</tbody>
</table>

TABLE 8.7.93 Service Connections
CHAPTER 9
WATER SYSTEM DESIGN CRITERIA

This chapter presents the criteria, standards, and regulations related to the design of water distribution systems for general development service. This chapter does not cover the criteria necessary for design of major transmission lines, wells, pumping facilities, or reservoirs. The material is directed to the competent design professional and is not intended to be a detailed design handbook. Criteria and standards presented are those determined to be the minimum acceptable values necessary to result in system designs with satisfactory functional characteristics, durability, and operational suitability. The designer is expected to strive for the best design to suit the circumstances involved; designs are to reflect sound professional judgment at all times.

CONTENTS

ARTICLE 9-1 GOVERNING REGULATIONS ..9-2
ARTICLE 9-2 AVAILABILITY STATEMENTS ...9-2
ARTICLE 9-3 WATER LINE DESIGN CRITERIA...9-2
 Part 9-3(A) General Requirements ..9-2
 Part 9-3(B) Single-Family and Duplex Developments9-3
 Part 9-3(C) Industrial/Commercial and Multi-family Developments9-3
 Part 9-3(D) Material Requirements ...9-3
 Part 9-3(E) Waterline Designations ..9-3
 Part 9-3(F) Minimum Waterline Depths ..9-4
 Part 9-3(G) Thrust Restraints ...9-4
 Part 9-3(H) Water Valve Shut-off Plans ...9-4
ARTICLE 9-4 ALIGNMENT AND EASEMENTS ..9-5
ARTICLE 9-5 VALVING ...9-7
ARTICLE 9-6 SERVICE LINES AND METERS ...9-8
ARTICLE 9-7 PRIVATE DISTRIBUTION SYSTEMS.....................................9-9
ARTICLE 9-8 FIRE HYDRANT CRITERIA ..9-10
 Part 9-8(A) General Information ..9-10
 Part 9-8(B) General Fire Hydrant Requirements for Fire Protection9-10
 Part 9-8(C) New Buildings, Building Additions, or Building Reconstruction ...9-11
 Part 9-8(D) Existing Development and Building Fire Hydrant Deficiencies ...9-12
 Part 9-8(E) Public Fire Hydrant Installation Procedure9-12
ARTICLE 9-9 FIRE FLOW REQUIREMENTS ...9-13
ARTICLE 9-1 GOVERNING REGULATIONS

Ordinances and policies related to the design and operation of public water systems are listed in the Public Water Systems Governing Regulations Summary, found on the Albuquerque/Bernalillo County Water Utility Authority (ABCWUA) website: http://abcwua.org/.

ARTICLE 9-2 AVAILABILITY STATEMENTS

A Water and Sanitary Sewer Availability Statement (Availability Statement) issued by the ABCWUA within the past 12 months is required for any proposed development, subdivision plat, or site plan within or outside of the Service Area. Availability Statements will identify the water and sanitary sewer infrastructure needs (public/private; on-/off-site) to provide a proposed development with services and fire protection. In addition, any time constraints for development plans, or other requirements to receive services, will be identified in the Availability Statement. A request for an Availability Statement should be made as early as possible in the planning of a project to allow sufficient time for response and to enable the developer to include the necessary water and sanitary sewer infrastructure in the project plans.

Detailed procedures and submittal requirements for requesting a water and sewer Serviceability Letter or Availability Statement are provided in DPM Article 8-2.

ARTICLE 9-3 WATER LINE DESIGN CRITERIA

Part 9-3(A) General Requirements

1. The sizing and routing of Master Plan lines must be coordinated with and approved by the ABCWUA. Specific requirements for providing water (and sewer) service to any parcel or development will be specifically defined in a Water and Sanitary Sewer Availability Statement from the ABCWUA.
2. Pressure zone boundaries must be considered in the design of all systems.
3. A distribution line must be provided for all streets except in local residential streets where no lots front the street.
4. Location of lines must be according to Primary Utility Locations (FIGURE 8.5.123 through FIGURE 8.5.127) in Chapter 8 Sanitary Sewer Design Criteria. Deviations will require approval of the ABCWUA.
5. All lines must be looped. No dead ends will be allowed, except those as approved by the ABCWUA.
6. No property may develop or take service in such a manner that leaves adjacent outlying undeveloped or developed un-serviced properties
without means to obtain service. Line extensions are required to cover all
frontages of the property requesting service unless all adjacent properties
have other means of being served.
7. Taps to concrete cylinder pipes are prohibited.
8. For new construction, 14-inch water line size is prohibited.

Part 9-3(B) Single-Family and Duplex Developments

Sizing requirements are as follows:
1. Typical 6 inches minimum.
2. A minimum 8-inch line is required where the system’s 6-inch lines are not
 interconnected to an 8-inch line at intervals of 1200 feet or less.
3. Minimum 6-inch line to any fire hydrant.
4. 4-inch line into cul-de-sac with a maximum of eight (8) units if there are no
 fire hydrants on the line, as allowed by ABCWUA.

Fire protection may require larger sizing, as determined by the ABCWUA. (See
Article 9-9 for additional information.)

Part 9-3(C) Industrial/Commercial and Multi-family Developments

1. Sizing is typically required to be 8 inches minimum.
2. Fire protection may require larger sizing. Determination is made by the
 ABCWUA. (See Article 9-9)

Part 9-3(D) Material Requirements

Materials must be in accordance with the ABCWUA’s current Standard
Specifications and Drawings.

Part 9-3(E) Waterline Designations

Designations relate to the function intended for the lines, as described below:
1. Transmission lines are generally lines conveying water from pumping
 facilities to reservoirs or lines conveying water directly between pumping
 facilities or directly between reservoirs. Such lines generally may not be
 tapped for any purpose without specific ABCWUA approval.
2. Master Plan lines are generally major network distribution lines. They are
termed Master Plan because they are designated as specific elements of
facilities Master Plans. These lines provide service to local distribution lines
and generally may not be tapped for individual service without specific
ABCWUA approval.
3. Distribution lines are generally lines providing local distribution of water
 and from which individual user service taps are made. Distribution lines
 stem from Master Plan lines or from other local distribution lines. Both
Master Plan and distribution lines are sometimes referred to as “main lines” or “mains.”

