

July 15, 2022

Sent Via Email and Hand Delivered

Ms. Elizabeth Pomo Air Quality Program Albuquerque Environmental Health Department P.O. Box 1293 Albuquerque, NM 87103 Email: <u>epomo@cabg.gov</u>

Subject: Air Permit Modification Application Construction Permit No. 491-M7-RV1 Curia New Mexico, LLC 4401 Alexander Blvd. NE Albuquerque, New Mexico 87109

Dear Ms. Pomo:

Curia New Mexico, LLC (Curia) respectfully submits the enclosed permit modification application for the facility located at 4272 Balloon Park Road and 4200 Balloon Park Road Albuquerque, NM 87107 that is currently permitted under Permit No. 491-M7-RV1. This application requests the removal of permit conditions 6.A – 6.f compliance tests, requiring annual stack testing for the emergency generators. The application also provides updated information on permitted equipment. This permit modification application replaces the application that was submitted on June 1, 2022.

A check in the amount of \$3,661, made payable to the City of Albuquerque, for the Air Quality Program's permit modification application review fee was submitted to the Air Quality Program on June 1, 2022. A check for \$1,220 has been included in this submittal in Attachment 13 for the federal program review fee.

We will be happy to answer any questions or provide additional information in a timely manner. Please do not hesitate to contact me at John.GerbackJr@curiaglobal.com or 505-340-5989.

Sincerely, pessel

John Gerback, Jr. Senior EHS Manager Curia New Mexico, LLC

Attachments

- Attachment 1 Air Quality Permit Application
- Attachment 2 Permit Application Checklist
- Attachment 3 Pre-permit Application Meeting Request Form
- Attachment 4 Notice of Intent to Construct Form, Public Sign Notice Guideline Form, List of Neighborhood Associations and Neighborhood Coalitions and Proof of Public Notices
- Attachment 5 Ambient Impact Analysis Dispersion Model Report
- Attachment 6 Basis for each emission rate
- Attachment 7 Emission Calculations
- Attachment 8 Operational and Maintenance Strategy
- Attachment 9 Site Location Map and Aerial Photograph
- Attachment 10 Process Flow Diagram
- Attachment 11 Zoning Certification
- Attachment 12 Regulatory Review
- Attachment 13 Permit Application Review Fees 2022

Attachment 1 Air Quality Permit Application

City of Albuquerque – Environmental Health Department Air Quality Program

Please mail this application to <u>P.O. Box 1293, Albuquerque, NM 87103</u> or hand deliver between 8:00 am – 5:00 pm Monday – Friday to: <u>3rd Floor, Suite 3023 – One Civic Plaza NW, Albuquerque, NM 87102</u> (505) 768-1972 aqd@cabq.gov

Application for Air Pollutant Sources in Bernalillo County Source Registration (20.11.40 NMAC) and Construction Permits (20.11.41 NMAC)

Submittal Date: July 15, 2022

<u>Owner/Corporate Information</u> Check here and leave this section blank if information is exactly the same as Facility Information below.

Company Name: Curia New Mexico, LLC			
Mailing Address: 4401 Alexander Blvd NE	City: Albuquerque	State: NM	Zip: 87107
Company Phone: 505-923-1500	Company Contact: John G	erback, Jr.	
Company Contact Title: Sr. Manager EH&S	Phone: 505-340-5989	E-mail: John.GerbackJr@c	uriaglobal.com

Stationary Source (Facility) Information: Provide a plot plan (legal description/drawing of the facility property) with overlay sketch of facility processes, location of emission points, pollutant type, and distances to property boundaries.

Facility Name: Curia New Mexico, LLC			
Facility Physical Address: 4272 Balloon Park Road and 4200 Balloon Park Road	City: Albuquerque	State: NM	Zip: 87109
Facility Mailing Address (if different): 4401 Alexander Blvd NE	City: Albuquerque	State: NM	Zip: 87107
Facility Contact: John Gerback, Jr.	Title: Sr. Manager EH&S	i	
Phone: 505-340-5989	E-mail: John.GerbackJr@cu	riaglobal.com	
Authorized Representative Name ¹ : John Gerback, Jr.	Authorized Representative	Title: Sr. Manager EH	&S

Billing Information Check here if same contact and mailing address as corporate Check here if same as facility

Billing Company Name:			
Mailing Address:	City:	State:	Zip:
Billing Contact:	Title:		
Phone:	E-mail:		

Preparer/Consultant(s) Information Check here and leave section blank if no Consultant used or Preparer is same as Facility Contact.

Name:	Title:		
Mailing Address:	City:	State:	Zip:
Phone:	Email:		

1. See 20.11.41.13(E)(13) NMAC.

General Operation Information (if any question does not pertain to your facility, type N/A on the line or in the box)

Permitting action being requested	l (please refer to the definition	ions in 2	20.11.40 NMAC or	20.11.41 NMAC	C):	
New Permit	Permit Modification		Technical Pe	rmit Revision	🗌 Admi	nistrative Permit Revision
	Current Permit #: 491-M7	-RV1	Current Permit	#:	Current F	Permit #:
New Registration Certificate	Modification		Technical Re	vision		nistrative Revision
	Current Reg. #:		Current Reg. #:		Current F	
UTM coordinates of facility (Zone		(NAD27		I47 UTM-N(m) 3		
	, ,	•		. ,		
Facility type (<i>i.e.</i> , a description of	your facility operations): Ph	armace	utical Manufactur	ring		
Standard Industrial Classification (SIC Code #): 2834		North American 325412	Industry Classif	ication Sys	tem (<u>NAICS Code #</u>):
Is this facility currently operating i	in Bernalillo County? Yes		If YES, list date of	of original const	ruction: 19	70
			If NO , list date o	-	-	
Is the facility permanent? Yes			If NO , list dates		emporary c	operation:
	2		From N/A	Through N/A		· · · · ·
Is the facility a portable stationary	source? No		lf YES , is the fact location for this	•	ed above th	ne main permitted
Is the application for a physical or	operational change expanse	sion or			ess or add	ing or replacing process
or control equipment, etc.) to an e		501, 01		y., altering proc	ess, or aud	ing, of replacing process
Provide a description of the reque	ested changes: Removal of c	onditio	n 6.A – 6.f Compli	ance Tests.		
What is the facility's operation?	🔀 Continuous 🗌 Inter	rmittent	Batch			
Estimated percent of production/operation:	Jan-Mar: 25%	Apr-Ju	ın: 25%	Jul-Sep: 25%		Oct-Dec: 25%
Requested operating times of facility:	24 hours/day	7 days	/week	4.345 weeks/	month	12 months/year
Will there be special or seasonal o	perating times other than s	hown al	bove? This include	es monthly- or se	easonally-v	arying hours. No
If YES, please explain: N/A						
List raw materials processed: Activ	ve pharmaceutical drug cor	npound	s and excipients			
List saleable item(s) produced: Ste	erile, injectable pharmaceu	tical dru	ıg products			

USE INSTRUCTIONS: For the forms on the following pages, please do not alter or delete the existing footnotes or page breaks. If additional footnotes are needed then add them to the end of the existing footnote list for a given table. Only update the rows and cells within tables as necessary for your project. Unused rows can be deleted from tables. If multiple scenarios will be represented then the Uncontrolled and Controlled Emission Tables, and other tables as needed, can be duplicated and adjusted to indicate the different scenarios.