4. Service lines are lines providing service from the local distribution line directly to the individual user’s meter.

5. Well Collector lines gather water directly from wells and convey to pumping or other facilities. These lines shall not be tapped for any purpose.

Part 9-3(F) Minimum Waterline Depths

Depth to the top of waterlines shall be as follows:

1. Transmission lines shall have 4 feet minimum cover from top of grade to top of water line.
2. Distribution lines shall have 3 feet minimum cover from top of grade to top of water line.
3. Channel and ditch crossing depths and details must be reviewed and approved by the Hydrology Section of the City Engineer’s Office, Middle Rio Grande Conservancy District (MRGCD), and/or the Albuquerque Metropolitan Area Flood Control Authority (AMAFCA), depending upon the jurisdiction of the affected waterway.

Part 9-3(G) Thrust Restraints

Thrust restraint design shall conform to all of the following requirements:

1. Water line tees, bends, valves, and fittings must be restrained against thrust forces to prevent movement or failure of the water line.
2. Thrust restraint shall be in accordance with the ABCWUA’s Standard Specifications and Drawings. The designer is responsible for providing, on the construction drawings, an adequate restraining system design for the water line, including minimum length of restrained pipe required in each direction.

Part 9-3(H) Water Valve Shut-off Plans

1. Construction plans that specify modifying or adding to the public water system must include a water valve shut-off plan, if a shut off is needed to complete the work. Prior to submittal of the proposed shut-off plan, the designer shall field verify the existence and accessibility of the valves involved in the plan and request a trial water shut-off by the ABCWUA.
2. At a minimum, the shut-off plan will include all of the following:
 a. Schematic showing valve numbers and locations, water line sizes and types, and streets in the shut off area.
 b. Valve numbers of all valves that must be closed to accomplish the shut-off plan.
 c. All of the following notes:
 i. The request for a water shut-off or turn-on for a main designated as a Distribution Line must be submitted at least seven (7) working days before the date of the actual shut-off or turn-on.
 ii. The request for a water shut-off or turn-on for a main designated as a Transmission Line, Master Plan Line, Collector, or Well Collector Line
must be submitted at least fourteen (14) working days before the date of the actual shut-off or turn-on.

iii The request for a water shut-off or turn-on for a San Juan Chama designated transmission line or any other water line in the vicinity of San Juan Chama lines will be required to follow the procedures stated in the ABCWUA Administrative Instruction No. 9 and must be submitted at least thirty (30) working days before the date of the actual shut-off or turn-on.

iv The contractor shall complete the appropriate ABCWUA Electronic Shut-off Request form for all shut-off requests and submit all required design documentation. Only authorized personnel designated by the ABCWUA are permitted to operate public water system valves.

3. The shut-off plan must be submitted as part of the construction plan set during the design review process.

ARTICLE 9-4 ALIGNMENT AND EASEMENTS

1. The main lines are to be located within public right-of-way, except as noted below, and aligned in accordance with the Primary Utility Locations (FIGURE 8.5.123 through FIGURE 8.5.127) in Chapter 8 Sanitary Sewer Design Criteria. Water lines must be located so that they can be maintained without disturbing any sidewalk, curb, gutter, structure, or any other utility. For lines within streets, the construction trench is required to be contained totally within the paved roadway.

2. If circumstances require location of water lines in other than the location established by the Primary Utility Locations, approval of both the ABCWUA and the utilities normally expected to occupy the revised location must be obtained. Main lines may be located outside public right-of-way only with prior approval of the ABCWUA and only within appropriate easements.

3. If not in public right-of-way, the distribution line must be located as follows:
 a. In a gravel or paved, permanent access easement, including an easement for the water line, or
 b. In a planned, landscaped area with access suitable for maintenance equipment and within an appropriate easement. Trees shall not be planted within 10 feet of the centerline of the water line.
 c. If a or b of this subsection above are impossible because of prior platting, the location will be handled on a case-by-case basis, as approved by the ABCWUA.
 d. In private streets, Primary Utility Locations apply where possible.

4. Easement Requirements and Restrictions:
 a. A permanent easement must be granted for the exclusive use of water and sanitary sewer, unless shared use with other utilities is coordinated and approved in advance by the ABCWUA. A minimum width easement of 20 feet is required for a single utility and 25 feet for water and sewer both within the same easement. Additional easement width may be required where soil type, trench depth, or other conditions dictate greater trench width. Appropriate forms of easement language may be obtained from the ABCWUA.
b. A public water and/or sanitary sewer easement granted across private land cannot be split by a lot line. The easement must be contained entirely within a single lot.

c. All of the following structures and obstructions are prohibited within ABCWUA water / sewer easements:
 i. Buildings.
 ii. Walls and fences that run parallel to, and are contained within, the easement.
 iii. Trees.
 iv. Curb, gutter, and/or sidewalks that run parallel to, and are contained within, the easement.
 v. Any other structure that would be damaged or destroyed if the utility lines needed to be exposed for maintenance or repair.

5. Where the Primary Utility Locations do not apply, lines shall be in accordance with the New Mexico Environment Department policy on the proximity of water and sewer lines with amendments as follows:
 a. Sewer lines should be laid at least 10 feet horizontally from any existing or proposed water main. In situations where it is not feasible to maintain a 10 foot separation, the distance may be reduced on a case-by-case basis, if supported by information by the Design Engineer. The water main must be in a separate trench or on an undisturbed earth shelf located on one side of the sewer line and at an elevation such that the bottom of the water main is at least 18 inches above the top of the sewer line.
 b. Sewer lines crossing water mains should be laid to provide a minimum vertical separation of 18 inches between the outside of the water main and the outside of the sewer line. This separation should be maintained where the water main is either above or below the sewer line. The crossing should be arranged so that the sewer line joints will be equidistant and as far as possible from the water main (~10 feet).
 c. When it is impractical to obtain proper horizontal and vertical separation, the sewer line should be designed and constructed of pressure rated (125 psi) pipe, and should be pressure tested like a water line to assure water tightness. When pressure rated pipe is required for a sewer crossing, it shall be installed the entire distance between the adjacent manholes.
 d. If local constraints dictate that the water line must be installed near existing sanitary sewer facilities, use concrete/clean fill encasement in accordance with the New Mexico Environmental Department requirements.

6. The minimum radius of water line curvature is established in **TABLE 9.4.94**.

<table>
<thead>
<tr>
<th>Table 9.4.94 Minimum Curvature Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Type</td>
</tr>
<tr>
<td>DIP</td>
</tr>
<tr>
<td>PVC</td>
</tr>
</tbody>
</table>
ARTICLE 9-5 VALVING

The design of valving within the water system shall conform to the following criteria:

1. **Valve Spacing**
 a. 2600 feet maximum between in-line valves for Master Plan lines 16 inches and larger.
 b. 1200 feet maximum between in-line valves for lines 12 inches and smaller.

2. **Branch Intersections**
 Near the intersection of a branch line connection to a Master Plan line, the branch line must be valved. Near the intersection of non-master plan main lines, all lines but one (1) must be valved.

3. **Fire Hydrants**
 Fire hydrant legs must be valved.

4. **System Valving**
 The system valving must be arranged so that lines may be shut down with a minimum number of valves and affecting the minimum service area. Valving of the ultimate system looping must be such that no break will disrupt service beyond the next valve location. System valving design should assure that only the immediate area where the break occurs will suffer disruption of water supply and that only one (1) hydrant will be placed out of service.

5. **Valve location:**
 a. Standard location for valves is at the PC/PT of the curb return.
 b. Valves for pressure connections of branches to existing water lines at intersections will be dismantled/removed and buried.
 c. Do not locate valves under parking spaces.
 d. Do not locate valves within intersections.

6. **Unmetered fire lines**
 Unmetered fire lines must be valved for ABCWUA use within the public right-of-way and a separate private valve located on private property at the property line for use by the owner. Please refer to the ABCWUA's Standard Specifications and Drawings.

7. **Valve Types**
 a. Valves 12 inches and smaller must be gate valves.
 b. Valves 16 inches and larger must be butterfly valves.

8. **Valve Sizing**
 a. All valves shall be the same size as the main lines.

9. **Air Relief Valves**
 a. No air relief valves or air relief hydrants are required on lines 8 inches or smaller where there are services on the line.
 b. On Master Plan lines and distribution lines greater than 8 inches, sizing and location of air relief hydrants and valves must be coordinated with the ABCWUA.

10. **Pressure Reducing Valve (PRV) Stations**
 The ABCWUA determines the need for pressure reducing valve stations and their locations. The size of the PRV shall be coordinated with the ABCWUA. Station design will generally be in conformance with the ABCWUA's Standard Specifications and Drawings.
ARTICLE 9-6 SERVICE LINES AND METERS

The following criteria is provided for service lines/meters designs:

1. The metered service line is public through connection with the outlet of the meter or meter setter.

2. Sizing of the service line and meter is the responsibility of the requestor or his/her agent. The ABCWUA will, upon request, provide information relative to the flow characteristics of the various available metered sizes. Every meter shall be supplied by its own service line. Any meters larger than 5/8-inch x ¾-inch shall require supporting calculations.

3. The public portion of the service line including the meter and box may be installed by a bonded contractor licensed in the State of New Mexico.

4. The design of the entire service line installation must follow the ABCWUA’s Standard Specifications and Drawings for the desired size of meter and line combination. The water mains and service lines must be completed, including flushing and disinfection, and accepted formally in writing before the ABCWUA will install meters. In addition, the entire subdivision included in the Construction Agreement must be formally accepted in writing by the ABCWUA before the ABCWUA will install a meter. Upon completion and acceptance of the project, the ABCWUA will install the meter after formal application and payment of all appropriate charges.

5. Typically meters 2 inches and smaller are located within the public right-of-way, behind the street curb as shown in the ABCWUA’s Standard Specifications and Drawings.

6. Meters 3 inches and larger require a permanent easement on the landowner’s property.
 a. The easement locations and sizes will be determined on an individual basis to suit the circumstances.
 b. The easement must be outside areas occupied or possibly occupied in the future by underground or above ground utility systems or street fixtures.
 c. The landowner must provide the ABCWUA with an electronic copy of the recorded easement, legal description and certificate of survey before installation begins.

7. Mains equal to or larger than 16 inches shall not to be tapped for service.

8. Meters for any installation may only be installed by the ABCWUA after formal application and payment of all appropriate charges.
ARTICLE 9-7 PRIVATE DISTRIBUTION SYSTEMS

The following guidelines and requirements apply to private distribution design:

1. For metered service, the private line is that portion past the meter yoke/copper setter.
2. For unmetered service, the private line begins at the property line.
3. Design, construction, and inspection of private distribution systems are coordinated through the Building Safety Division, Planning Department, according to current plumbing codes.
4. Private lines will be inspected by the Building Safety Division within the City limits and by the State Mechanical Board outside the City limits.
5. Private systems must not “loop,” that is, connect the same line to the public system at more than one point. When both private domestic distribution systems and fire protection lines are approved for the same developments, the fire protection system may be independent from the private domestic system connection. Backflow prevention from private systems is required in accordance with the Cross-Connection Prevention and Control Ordinance as adopted by the ABCWUA.
6. Backflow prevention must be provided as follows:
 a. Backflow prevention devices are required to prevent cross-connections to the municipal water system or within premises.
 b. Requirements for cross-connection prevention are outlined in the Cross-Connection Prevention and Control Ordinance. The ordinance should be referred to for specific cross-connection prevention requirements.
 c. At a minimum, cross-connection prevention is required in the following instances:
 i. At the service connection to any premises that is non-residential.
 ii. At the service connection to any premises that has an auxiliary water supply or private well.
 iii. At the service connection to any premises on which contaminants or pollutants are handled in such a fashion as to permit their backflow into the consumer’s water system.
 iv. At the service connection to any premises where it is physically or economically infeasible to find and eliminate or control all actual or potential cross connections.
ARTICLE 9-8 FIRE HYDRANT CRITERIA

Part 9-8(A) General Information

1. Albuquerque Fire and Rescue (AFR) experience, National Fire Codes, Fire Insurance Regulations (Insurance Services Office), and ABCWUA standards provide the hydrant criteria used to determine required protection.