Regulated Emission Sources Table

(*E.g.*, Generator-Crusher-Screen-Conveyor-Boiler-Mixer-Spray Guns-Saws-Sander-Oven-Dryer-Furnace-Incinerator-Haul Road-Storage Pile, etc.) Match the Units listed on this Table to the same numbered line if also listed on Emissions Tables & Stack Table.

	Jnit Number and Description ¹	Manufacturer	Model #	Serial #	Manufacture Date	Installation Date	Modification Date ²	Process Rate or Capacity (Hp, kW, Btu, ft ³ , Ibs, tons, yd ³ , etc.) ³	Fuel Type
1.	Emergency Generator at 4200 Balloon Park Road	Engine: John Deere, Generator: Allison/GM	Engine: RG6466 AF-00 Generator: G0659600	Engine: RG6466A3 01506 Generator: J-9557/1	1986	1986	N/A	215 HP/HR	Diesel
2.	Not used	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
3.	Not used	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
4.	Not used	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
5.	Boiler at 4272 Balloon Park Road	Superior	MSX6-X- 1250	17115	2011	2011	N/A	8,369,000 btu/HR	Natural Gas
6.	Boiler at 4272 Balloon Park Road	Cleaver Brooks	CBLE-700- 125-150ST	T2234-1-1	2011	2011	N/A	5,175,000 btu /HR	Natural Gas
7.	Emergency Generator at 4272 Balloon Park Road	Engine: Cummins Generator: Onan	Engine: KTA50-G9 Generator: DFLE- 4487400	Engine: 77931-132 Generator: K00017233 2	09/2000	2003	N/A	2,220 hp/HR	Diesel
8.	Emergency Generator at 4272 Balloon Park Road	Engine: Cummins Generator: Onan	Engine: KTA50-G9 Generator: DFLE- 4487400	Engine: 77931-97 Generator: G00013189 6	09/2000	2003	N/A	2,220 hp/HR	Diesel

NOTE: To add extra rows in Word, click anywhere in the last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

1. Unit numbers must correspond to unit numbers in the previous permit unless a complete cross reference table of all units in both permits is provided.

2. To determine whether a unit has been modified, evaluate if changes have been made to the unit that impact emissions or that trigger modification as defined in 20.11.41.7(U) NMAC. If not, put N/A.

3. Basis for Equipment Process Rate or Capacity (*e.g.*, Manufacturer's Data, Field Observation/Test, etc.) Manufacturer's Data Submit information for each unit as an attachment.

Emissions Control Equipment Table

Control Equipment Units listed on this Table should either match up to the same Unit number as listed on the Regulated Emission Sources, Controlled Emissions and Stack Parameters Tables (if the control equipment is integrated with the emission unit) or should have a distinct Control Equipment Unit Number and that number should then also be listed on the Stack Parameters Table.

	rol Equipment Unit Number and Description	Controlling Emissions for Unit Number(s)	Manufacturer	Model # Serial #	Date Installed	Controlled Pollutant(s)	% Control Efficiency ¹	Method Used to Estimate Efficiency	Rated Process Rate or Capacity or Flow
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTE: To add extra rows in Word, click anywhere in the last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

1. Basis for Control Equipment % Efficiency (*e.g.*, Manufacturer's Data, Field Observation/Test, AP-42, etc.). <u>N/A</u> Submit information for each unit as an attachment.

Exempted Sources and Exempted Activities Table

			-	Dee 20.11.41	VIVIAC IUI EXEII	iiptions.			
U	Init Number and Description	Manufacturer	Model #	Serial #	Manufacture Date	Installation Date	Modification Date ¹	Process Rate or Capacity (Hp, kW, Btu, ft ³ , Ibs, tons, yd ³ , etc.) ²	Fuel Type
1.	Hot Water Heater at 4200 Balloon Park Rd.	LAARS	RHCH160 0NACF2E XX	A13 252762	2013	Unkown	N/A	1,376,000 btu /HR	Natural Gas

See 20.11.41 NMAC for exemptions

NOTE: To add extra rows in Word, click anywhere in the last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

1. To determine whether a unit has been modified, evaluate if changes have been made to the unit that impact emissions or that trigger modification as defined in 20.11.41.7(U) NMAC. Also, consider if any changes that were made alter the status from exempt to non-exempt. If not, put N/A.

2. Basis for Equipment Process Rate or Capacity (e.g., Manufacturer's Data, Field Observation/Test, etc.) Manufacturer's Data

Submit information for each unit as an attachment.

Uncontrolled Emissions Table

(Process potential under physical/operational limitations during a 24 hr/day and 365 day/year = 8760 hrs)

Regulated Emission Units listed on this Table should match up to the same numbered line and Unit as listed on the Regulated Emissions and Controlled Tables. List total HAP values per Emission Unit if overall HAP total for the facility is ≥ 1 ton/yr.