2. Albuquerque’s fire prevention policies are a joint effort of the ABCWUA, City Planning Department, and AFR Fire Marshal’s Office. These policies are required to accomplish all of the following:
 a. Attain appropriate fire protection of life and property.
 b. Achieve orderly development of the fire hydrant protection system.
 c. Set forth guidelines and rules for development of a fire hydrant system.

3. Fire hydrants shall be on mains when water lines are extended, according to spacing criteria that varies according to proposed land use adjacent to the water line. These hydrants may have to be supplemented with additional hydrants when actual development takes place. Cases also exist where water lines have been extended through undeveloped areas or unplatted land, and hydrants were not installed at the time of water line extension. Necessary hydrants must be installed at the time of adjacent development.

4. Fire hydrants shall be located within public right-of-way where possible. The type, layout, and size of development may dictate location of fire hydrants on private property.

5. Each development must be analyzed for fire hydrant needs. Fire hydrant requirements vary with the size and layout of the buildings, building design and construction materials, and access from and proximity to the public right-of-way.

6. Where private developments require fire hydrants on private property that benefit no other development, such hydrants shall be privately owned and maintained. Private fire hydrants are typically installed on unmetered, private fire line connections to the ABCWUA’s main line. A monthly charge is assessed for private fire lines, pursuant to the ABCWUA’s Water and Sewer Rate Ordinance.

Part 9-8(B) General Fire Hydrant Requirements for Fire Protection

1. Definitions:
 b. Commercial: All buildings not defined above as residential.
2. Hydrant Spacing Requirements

<table>
<thead>
<tr>
<th>TABLE 9.8.95</th>
<th>Hydrant Spacing Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development Areas</td>
<td>Street Measurement, Bonnet to Bonnet</td>
</tr>
<tr>
<td>Residential¹</td>
<td>950’ maximum between hydrants</td>
</tr>
<tr>
<td>Commercial</td>
<td>Hydrant spacing for commercial developments shall be as required by the International Fire Code (IFC) Appendix C</td>
</tr>
<tr>
<td>New and Existing Individual Buildings</td>
<td>Distance²</td>
</tr>
<tr>
<td>Residential</td>
<td>500’</td>
</tr>
<tr>
<td>Commercial</td>
<td>Hydrant spacing for commercial developments shall be as required by IFC Appendix C</td>
</tr>
</tbody>
</table>

3. All Required Fire Hydrants

See Section Part 9-8(C)3.

Part 9-8(C) New Buildings, Building Additions, or Building Reconstruction

This portion of the policies applies to buildings for which a City building permit is required, including new construction, additional construction, or reconstruction.

1. The AFR Fire Marshal’s Office shall review development plans at or prior to the time of building plan review. The AFR shall determine the development’s fire protection requirements and verify conformity with adopted City codes and criteria for fire flow quantity, and number of hydrants, location and spacing.
 a. Development plans shall include new development, building additions, and/or redevelopment.
 b. Once fire hydrant protection requirement(s) are established in writing by the City Fire Marshal’s Office (via Fire 1 Site Plan Checklist), the ABCWUA will check these requirements against the ability of the water system to provide these requirements.
 c. If the water system can meet the requirements, then the hydrant(s) may be designed and constructed.
 d. If the water system cannot meet the requirements, then analysis will be made by the ABCWUA to determine what is necessary to rectify

¹ In residential areas and mobile home parks, there shall be one (1) hydrant at each street intersection with intermediate hydrants so that no one home is more than 500 feet (as the fire equipment travels) from a hydrant.

² Distance is measured as the fire equipment travels from the fire hydrant to the structure. All distances given are maximums.
the situation, including developer’s responsibilities if water system improvements are necessary.

2. Hydrants shall be installed in accordance with the ABCWUA’s Standard Specifications and Drawings, and policies, and shall be available for use prior to the beginning of development building construction.

3. Hydrants and fire sprinkler lines shall be installed at the developer’s expense, including all of the following:
 a. Extension of ABCWUA-owned water lines in accordance with the existing ABCWUA Water and Sewer System Extension and Expansion Policies.
 b. Addition of public fire hydrants to existing water lines.
 c. Construction of private fire lines and private, on-site hydrants.
 d. All costs of incidental items (e.g. removal and replacement of existing improvements).

Part 9-8(D) Existing Development and Building Fire Hydrant Deficiencies

1. The City and ABCWUA shall determine deficiencies in fire hydrant protection located in public right-of-way.

2. Where existing development poses a danger to life and property due to fire hydrant deficiencies existing on private property, the AFR may require deficiency correction. The cost of this type of fire hydrant protection shall be borne by the property owner.

Part 9-8(E) Public Fire Hydrant Installation Procedure

The following procedure has been established to expedite the installation of fire hydrants required because of a subdivision or a service request and to ensure proper record keeping.

This procedure eliminates the need for a design by a licensed professional engineer, the processing of a SIA, and the need for a formal DRC and work order process. It is intended for use only when no other construction of public infrastructure is required and the ABCWUA determines that the normal design, review, and work order process is not required.

1. The owner or contractor must submit a request for a mini work order on the ABCWUA website: http://abcwua.org.

2. Mini work order requests must include: Zone Atlas page number, legal description, and location of fire hydrant(s) relative to nearest property corner or street centerline intersection. Submitter must provide:
 a. One (1) set of original mylar forms.
 b. Four (4) copies of the original forms.
 c. Engineering fee established for each fire hydrant or fire line.
 d. Names and phone numbers of the project Contractor, Designer/Engineer, and Owner.
 e. Shut-Off Plan.

3. The DRC Master Scheduler shall assign a project number to the proposed installation.
4. Upon receipt of the Engineering Fee and approval of the proposed installation, the ABCWUA will forward the approved plan to the Design, Review, and Construction (DRC) Section of the City Engineer’s Office for review and to assign a City Inspector to the project.

5. The DRC Section will forward a copy of the approved plan to the owner or owner's contractor. Prior to construction, the contractor must obtain the necessary permits from the City, County, and/or Village. A copy of the approved design must accompany the request for a permit. The contractor must be properly licensed and bonded to do work on the ABCWUA’s water system.

6. Any soil compaction, asphalt, concrete, or any material testing required by the standard specifications shall be done by the contractor at no expense to the City or ABCWUA.

7. Upon construction of the fire hydrant the contractor will obtain the ABCWUA Inspector's approval of the construction. The Inspector will sign the original, which will then be forwarded to the Maps and Records Division for As-built processing.

8. The Construction Engineer will provide the ABCWUA and DRC Master Scheduler written certification that the construction has been completed and accepted.

9. If the construction does not pass inspection and a revised design is required, then steps in Subsections 1 through 6 above must be reinstated. No plat will be signed or meters released until the ABCWUA has accepted the construction.

ARTICLE 9-9 FIRE FLOW REQUIREMENTS

1. The procedure for determining required fire flow shall be as prescribed in the IFC Appendix B.

2. All required fire hydrants shall provide proper fire flow (minimum of 1000 gpm at minimum 20 psi residual pressure from the 4½-inch outlet).

3. Public fire hydrants shall be attached to ABCWUA-owned water lines, which are paid for by the developers in accordance with ABCWUA Water and Sewer System Extension and Expansion Policies. These hydrants are maintained by the ABCWUA.

4. Private fire lines, with fire hydrants located on private property, are paid for by the property owner and are maintained by the property owner. A monthly fee is charged for private connections, per the Water and Sewer Rate Ordinance.

5. The property owner is also responsible for the cost of additional hydrants required because of new development, additional development, or redevelopment. In the event of additional development or redevelopment, the existing development is also included in the fire hydrant protection analysis, and deficiencies for both existing and new development are required to be corrected.
This chapter relates the minimum criteria, standards, and acceptable procedures for establishing survey monumentation for use by qualified, registered professionals:

CONTENTS

ARTICLE 10-1 GOVERNING REGULATIONS ... 10-2
 Part 10-1(A) Monumentation... 10-2
 Section 10-1(A)(1) Subdivision Control Monuments 10-2
 Section 10-1(A)(2) Permanent Survey Monuments 10-3
 Section 10-1(A)(3) Benchmarks... 10-4
 Part 10-1(B) Albuquerque Geodetic Reference 10-5
 Part 10-1(C) Records Requirements... 10-5

ARTICLE 10-2 CONSTRUCTION SURVEYS ... 10-6
Professional judgment and responsibility are essential in the application of this material and the execution of all survey work. The degree of accuracy in the performance of survey work must be consistent with the nature and importance of the survey. Where these instructions are in conflict with the State’s Minimum Standards for Surveying in New Mexico in effect at the time the survey is performed, the State standards will govern.

The City Engineer, through the City Land Surveyor, is responsible for subdivision monumentation, the interrelationship of City control monumentation with other agencies (National Geodetic Survey, NOAA, etc.), and the recordation and perpetuation of records and monumentation for the City’s Albuquerque Geodetic Reference System (AGRS). The City Land Surveyor determines if it is acceptable to defer subdivision monumentation. (See DPM Part 5-3(K)).

All subdivision surveys are referenced to the AGRS in the City of Albuquerque. An interactive map with all City control monuments and data is available online: http://www.cabq.gov/gis/map-views/geodetic-control.

In general, any professional land surveyor registered in the State of New Mexico can perform most of the survey requirements for the development process; however, certain portions must be performed based on the City Land Surveyor’s specifications and are subject to his/her approval.

This chapter establishes detailed requirements to facilitate the planning, design, construction, and operation of both public and private drainage control, flood control, stormwater quality, and erosion control facilities.

ARTICLE 10-1 GOVERNING REGULATIONS

Article 10-1 specifies design standards and application procedures established by the City Land Surveyor to govern monumentation and surveys for subdivisions in Albuquerque. Survey, design, and construction professionals should be thoroughly familiar with these survey and monumentation requirements.

Part 10-1(A) Monumentation

Section 10-1(A)(1) Subdivision Control Monuments

1. All corners, angle points, and points of curvature along the subdivision perimeter; points of curves or intersection on centerline or street rights-of-way; and intermediate points at right-of-way intersections with property lines of City property, such as parks or open space, must be monumented as subdivision control monuments. In lieu of permanent subdivision control monuments, centerline monumentation may be established as permanent survey monuments with prior approval by the City Land Surveyor. A minimum of 2 subdivision control monuments must be inter-visible and a tie to a third Permanent Survey or subdivision control monument must be assured. The surveyor setting the monumentation will
be required to submit a subdivision plat of survey, notes, drawings, or other reproducible documentation of each point set for permanent files and publication. Acceptable formats are available from Development Review Services in Plaza del Sol.

2. Subdivision control monuments must meet the State's Minimum Standards for Surveying in New Mexico, as amended.

3. Monuments must be set flush with the earth or within 0.2 feet above and must bear a cap or permanent tag identifying the registration number of the surveyor setting the monument.

4. Subdivision control monuments shall be set only under the supervision of a professional land surveyor registered in the State of New Mexico.