Unit Number*	-	n Oxides O _x)		Monoxide CO)	Hydrocarb Organic C	Nonmethane Hydrocarbons/Volatile Organic Compounds (NMHC/VOCs)		Sulfur Dioxide (SO ₂)		(SO ₂)		(SO ₂)		te Matter ⁄licrons ⁄l ₁₀)	Particulate Matter ≤ 2.5 Microns (PM _{2.5})		Pollu	lous Air Itants APs)	Method(s) used for Determination of Emissions (AP-42, Material Balance, Field Tests, etc.)
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr					
1.	6.67	29.19	1.44	6.29	0.53	2.33	0.002	0.01	0.47	2.07	0.47	2.07	0.01	0.04	AP-42				
2.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
3.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
4.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A				
5.	0.25	1.10	0.31	1.36	0.07	0.29	0.01	0.04	0.04	0.18	0.04	0.18	0	0	Manufacturer's data				
6.	0.36	1.58	0.19	0.83	0.02	0.08	0.003	0.01	0.04	0.17	0.04	0.17	0	0	Manufacturer's data				
7.	41.63	182.32	13.25	58.04	1.57	6.86	0.025	0.11	1.55	6.81	1.55	6.81	0.07	0.30	Field test / AP-42				
8.	44.00	192.72	13.25	58.04	1.57	6.86	0.025	0.11	1.55	6.81	1.55	6.81	0.07	0.30	Field test / AP-42				
Miscellaneous Chemical Usage	0	0	0	0	4.57	20.0	0	0	0	0	0	0	1.39	6.1	Material Balance				
Totals of Uncontrolled Emissions	92.9	406.9	28.4	124.6	8.3	36.4	0.1	0.3	3.7	16.0	3.7	16.0	1.5	6.7					

NOTE: To add extra rows in Word, click anywhere in the second-to-last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

*A permit is required and this application along with the additional checklist information requested on the Permit Application checklist must be provided if:

(1) any one of these process units or combination of units, has an uncontrolled emission rate greater than or equal to (≥) 10 lbs/hr or 25 tons/yr for any of the above pollutants, excluding HAPs, based on 8,760 hours of operation; or

(2) any one of these process units or combination of units, has an uncontrolled emission rate \geq 2 tons/yr for any single HAP or \geq 5 tons/yr for any combination of HAPs based on 8,760 hours of operation; or

(3) any one of these process units or combination of units, has an uncontrolled emission rate ≥ 5 tons/yr for lead (Pb) or any combination of lead and its compounds based on 8,760 hours of operation; or (4) any one of the process units or combination of units is subject to an Air Board or federal emission limit or standard.

* If all of these process units, individually and in combination, have an uncontrolled emission rate less than (<) 10 lbs/hr or 25 tons/yr for all of the above pollutants (based on 8,760 hours of operation), but

> 1 ton/yr for any of the above pollutants, then a source registration is required. A Registration is required, at minimum, for any amount of HAP emissions. Please complete the remainder of this form.

Controlled Emissions Table

(Based on current operations with emission controls OR requested operations with emission controls)

Regulated Emission Units listed on this Table should match up to the same numbered line and Unit as listed on the Regulated Emissions and Uncontrolled Tables. List total HAP values per Emission Unit if overall HAP total for the facility is ≥ 1 ton/yr.

Unit Number	Nitroger (NC	О _х)		0)	Hydrocarb Organic C (NMH0	ganic Compounds (NMHC/VOCs)		Hydrocarbons/Volatile Organic Compounds (NMHC/VOCs)		Hydrocarbons/Volatile Organic Compounds (NMHC/VOCs)		Hydrocarbons/Volatile Organic Compounds (NMHC/VOCs)		Hydrocarbons/Volatile Organic Compounds (NMHC/VOCs)		Dioxide D ₂)	≤ 10 N (PN	te Matter 1icrons Λ ₁₀)	Particulate Matter ≤ 2.5 Microns (PM _{2.5})		Hazardous Air Pollutants (HAPs)		Control Method	% Efficiency ¹
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	Operating									
1.	6.67	1.67	1.44	0.36	0.53	0.13	0.002	0.001	0.47	0.12	0.47	0.12	0.01	0.003	Hours (500 hours)	94.3%								
2.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A								
3.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A								
4.	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A								
5.	0.25	1.10	0.31	1.36	0.07	0.29	0.01	0.04	0.04	0.18	0.04	0.18	0	0	none	N/A								
6.	0.36	1.58	0.19	0.83	0.02	0.08	0.003	0.01	0.04	0.17	0.04	0.17	0	0	none	N/A								
7.	41.63	10.41	13.25	3.31	1.57	0.39	0.025	0.01	1.55	0.39	1.55	0.39	0.07	0.02	Operating Hours (500 hours)	94.3%								
8.	44.00	11.00	13.25	3.31	1.57	0.39	0.025	0.01	1.55	0.39	1.55	0.39	0.07	0.02	Operating Hours (500 hours)	94.3%								
Miscellaneous Chemical Usage	0	0	0	0	4.57	20.0	0	0	0	0	0	0	1.39	6.1	none	N/A								
Totals of Controlled Emissions	92.9	25.7	28.4	9.2	8.3	21.3	0.1	0.1	3.7	1.2	3.7	1.2	1.5	6.1										

NOTE: To add extra rows in Word, click anywhere in the second-to-last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

1. Basis for Control Method % Efficiency (*e.g.*, Manufacturer's Data, Field Observation/Test, AP-42, etc.). Manufacturer's Data, Field Observation/Test, AP-42 Submit information for each unit as an attachment.

Hazardous Air Pollutants (HAPs) Emissions Table

Report the Potential Emission Rate for each HAP from each source on the Regulated Emission Sources Table that emits a given HAP. Report individual HAPs with ≥ 1 ton/yr total emissions for the facility on this table. Otherwise, report total HAP emissions for each source that emits HAPs and report individual HAPs in the accompanying application package in association with emission calculations. If this application is for a Registration solely due to HAP emissions, report the largest HAP emissions on this table and the rest, if any, in the accompanying application package.

Unit Number	Total	HAPs	N	I/A	N/	A	N/	Ά	N/	'A	N/	Ά	N	I/A	N	/A
Unit Number	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Unit 1	0.01	0.003	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lingth Marine In a st	Total	HAPs	Ν	I/A	N/	Ά	N/	Ά	N/	A	N/	Ά	Ν	N/A		/A
Unit Number	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Unit 7	0.07	0.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Lingth Nicconderse	Total	HAPs	Ν	I/A	N/	Ά	N/	Ά	N/	A	N/	/A	N/A		N	/A
Unit Number	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Unit 8	0.07	0.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Linit Number	Total HAPs		Acetaldehyde		Acetor	nitrile	Benz	ene	Chlorob	enzene	Chloro	oform	Cobaltous chloride		Dichloro	methane
Unit Number	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Miscellaneous Chemical Usage	1.39	6.1	0.015	0.067	0.188	0.823	0.005	0.022	0.001	0.006	0.013	0.058	0.001	0.005	0.011	0.06
Unit Number	,	vlene oride	Не	xane	Hydrochl	oric Acid	Meth	anol	Methyl Eth	yl Ketone	Tolu	ene	Ν	I/A	N	/A
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Misc. Chemical Usage (continued)	0.001	0.006	0.060	0.264	0.863	3.78	0.227	0.992	0.001	0.006	0.001	0.003	N/A	N/A	N/A	N/A
Totals of HAPs for all units:	1.54	6.14	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

NOTE: To add extra rows in Word, click anywhere in the second-to-last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

Use Instructions: Copy and paste the HAPs table here if need to list more individual HAPs.