Section 10-1(A)(2) Permanent Survey Monuments

1. No point within the subdivision shall be more than ¼ mile from a permanent survey monument. At least 2 corners or points on or near the perimeter of the subdivision traverse must be tied or monumented with permanent survey monuments as approved by the City Land Surveyor. These points or monuments must be tied by Grid Bearing in the New Mexico State Plane Coordinate System (Central Zone) based on the current datum as approved by the City Land Surveyor and ground distance to the AGRS network. The final plat for which the survey is made shall show all of the following:
 a. the location of permanent survey monuments with ties to the AGRS network.
 b. the New Mexico State Plane Coordinates.
 c. the mapping angle.
 d. the ground to grid factor at the point or for the centroid of the parcel of the subdivided land.
 e. the elevation related to the North American Vertical Datum (NAVD) based on the current datum as approved by the City Land Surveyor, if established.

2. Permanent survey monuments must be brass or aluminum caps set in an acceptable base. Caps shall bear the registration number of the surveyor establishing the point and identifying letters or numbers approved by the City Land Surveyor and year the monument was established. This information must be stamped permanently into the cap and must be shown on the final plat for which the survey is performed.

3. Upon the request of the City Land Surveyor, a narrative covering the equipment and procedures used along with copies of all field notes, calculations, reductions, closures and State Plane Coordinate calculations shall be submitted to the City Land Surveyor at least 10 days prior to submission of a final plat for review and approval. Monument information must be submitted on standard forms available from the City Land Surveyor. Upon the request of the City Land Surveyor, similar information shall also be submitted for any found property corners or other monuments that substantially affect the representation of evidence used for property locations.

4. Permanent survey monuments shall be considered properly positioned and represented only after the City Land Surveyor has approved all survey procedures and calculations and verified conformance to standards and specifications as outlined in the State's Minimum Standards for Surveying in New Mexico, as amended. If found to be deficient, the land surveyor may be required to perform
additional work to bring monumentation into conformance, regardless of whether the final plat is recorded or not.

5. For points to be included in the AGRS, tentative point identifiers may be established by the Land Surveyor; however, only the City Land Surveyor will assign permanent point identification.

6. Permanent survey monuments shall be considered to have a zero positional error when controlling subdivision control monuments within the property.

Section 10-1(A)(3) Benchmarks

1. Upon the request of the City Land Surveyor, at least 1 benchmark, located as approved by the City Land Surveyor, must be placed within each subdivision. Benchmarks may be coincident with permanent survey monuments, subdivision control monuments, or AGRS control monuments. Upon the request of the City Land Surveyor, more than 1 benchmark may be required within the perimeters of parcels or subdivisions in excess of 10 acres in size. Such additional benchmarks will be at positions other than permanent survey monuments.

2. Elevations of benchmarks must be based on the current vertical datum as approved by the City Land Surveyor and as established by the U.S. Coast and Geodetic Survey, now National Geodetic Survey (NGS), and must be tied to the AGRS network.

3. Level closures, which run between fixed elevations or loop closures, must be of Third Order accuracy or better as defined in TABLE 10.1.96. Loop closures are discouraged and are only used when it is not feasible to use 2 separate benchmarks.

<table>
<thead>
<tr>
<th>TABLE 10.1.96 Accuracy Standards For Level Closures 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metric Units</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>4mm Sq. Rt. K</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English Units</th>
<th>First Order</th>
<th>Second Order</th>
<th>Third Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.017 ft. Sq. Rt. M</td>
<td>0.035 ft. Sq. Rt. M</td>
<td>0.05 ft. Sq. Rt. M</td>
<td></td>
</tr>
</tbody>
</table>

4. Level notes and calculations must be submitted to the City Land Surveyor prior to approval of the elevation to be published for the benchmark. The City Land Surveyor will review the submitted material and determine whether the elevation is satisfactory for publication within 5 working days after receipt of submittal.

5. Benchmarks must be brass or aluminum caps, as specified for permanent survey monuments, and set as required for the permanent survey monuments. They must be identified by permanent stamping on the brass or aluminum cap as required by the City Land Surveyor.

6. All benchmarks established must be shown on the final plat for which the survey was made and accurately identified as to location and character.

1 K is the distance in kilometers and M is the distance in miles of the total level route, running between fixed elevations or along a level loop. Sq. Rt. = square root.
Part 10-1(B) Albuquerque Geodetic Reference

Information on existing AGRS survey monuments is available online at [http:\\www.cabq.gov\gis\map-views\geodetic-control](http://www.cabq.gov\gis\map-views\geodetic-control). The City Land Surveyor will provide information on any permanent survey monument of the AGRS network within 1 mile of the subdivision upon request. Should the City Land Surveyor be unable to provide such information within 3 weeks after requested, the plat data may be referred to a substitute system approved by the City Land Surveyor.

Part 10-1(C) Records Requirements

The [Land Survey Monument Record](http://www.cabq.gov\gis\map-views\geodetic-control), a form available from Development Review Services, must be filled out and submitted to the City for all of the following:

1. found property corners used in establishing survey control.
2. all property corners found but of questionable position and not used for survey control.
3. all set corners (excluding interior subdivision lot corners) that positionally determine the perimeters of land ownership, Middle Rio Grande Conservancy District Tracts, public right-of-way, and Bureau of Land Management sectionalized positions and thereby establish a continuous history of existing property corners.

Any corners not so described must be fully described on the plat.
ARTICLE 10-2 CONSTRUCTION SURVEYS

The physical staking for the contractor’s work in the construction phase of any project is the responsibility of the developer on a privately financed project. Either the developer or the City, depending on the agreement with the City Engineer, may be responsible on projects that involve City of Albuquerque facilities.

The registered professional land surveyor certifying the plat for a project must provide permanent survey monuments for at least 2 critical points on the boundary, 1 or more permanent elevation control benchmarks, and the required subdivision control monuments.

1. It is the responsibility of the registered professional land surveyor performing construction staking (establishing grades and positions for improvements) to confer with the design engineer whose seal and statement appear on the approved construction plans prior to such staking activities.

2. Prior to construction staking, the registered professional land surveyor performing construction staking shall confer with the registered professional land surveyor who certified the plat.

3. The registered professional land surveyor performing construction staking must satisfy himself/herself as to the accuracy of subdivision controls and to the intent of the construction plans, as they relate to positions and elevations prior to the commencement of work.

4. The developer must reasonably assure himself/herself that the construction surveying will be under the supervision of a registered professional land surveyor and that the person(s) intending to provide construction staking has an understanding of the intent of the plans and the conditions of control monuments.

5. The contractor is responsible for protecting and maintaining all plat and monumentation controls set by the registered professional land surveyor. In the event of inadvertent destruction or alteration, the contractor must immediately notify the registered professional land surveyor and the City Land Surveyor.
CHAPTER 11
LANDSCAPE AND IRRIGATION

This chapter presents the standards and detailed requirements established for landscape and irrigation within the City of Albuquerque right-of-way.

CONTENTS

ARTICLE 11-1 GOVERNING REGULATIONS ..11-2

ARTICLE 11-2 GENERAL DESIGN CRITERIA IN MEDIANS11-3

ARTICLE 11-3 IRRIGATION DESIGN CRITERIA IN MEDIANS11-4

ARTICLE 11-4 PLANTING DESIGN CRITERIA11-5
 Part 11-4(A) Trees and Shrubs ...11-5
 Part 11-4(B) Medians ...11-5

ARTICLE 11-5 REFERENCE ..11-6

ARTICLE 11-6 GREENSPACE INITIATIVE ..11-6
 Part 11-6(A) Intent ..11-6
 Part 11-6(B) Criteria for City Maintenance ..11-6
ARTICLE 11-1 GOVERNING REGULATIONS

The following list provides an overview of several of the most important City regulatory documents pertaining to landscape design in the public right-of-way. The list is not intended to be exhaustive, and the user is cautioned that these regulations are subject to change at any time. The designer must maintain a constant familiarity with these and other pertinent regulations as they evolve.

Refer to DPM Chapter 7 for requirements from the American Association of State Highway and Transportation Officials (AASHTO).

1. **Integrated Development Ordinance (Article 14-16 ROA 1994)**
 - This Ordinance contains important regulations relating to landscape requirements, obstructions of sight distances within the right-of-way, and proximity of landscape elements to the traveled way.

2. **Street Tree Ordinance (Sections 6-6-2-1 et seq. ROA 1994)**
 - This Ordinance requires the installation of trees along major streets.

3. **Official Albuquerque Plant Palette**
 - These regulations are companion to the Street Tree Ordinance and govern plantings encouraged or required by the Ordinance.

4. **City of Albuquerque Standard Specifications for Public Works Construction**
 - The current addition includes updates and Standard Details.

5. **ABCWUA Water Conservation Landscaping and Water Waste Ordinance (Article 6-1 ROA 2015) and Section 4**
 - This Ordinance requires the implementation of water conservation measures to reduce water use and reduce water waste.
ARTICLE 11-2 GENERAL DESIGN CRITERIA IN MEDIANS

Medians are defined as public right-of-way areas that provide a separation of traffic.

1. Landscaping within the public right-of-way shall meet the criteria cited in this chapter of the DPM, or as approved by the City department responsible for maintenance.

2. The City of Albuquerque, City Engineer, or designee reserves the right to inspect irrigation and landscaping improvements within the public right-of-way.

3. A depth of 4 inches of gravel mulch shall be installed throughout the landscape areas with minimum 4 ounce, needle punched polypropylene weed barrier fabric under or as approved by the City department responsible for maintenance. Fabric ends shall be overlapped 3 inches. Edges of fabric shall be turned down 6 inches. Top of landscape mulch shall be 1 inch below the top of adjacent curb and/or sidewalk. Gravel shall be a warm color (brown or brownish-red) or as approved by the City department responsible for maintenance. Sizes of gravel may vary.

4. Boulders shall be 12 cubic feet (CF) to 18 CF moss rock, or as approved by the City department responsible for maintenance, buried a minimum of 6 inches below the bottom of the gravel mulch.

5. The height of boulders or decorative landscape walls within the right-of-way shall not exceed the following dimensions:
 a. Within 6 feet of back of curb: maximum 8 inches height above top of curb
 b. Six (6) to 12 feet from back of curb: maximum 16 inches height above top of curb
 c. Over 12 feet from back of curb: maximum 24 inches height above top of curb

6. No turf grass shall be allowed within the right-of-way.

7. A swale shall be provided continuously along the length of median to retain water within the landscape areas. Soil at back of curb shall remain undisturbed for a minimum width of 1 foot. Maximum slope on the sides of the swale shall be 10% gradient. Maximum depth of swale shall be 9 inches below top of curb. Where there is an existing utility structure (manhole, pull box, etc.) within the area of a swale, it is acceptable to feather the grade at the swale to ensure that top of mulch is flush with top of utility structure. Gradient on feathered grade shall not exceed 1:5.

8. A parking area dedicated for maintenance vehicles shall be provided adjacent to the irrigation controller. Parking area shall be 23 feet length, 12 feet width with 12 feet wide flares on each side. Parking area shall be integrally colored concrete (beige-tone), 6 inches thick. The dimension of parking areas on medians less than 12 feet wide shall be defined by the City department responsible for maintenance.

9. Median noses shall be paved with colored concrete (beige or tan tone) with a broom finish and troweled edges at joints and perimeter.