Product Categories (Coatings, Solvents, Thinners, etc.)	Hazardous Air Pollutant (HAP), or Volatile Hazardous Air Pollutant (VHAP) Primary To The Representative As Purchased Product	Chemical Abstract Service (CAS) Number of HAP or VHAP from Representative As Purchased Product	HAP or VHAP Concentration of Representative As Purchased Product (pounds/gallon, or %)	Concentration Determination (CPDS, SDS, etc.) ¹	Total Product Purchases For Category	(-)	Quantity of Product Recovered & Disposed For Category	(=)	Total Product Usage For Category
1. Laboratory use	Acetaldehyde	75-07-0	99.5%	SDS	133.9 lb/yr	(-)	0 lb/yr	(=)	133.9 lb/yr
					gal/yr		gal/yr		gal/yr
2. Laboratory use	Acetonitrile	75-05-8	100%	SDS	1,647 lb/yr gal/yr	(-)	0 lb/yr gal/yr	(=)	1647 lb/yr gal/yr
					43.6 lb/yr		0 lb/yr		43.6 lb/yr
3. Laboratory use	Benzene	71-43-2	99.8%	SDS	gal/yr	(-)	gal/yr	(=)	gal/yr
					111.6 lb/yr		0 lb/yr		11.6 lb/yr
4. Laboratory use	Chlorobenzene	108-90-7	100%	SDS	gal/yr	(-)	gal/yr	(=)	gal/yr
					116 lb/yr	()	0 lb/yr		116 lb/yr
5. Laboratory use	Chloroform	67-66-3	98% - 100%	SDS	gal/yr	(-)	gal/yr	(=)	gal/yr
6. Laboratory use	Cobaltous chloride	7646-79-9	100%	SDS	10.0 lb/yr	(-)	0 lb/yr	(=)	10.0 lb/yr
6. Laboratory use	Cobaltous chioride	7040-79-9	100%	503	gal/yr	(-)	gal/yr	(-)	gal/yr
7. Laboratory use	Dichloromethane	75-09-2	99%	SDS	100 lb/yr	(-)	0 lb/yr	(=)	100 lb/yr
	Diemoromeendre	75 05 2	5570		gal/yr	()	gal/yr	()	gal/yr
8. Laboratory use	Ethylene dichloride	107-06-2	99%	SDS	11.3 lb/yr	(-)	0 lb/yr	(=)	11.3 lb/yr
,	,				gal/yr	. ,	gal/yr	. ,	gal/yr
9. Laboratory use	Hexane	110-54-3	95%	SDS	527.5 lb/yr	(-)	0 lb/yr	(=)	527.5 lb/yr
10 \\/= =+ =====					gal/yr 7,563 lb/yr		gal/yr 0 lb/yr		gal/yr 7,563 lb/yr
10 Wastewater neutralization	Hydrochloric Acid	7647-01-0	100%	SDS	gal/yr	(-)	gal/yr	(=)	/,505 lb/yl gal/yr
					1,985 lb/yr		0 lb/yr		1,985 lb/yr
11 Laboratory use	Methanol	67-56-1	100%	SDS	gal/yr	(-)	gal/yr	(=)	gal/yr
					11.3 lb/yr		0 lb/yr		11.3 lb/yr
12. Laboratory use	Methyl Ethyl Ketone	78-93-3	100%	SDS	gal/yr	(-)	gal/yr	(=)	gal/yr
12 Laboratory use	Toluene	108-88-3	100%	SDS	6.4 lb/yr	()	0 lb/yr	(-)	6.4 lb/yr
13 . Laboratory use	roidene	100-00-3	100%	כעכ	gal/yr	(-)	gal/yr	(=)	gal/yr
		TOTALS			12,167 lb/yr	(-)	0 lb/yr	(=)	12,167 lb/yr
		101/120			gal/yr	()	gal/yr		gal/yr

Purchased Hazardous Air Pollutant Table*

NOTE: To add extra rows in Word, click anywhere in the second-to-last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

NOTE: Product purchases, recovery/disposal and usage should be converted to the units listed in this table. If units cannot be converted please contact the Air Quality Program prior to making changes to this table.

1. Submit, as an attachment, information on one (1) product from each Category listed above which best represents the average of all the products purchased in that Category. CPDS = Certified Product Data Sheet; SDS = Safety Data Sheet

* A Registration is required, at minimum, for any amount of HAP or VHAP emission.

Emissions from purchased HAP usage should be accounted for on previous tables as appropriate.

A permit may be required for these emissions if the source meets the requirements of 20.11.41 NMAC.

Material and Fuel Storage Table

				(<i>E.g.,</i> Tanks, barrels	s, silos, stockp	iles, etc.)					
Storag	ge Equipment	Product Stored	Capacity (bbls, tons, gals, acres, etc.)	Above or Below Ground	Construction (Welded, riveted) & Color	Installation Date	Loading Rate ¹	Offloading Rate ¹	True Vapor Pressure	Control Method	Seal Type	% Eff. ²
1.	Unit 1 Tank	diesel fuel	150 gal	above	welded / white	1986	30 gpm	11.7 gph	N/A	N/A	N/A	N/A
2.	Unit 7 Tank	diesel fuel	2,500	above	welded / tan	7/03	30 gpm	121 gph	N/A	N/A	N/A	N/A
3.	Unit 8 Tank	diesel fuel	3,368	above	welded / tan	12/03	30 gpm	121 gph	N/A	N/A	N/A	N/A

NOTE: To add extra rows in Word, click anywhere in the last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

1. Basis for Loading/Offloading Rate (e.g., Manufacturer's Data, Field Observation/Test, etc.). Manufacturer's Data Submit information for each unit as an attachment.

2. Basis for Control Method % Efficiency (e.g., Manufacturer's Data, Field Observation/Test, AP-42, etc.). N/A Submit information for each unit as an attachment.

Stack Parameters Table

If any equipment from the Regulated Emission Sources Table is also listed in this Stack Table, use the same numbered line for the emission unit on both tables to show the association between the Process Equipment and its stack.

	t Number and Description	Pollutant (CO, NOx, PM ₁₀ , etc.)	UTM Easting (m)	UTM Northing (m)	Stack Height (ft)	Stack Exit Temp. (°F)	Stack Velocity (fps)	Stack Flow Rate (acfm)	Stack Inside Diameter (ft)	Stack Type
1	Emergency Generator	CO, NOx, PM10, PM2.5, SO2	354488.0	3890588.7	7.00	800.0	250.00	2045	0.42	Vertical
5	Boiler	CO, NOx, PM10, PM2.5, SO2	354571.3	3890508.8	40.00	355.0	25.9	3351	1.42	Rain Cap
6	Boiler	CO, NOx, PM10, PM2.5, SO2	354571.8	3890508.5	38.20	459.0	28.4	2094	1.25	Rain Cap
7	Emergency Generator	CO, NOx, PM10, PM2.5, SO2	354559.1	3890502.5	29.50	900.0	340.0	16040	1.00	Vertical
8	Emergency Generator	CO, NOx, PM10, PM2.5, SO2	354567.0	3890498.9	29.50	917.0	338.0	15935	1.00	Vertical

NOTE: To add extra rows in Word, click anywhere in the last row. A plus (+) sign should appear on the bottom right corner of the row. Click the plus (+) sign to add a row. Repeat as needed.

Certification

NOTICE REGARDING SCOPE OF A PERMIT: The Environmental Health Department's issuance of an air quality permit only authorizes the use of the specified equipment pursuant to the air quality control laws, regulations and conditions. Permits relate to air quality control only and are issued for the sole purpose of regulating the emission of air contaminants from said equipment. Air quality permits are <u>not</u> a general authorization for the location, construction and/or operation of a facility, nor does a permit authorize any particular land use or other form of land entitlement. It is the applicant's/permittee's responsibility to obtain all other necessary permits from the appropriate agencies, such as the City of Albuquerque Planning Department or Bernalillo County Department of Planning and Development Services, including but not limited to site plan approvals, building permits, fire department approvals and the like, as may be required by law for the location, construction and/or operation of a facility. For more information, please visit the City of Albuquerque Planning Department website at <u>https://www.cabg.gov/planning</u> and the Bernalillo County Department of Planning and the Bernalillo County Department of Planning.

NOTICE REGARDING ACCURACY OF INFORMATION AND DATA SUBMITTED: Any misrepresentation of a material fact in this application and its attachments is cause for denial of a permit or revocation of part or all of the resulting registration or permit, and revocation of a permit for cause may limit the permitee's ability to obtain any subsequent air quality permit for ten (10) years. Any person who knowingly makes any false statement, representation, or certification in any application, record, report, plan or other document filed or required to be maintained under the Air Quality Control Act, NMSA 1978 §§ 74-2-1 to 74-2-17, is guilty of a misdemeanor and shall, upon conviction, be punished by a fine of not more than ten thousand dollars (\$10,000) per day per violation or by imprisonment for not more than twelve months, or by both.

I, the undersigned, hereby certify that I have knowledge of the information and data represented and submitted in this application and that the same is true and accurate, including the information and date in any and all attachments, including without limitation associated forms, materials, drawings, specifications, and other data. I also certify that the information represented gives a true and complete portrayal of the existing, modified existing, or planned new stationary source with respect to air pollution sources and control equipment. I understand that there may be significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations. I also understand that the person who has applied for or has been issued an air quality permit by the Department is an obligatory party to a permit appeal filed pursuant to 20.11.81 NMAC. Further, I certify that I am qualified and authorized to file this application, to certify the truth and accuracy of the information herein, and bind the source. Moreover, I covenant and agree to comply with any requests by the Department for additional information necessary for the Department to evaluate or make a final decision regarding the application.

Signed this 13	_day of _July, 20 22
John GERBACK Print Name	Sr. Manager of EHS Print Title
Signature	Role: Owner Operator

Attachment 2 Permit Application Checklist

City of Albuquerque Environmental Health Department Air Quality Program

Construction Permit (20.11.41 NMAC) Application Checklist

This checklist must be returned with the application

Any person seeking a new air quality permit, a permit modification, or an emergency permit under 20.11.41 NMAC (Construction Permits) shall do so by filing a written application with the Albuquerque-Bernalillo County Joint Air Quality Program, which administers and enforces local air quality laws for the City of Albuquerque ("City") and Bernalillo County ("County"), on behalf of the City Environmental Health Department ("Department").

The Department will rule an application administratively incomplete if it is missing or has incorrect information. The Department may require additional information that is necessary to make a thorough review of an application, including but not limited to technical clarifications, emission calculations, emission factor usage, additional application review fees if any are required by 20.11.2 NMAC, and new or additional air dispersion modeling.

If the Department has ruled an application administratively incomplete three (3) times, the Department will deny the permit application. Any fees submitted for processing an application that has been denied will not be refunded. If the Department denies an application, a person may submit a new application and the fee required for a new application. The applicant has the burden of demonstrating that a permit should be issued.

The following are the minimum elements that shall be included in the permit application before the Department can determine whether an application is administratively complete and ready for technical review. It is not necessary to include an element if the Department has issued a written waiver regarding the element and the waiver accompanies the application. However, the Department shall not waive any federal requirements.

At all times before the Department has made a final decision regarding the application, an applicant has a duty to promptly supplement and correct information the applicant has submitted in an application to the Department. The applicant's duty to supplement and correct the application includes but is not limited to relevant information acquired after the applicant has submitted the application and additional information the applicant otherwise determines is relevant to the application and the Department's review and decision. While the Department is processing an application, regardless of whether the Department has determined the application is administratively complete, if the Department determines that additional information is necessary to evaluate or make a final decision regarding the application, the Department may request additional information and the applicant shall provide the requested additional information.

NOTICE REGARDING PERMIT APPEALS: A person who has applied for or has been issued an air quality permit by the Department shall be an obligatory party to a permit appeal filed pursuant to 20.11.81 NMAC.

NOTICE REGARDING SCOPE OF A PERMIT: The Department's issuance of an air quality permit only authorizes the use of the specified equipment pursuant to the air quality control laws, regulations and conditions. Permits relate to air quality control only and are issued for the sole purpose of regulating the emission of air contaminants from said equipment. Air quality permits are not a general authorization for the location, construction and/or operation of a facility, nor does a permit authorize any particular land use or other form of land entitlement. It is the applicant's/permittee's responsibility to obtain all other necessary permits from the appropriate agencies, such as the City Planning Department or County Department of Planning and Development Services, including but not limited to site plan approvals, building permits, fire department approvals and the like, as may be required by law for the location, construction and/or operation of a facility. For more information, please visit the City Planning Department website at https://www.cabq.gov/planning and the County Department Services website at https://www.bernco.gov/planning.