10. Medians less than 6 feet wide shall be paved with colored concrete (beige or tan tone) with a broom finish and troweled at joints and perimeter.
ARTICLE 11-3 IRRIGATION DESIGN CRITERIA IN MEDIANs

In addition to the general design criteria described in Article 11-2, irrigation within medians shall comply with all of the following criteria:

1. An automatic irrigation system shall be provided for the landscape improvements.
2. Automatic control valves shall be Rain Bird PEB plastic body automatic valve or as approved by the City department responsible for maintenance.
3. All valves shall be installed in valve boxes per City of Albuquerque Standard Specifications for Public Works Construction (City Standard Specifications).
4. Valve boxes shall be located so the edge of valve box is minimum two feet from the edge of the mature spread of a shrub and minimum six feet from the edge of a tree root ball.
5. Valve boxes and lids shall be tan color.
6. A minimum of 36 inches shall be provided between adjacent valve boxes.
7. Irrigation system shall be a bubbler system. Drip and/or spray irrigation is not acceptable. Bubblers shall be provided as follows:
 - **Tree:** 3 each 1.0 gallon per minute (GPM) bubblers
 - **Vertical Shrub:** 2 each 0.5 GPM bubblers
 - **Shrub:** 1 each 0.5 GPM bubbler
 - **Yucca and other very low water-use shrubs:** 1 each 0.25 bubbler
8. Bubblers shall be located 3 feet from the center of the tree trunk, triangulated around the root ball.
 - **Tree:** Located on a slope, two (2) of the bubblers shall be located on the high side of the tree.
 - **Vertical Shrub:** If a landscaped area is too narrow to triangulate 3 bubblers around the root ball, two (2) bubblers shall be installed, one on each side of the root ball.
9. Bubblers shall be located 12 inches to 18 inches from the center of the shrub. Where a shrub is located on a slope, bubblers shall be located on the high side of the shrub.
10. Where there are significant changes in elevation, in-line check valves shall be installed on lateral lines as required to evenly distribute low head drainage.
11. An air relief valve shall be installed at each high point on the main line.
12. The irrigation system shall be independent of other properties and shall have dedicated utilities. Irrigation system shall connect to a public water system non-potable line if available and if reliably charged.
13. The irrigation system shall have a cross connection device, installed and located in accordance with City and ABCWUA standards.
14. Backflow preventer enclosure shall be a “Hot Rok” or equally insulated enclosure, with heat tape and electrical power, hinged lid, clasp for lock, and L-shaped metal clasp reinforcement. Backflow preventer and enclosure shall be installed in accordance with City Standard Specifications.
15. Irrigation controller shall be provided in accordance with current City Standard Specifications and as approved by the City department responsible for maintenance.
16. Irrigation controller shall be installed in a UL-rated enclosure per City Standard Specifications or as approved by the City department responsible.
for maintenance. Enclosure shall be powder coated, color tan. Enclosure shall be mounted on a 6 inches thick slab of concrete with 4 inches wide lip on all sides, sloped away from the controller enclosure.

17. A master valve and flow sensor shall be provided and installed per City Standard Specifications. Communication wire for the flow sensor shall be black communication cable (with internal control wire and ground) dedicated to the flow sensor.

18. Electric service shall be provided to the irrigation controller and backflow preventer or as approved by the City department responsible for maintenance.

19. The irrigation controller, backflow preventer, and related equipment shall be located adjacent to the designated maintenance parking pad on the side of oncoming traffic.

20. Main line and lateral lines shall be located a minimum of 5 feet away from trunks of trees.

21. One bubbler shall be installed at each grounding rod at the irrigation controller.

ARTICLE 11-4 PLANTING DESIGN CRITERIA

In addition to the general design criteria described in Article 11-2, irrigation within medians shall comply with all of the criteria in **Part 11-4(A)** and **Part 11-4(B)**.

Part 11-4(A) Trees and Shrubs

1. Trees shall be minimum 2 inches caliper, installed per City Standard Specifications.

2. Shrubs shall be minimum 1 gallon, installed per City Standard Specifications.

3. Minimum distance between mature spread of shrubs shall be 2 feet.

4. Minimum distance between a tree and the edge of a manhole collar shall be 8 feet.

Part 11-4(B) Medians

Planting within medians shall be in accordance with all of the following:

1. All median landscapes shall adhere to the current prototype design templates and master plant list, as maintained by the City Department of Municipal Development (DMD). The templates and plant list are subject to change at any time. The designer must verify the current design templates and plant list with DMD and must maintain a familiarity with these and other pertinent regulations as they evolve. The plant list is not intended to be exhaustive. Other species may be used, if approved by the City department responsible for maintenance.

2. Trees shall be set back minimum 6 feet from back of curb.
3. A clear zone (i.e. area free of mature spread of shrubs and other improvements) a minimum of 2 feet wide shall be provided at back of curb.

ARTICLE 11-5 REFERENCE

Any questions regarding this chapter are to be directed to the City DMD CIP Official.

ARTICLE 11-6 GREENSPACE INITIATIVE

Part 11-6(A) Intent

The Greenspace Initiative's intent is to encourage long term sustainable landscaping within the public right-of-way, and assist in the reduction of climatic and environmental challenges by building with nature. The components of the Greenspace Initiative include stormwater management, climate adaptation, improved economic development, reduction in heat stress, biodiversity, increased air quality, reduced energy use, cleaner water, and increased quality of life. Green infrastructure also serves to provide an ecological framework for social, economic and environmental health of the surroundings.

Part 11-6(B) Criteria for City Maintenance

The City department responsible for maintenance will assume maintenance of public right-of-way landscape that meets all of the following criteria:

1. The landscape area meets maintenance requirements from the DPM and the City department responsible for maintenance.
2. The landscape area is approved as part of the City department responsible for maintenance’s Greenspace Initiative.
3. The landscape area is maintained to City Standards by the responsible party for a period of two (2) years from the date of completion. The landscape shall be subject to City inspections. Deficiencies documented by the City Engineer or designated inspector shall be corrected by the responsible party within thirty (30) days of receipt of written “Notice of Noncompliance.” Upon the conclusion of the two (2) year maintenance period the responsible party shall schedule a final turnover inspection with the City department responsible for maintenance. The City department responsible for maintenance will issue of a “Letter of Acceptance” acknowledging the City’s receipt of utilities and maintenance responsibilities after verifying all of the following:
 a. The landscape meets requirements.
 b. Utilities are current.
 c. The 2-year maintenance period has expired.
The City department responsible for maintenance may provide exceptions to the DPM Greenspace landscaping requirements within the public right-of-way to meet other requirements and/or needs deemed to be an integral component of the development by the City department responsible for maintenance.