The Applicant shall:

20.11.41.13(A) NMAC – Pre-Application Requirements:

Item	Completed	NA ¹	Waived ²
(1) Request a pre-application meeting with the Department using the pre-application meeting request form.	\boxtimes		
(2) Attend the pre-application meeting. Date of Pre-application meeting: October 08, 2022			

1. Not Applicable

2. It is not necessary to include an element if the Department has issued a written waiver regarding the element and the waiver accompanies the application. However, the Department shall not waive any federal requirements.

20.11.41.13(B) NMAC – Applicant's Public Notice Requirements:

	Item	Included in Application	NA ¹	Waived ²
electronic copy to the designated repr associations and recognized coalition	with the regulation, including by certified mail or esentative(s) of the recognized neighborhood is that are within one-half mile of the exterior he source is or is proposed to be located.	\boxtimes		
· · ·	neighborhood associations and recognized ee months old from the application submittal	\boxtimes		
Provide notice using the Notice of	Intent to Construct form.	\boxtimes		
(2) In accordance with the regulation, post proof sign provided by the Department	and maintain in a visible location a weather t.	\boxtimes		

1. Not Applicable; For emergency permits, the public notice requirements in 20.11.41.24 NMAC shall apply instead.

2. It is not necessary to include an element if the Department has issued a written waiver regarding the element and the waiver accompanies the application. However, the Department shall not waive any federal requirements.

The Permit Application shall include:

20.11.41.13(E) NMAC – Application Contents

	Item	Included In Application	NA ¹	Waived ²
(1)	A complete permit application on the most recent form provided by the Department.	\square		
(2)	The application form includes:			
	a. The owner's name, street and post office address, and contact information;	\boxtimes		
	b. The facility/ operator's name, street address and mailing address, if different from the owner;	\boxtimes		
	c. The consultant's name, and contact information, if applicable;		\bowtie	
	d. All information requested on the application form is included (<i>i.e.</i> , the form is complete).	\square		
(3)	Date application is submitted.	\boxtimes		
(4)	Sufficient attachments for the following:			
	 Ambient impact analysis using an atmospheric dispersion model approved by the U.S. Environmental Protection Agency, and the Department to demonstrate compliance with the applicable ambient air quality standards. <i>See</i> 20.11.01 NMAC. If you are modifying an existing source, the modeling must include the 			

	Item	Included In Application	NA ¹	Waived ²
	emissions of the entire source to demonstrate the impact the new or modified source(s) will have on existing plant emissions.			
	b. The air dispersion model has been executed pursuant to a protocol that was approved in advance by the Department.	\boxtimes		
	c. Air dispersion modeling approved protocol date: April 6, 2022	\boxtimes		
	d. Basis or source for each emission rate (including manufacturer's specification sheet, AP-42 section sheets, test data, or corresponding supporting documentation for any other source used).	\boxtimes		
	e. All calculations used to estimate potential emission rates and controlled/proposed emissions.	\boxtimes		
	f. Basis for the estimated control efficiencies and sufficient engineering data for verification of the control equipment operation, including if necessary, design, drawing, test report and factors which affect the normal operation.		\boxtimes	
	g. Fuel data for each existing and/or proposed piece of fuel burning equipment.	\boxtimes		
	h. Anticipated maximum production capacity of the entire facility and the requested production capacity after construction and/or modification.	\boxtimes		
	i. Stack and exhaust gas parameters for all existing and proposed emission stacks.	\boxtimes		
(5)	An operational and maintenance strategy detailing:	\boxtimes		
	a. steps the applicant will take if a malfunction occurs that may cause emission of a regulated air contaminant to exceed a limit that is included in the permit;	\boxtimes		
	b. the nature of emission during routine startup or shutdown of the source and the source's air pollution control equipment; and	\boxtimes		
	c. the steps the application will take to minimize emissions during routine startup or shutdown.	\boxtimes		
(6)	A map, such as a 7.5'-topographic quadrangle map published by the U.S. Geological Survey or a map of equivalent or greater scale, detail, and precision, including a City or County zone atlas map that shows the proposed location of each process equipment unit involved in the proposed construction, modification, or operation of the source, as applicable.	\boxtimes		
(7)	An aerial photograph showing the proposed location of each process equipment unit involved in the proposed construction, modification, relocation or technical revision of the source except for federal agencies or departments involved in national defense or national security as confirmed and agreed by the Department in writing.	\boxtimes		
(8)	A complete description of all sources of regulated air contaminants and a process flow diagram depicting the process equipment unit or units at the facility, both existing and proposed, that are proposed to be involved in routine operations and from which regulated air contaminant emissions are expected to be emitted.	\boxtimes		
(9)	A full description of air pollution control equipment, including all calculations and the basis for all control efficiencies presented, manufacturer's specifications sheets, and site layout and assembly drawings; UTM (universal transverse mercator) coordinates shall be used to identify the location of each emission unit.	\boxtimes		
(10)	A description of the equipment or methods proposed by the applicant to be used for emission measurement.			
(11)	The maximum and normal operating time schedules of the source after completion of construction or modification, as applicable.	\boxtimes		
(12)		\boxtimes		
	a. Applicants shall provide documentary proof that the proposed air quality permitted use of the facility's subject property is allowed by the zoning designation of the City or County zoning laws, as applicable. Sufficient documentation includes: (i) a zoning certification from the City Planning Department or County Department of Planning and Development Services, as applicable, if the property is subject to City or County zoning jurisdiction: or (ii) a zoning verification from both planning	\boxtimes		

Item	Included In Application	NA ¹	Waived ²
departments if the property is not subject to City or County zoning jurisdiction. ³ A zone atlas map shall not be sufficient.			
(13) The signature of the applicant, operator, owner or an authorized representative, certifying to the accuracy of all information as represented in the application and attachments, if any.	\boxtimes		
(14) A check or money order for the appropriate application fee or fees required by 20.11.2 NMAC (Fees).	\square		

1. Not Applicable

2. It is not necessary to include an element if the Department has issued a written waiver regarding the element and the waiver accompanies the application. However, the Department shall not waive any federal requirements.

3. For emergency permit applications, applicants are not required to submit documentation for the subject property's zoning designation.

Attachment 3 Pre-permit Application Meeting Request Form

Pre-Permit Application Meeting Request Form Air Quality Program- Environmental Health Department

Please complete appropriate boxes and email to aqd@cabq.gov or mail to:

Environmental Health Department Air Quality Program P.O. Box 1293 Room 3047 Albuquerque, NM 87103

Name:	
	John Gerback Jr, Todd Albers, Matt Lane
Company/Organization:	,
	Curia New Mexico, LLC
Point of Contact:	Phone: 505-553-8106
(phone number and email):	
Preferred form of contact (circle one):	Email: todd.albers@curiaglobal.com
Phone E-mail	
Preferred meeting date/times:	
	October 5 th , 2021 11:00am
Description of Project:	
	permit modification application for 0491-M7-
	RV1

Pre-Permit Application Meeting Request Form Air Quality Program- Environmental Health Department

Please complete appropriate boxes and email to aqd@cabq.gov or mail to:

Environmental Health Department Air Quality Program P.O. Box 1293 Room 3047 Albuquerque, NM 87103

Name:	
	John Gerback Jr, Todd Albers, Matt Lane
Company/Organization:	,
	Curia New Mexico, LLC
Point of Contact:	Phone: 505-553-8106
(phone number and email):	
Preferred form of contact (circle one):	Email: todd.albers@curiaglobal.com
Phone E-mail	
Preferred meeting date/times:	
	October 5 th , 2021 11:00am
Description of Project:	
	permit modification application for 0491-M7-
	RV1

Albers, Todd

Subject: Location:	Air Quality Program Pre-Application Meeting for Curia New Mexico, LLC GoTo Meeting
Start: End:	Fri 10/8/2021 13:30 Fri 10/8/2021 14:15
Recurrence:	(none)
Meeting Status:	Not yet responded
Organizer:	Pomo, Elizabeth

External: This message originated outside of the organization from epomo@cabq.gov. Do not click links or open attachments unless you recognize the sender or know the content is safe.

Good afternoon Todd,

Can you please send the meeting invitation to Matt Lane? I do not have his email address.

Please see attached agenda and Permits 0491-M7-RV1 and 0491-M7-RV1-EP prior to meeting.

Air Quality Program Pre-Application Meeting with Curia NM, LLC Fri, Oct 8, 2021 1:30 PM - 2:15 PM (MDT)

Please join my meeting from your computer, tablet or smartphone. https://secure-web.cisco.com/1l3Q0LQP7uJkRG-sNg8cDosKV3PxmcN1_88IaIhSXca_FbdVYhKECKjQpj7Wp-HGS4uZM2hfc4hPtQPplvmF6SQYsafC6C7wl8jz6inGAtyU1C-XJCX-zy3OMCuP4Z9Ita_CyNIaQXdAZIluwiZBi-ETEtpXmNIUy3QXKZS00E6qEIkis6oR32HVI7VkwtcHeTwijXytPN6fuvSVWjXUYzIVHPlpk8ISFFe-HYLRydFEUyGtKQPDI1nkItQ1G3ikoJVXYHe4MdF9G4R8ISUh0kVuD6oTjatrBY31nUXLmhM29j1MwZ3TIXSKRdNiwxjsd/http s%3A%2F%2Fglobal.gotomeeting.com%2Fjoin%2F355677525

You can also dial in using your phone. United States: +1 (571) 317-3112

Access Code: 355-677-525

Join from a video-conferencing room or system. Dial in or type: 67.217.95.2 or inroomlink.goto.com Meeting ID: 355 677 525 Or dial directly: 355677525@67.217.95.2 or 67.217.95.2##355677525

New to GoToMeeting? Get the app now and be ready when your first meeting starts: https://secureweb.cisco.com/1kBno6x9ihbFA76eLTjIrWuGP8qnJMb9KSkmcwCtgkdvl4djYz6hdmGg6NUt9vPnAASxCUS4AosV1FS7TP7F m8hppKBGaLQR0hsKamuxc5r7DWLoTaBYxDAQHSODD036i2LSboGxue41nEw-PQfQJHiDWurQZtEAJXDBZHbHULkgZEdbB4VSYT3SLN3jEUtFfsgzuNOtpc_4Ngy3nuV7srZveuDMzJt6JG59zdWtsmYuldVHE5wBQDjwh3JW7Xea27iopCbfV_KPLge3 5_e-OM__-1sCM0PKg4K-

ZOnp7qbt8CR9HPGkyvOJeFgvz7vH/https%3A%2F%2Fglobal.gotomeeting.com%2Finstall%2F355677525

Thank you,

Elizabeth M. Pomo, MPH environmental health scientist | environmental health department o 505.768.2638 m 505.239.7094 cabq.gov/environmentalhealth/

Attachment 4

Notice of Intent to Construct Form, Public Sign Notice Guideline Form, List of Neighborhood Associations and Neighborhood Coalitions and Proof of Public Notices

Timothy M. Keller, Mayor **Public Participation**

List of Neighborhood Associations and Neighborhood Coalitions MEMORANDUM

To:	Todd Albers, Senior Environmental, Health & Safety Specialist
From:	Elizabeth Pomo, Senior Environmental Health Scientist
Subject:	Determination of Neighborhood Associations and Coalitions
	within 0.5 mile of 4200 and 4272 Balloon Park Rd NE in Bernalillo County, NM
Date:	April 28, 2022

DETERMINATION:

On April 28, 2022 I used the City of Albuquerque Zoning Advanced Map Viewer (<u>http://coagisweb.cabq.gov/</u>) to verify which City of Albuquerque Neighborhood Associations (NA), Homeowner Associations (HOA) and Neighborhood Coalitions (NC) are located within 0.5 mile of 4200 and 4272 Balloon Park Rd NE in Bernalillo County, NM.

I then used the City of Albuquerque Office (COA) of Neighborhood Coordination's Monthly Master NA List dated April 2022 and the Bernalillo County (BC) Monthly Neighborhood Association April 2022 Excel file to determine the contact information for each NA and NC located within 0.5 mile of 4200 and 4272 Balloon Park Rd NE in Bernalillo County, NM.

The table below contains the contact information, which will be used in the City of Albuquerque Environmental Health Department's public notice. Duplicates have been deleted.

COA/BC Association or Coalition	Name	Email or Mailing Address	
Alameda North Valley	Steve Wentworth	anvanews@aol.com;	
Association			
	Mildred Griffee	mgriffee@noreste.org;	
District 4 Coalition	Daniel Regan	dlreganabq@gmail.com;	
	Association Email	sect.dist4@gmail.com;	
North Edith Commercial	Michael Haederle	haederle@yahoo.com;	
Corridor Association	Evelyn Harris	grumpyeh46@comcast.net;	
	Peggy Norton	peggynorton@yahoo.com;	
North Valley Coalition	Doyle Kimbrough	newmexmba@aol.com;	
	Association Email	nvcabq@gmail.com;	
	Janelle Johnson	tuscanylandscape@me.com;	
Vista Del Norte Alliance	James Souter	jamessouter@msn.com;	
	Association Email	vistadelnorte@me.com;	

Public Notice of Proposed Air Quality Construction Permit Application

Gerback, Jr., John < John.GerbackJr@curiaglobal.com>

Tue, May 17, 2022 at 2:13 PM

To: "anvanews@aol.com" <anvanews@aol.com>, "mgriffee@noreste.org" <mgriffee@noreste.org>, "dlreganabq@gmail.com" <dlreganabq@gmail.com>, "sect.dist4@gmail.com" <sect.dist4@gmail.com>, "haederle@yahoo.com" <haederle@yahoo.com>, "grumpyeh46@comcast.net" <grumpyeh46@comcast.net>, "peggynorton@yahoo.com" <peggynorton@yahoo.com>, "newmexmba@aol.com" <newmexmba@aol.com>, "nvcabq@gmail.com" <nvcabq@gmail.com>, "tuscanylandscape@me.com" <tuscanylandscape@me.com>, "jamessouter@msn.com" <jamessouter@msn.com>, "vistadelnorte@me.com" <vistadelnorte@me.com> Cc: "epomo@cabq.gov" <epomo@cabq.gov>, Matthew Lane <theenvironmentallane@gmail.com>

Dear Neighborhood Association/Coalition Representative(s),

Why did I receive this public notice?

You are receiving this notice in accordance with New Mexico Administrative Code (NMAC) 20.11.41.13.B(1) which requires any applicant seeking an Air Quality Construction Permit pursuant to 20.11.41 NMAC to provide public notice by certified mail or electronic mail to the designated representative(s) of the recognized neighborhood associations and recognized coalitions that are within one-half mile of the exterior boundaries of the property on which the source is or is proposed to be located.

What is the Air Quality Permit application review process?

The City of Albuquerque, Environmental Health Department, Air Quality Program (Program) is responsible for the review and issuance of Air Quality Permits for any stationary source of air contaminants within Bernalillo County. Once the application is received, the Program reviews each application and rules it either complete or incomplete. Complete applications will then go through a 30-day public comment period. Within 90 days after the Program has ruled the application complete, the Program shall issue the permit, issue the permit subject to conditions, or deny the requested permit or permit modification. The Program shall hold a Public Information Hearing pursuant to 20.11.41.15 NMAC if the Director determines there is significant public interest and a significant air quality issue is involved.

What do I need to know about this proposed application?

Applicant Name	Curia New Mexico, LLC
Site or Facility Name	Curia New Mexico
	4272 Balloon Park Road and 4200 Balloon Park Road Albuquerque, NM 87109

New or Existing Source	Existing
Anticipated Date of Application Submittal	May 31, 2022
Summary of Proposed Source to Be Permitted	The application is to modify existing Construction Permit #491-M7-RV1. The modification includes the removal of permit conditions requiring annual stack testing for emergency generators (due to minimal usage).

What emission limits and operating schedule are being requested?

See attached Notice of Intent to Construct form for this information.

How do I get additional information regarding this proposed application?

For inquiries regarding the proposed source, contact:

- John Gerback.
- 4240 Balloon Park Road, Albuquerque, NM, 87109
- My contact information is listed below.

For inquiries regarding the air quality permitting process, contact:

- City of Albuquerque Environmental Health Department Air Quality Program
- aqd@cabq.gov
- (505) 768-1972

John Gerback, CIH, CSP,

Environmental, Health and Safety

505.340.5989

John.GerbackJr@curiaglobal.com

CURIA NOTICE: This email message, and any attachments or hyperlinks within, contains information of Curia Global, Inc. (26 Corporate Circle, Albany, NY 12203, USA) and/or its affiliates (direct contact information for affiliate: Curia New Mexico, LLC, 4401 Alexander Boulevard NE, Albuquerque, NM 87107, USA) that may be confidential, proprietary, legally privileged, or otherwise protected from disclosure. It is intended solely for the use of the individual or entity named on this message. Access to this email by anyone else is unauthorized. If you are not the intended recipient, any disclosure or copying of the contents of this email or any action taken (or not taken) in reliance on it is unauthorized and may be unlawful. If you have received this email in error, please notify the sender immediately and destroy it.

CURIA

RE: Public Notice of Proposed Air Quality Construction Permit Application

Albers, Todd <Todd.Albers@curiaglobal.com>

Tue, May 17, 2022 at 3:09 PM

To: "anvanews@aol.com" <anvanews@aol.com>, "mgriffee@noreste.org" <mgriffee@noreste.org>, "dlreganabq@gmail.com" <dlreganabq@gmail.com>, "sect.dist4@gmail.com" <sect.dist4@gmail.com>, "haederle@yahoo.com" <haederle@yahoo.com>, "grumpyeh46@comcast.net" <grumpyeh46@comcast.net>, "peggynorton@yahoo.com" <peggynorton@yahoo.com>, "newmexmba@aol.com" <newmexmba@aol.com>, "nvcabq@gmail.com" <nvcabq@gmail.com>, "tuscanylandscape@me.com" <tuscanylandscape@me.com>, "jamessouter@msn.com" <jamessouter@msn.com>, "vistadelnorte@me.com" <vistadelnorte@me.com> Cc: "epomo@cabq.gov" <epomo@cabq.gov>, Matthew Lane <theenvironmentallane@gmail.com>, "Gerback, Jr., John" <John.GerbackJr@curiaglobal.com>

See attached document, Notice of Intent.

From: Gerback, Jr., John <John.GerbackJr@curiaglobal.com> Sent: Tuesday, May 17, 2022 14:14 To: anvanews@aol.com; mgriffee@noreste.org; dlreganabq@gmail.com; sect.dist4@gmail.com; haederle@yahoo.com; grumpyeh46@comcast.net; peggynorton@yahoo.com; newmexmba@aol.com; nvcabq@gmail.com; tuscanylandscape@me.com; jamessouter@msn.com; vistadelnorte@me.com Cc: epomo@cabq.gov; Matthew Lane <theenvironmentallane@gmail.com> Subject: Public Notice of Proposed Air Quality Construction Permit Application

Dear Neighborhood Association/Coalition Representative(s),

Why did I receive this public notice?

You are receiving this notice in accordance with New Mexico Administrative Code (NMAC) 20.11.41.13.B(1) which requires any applicant seeking an Air Quality Construction Permit pursuant to 20.11.41 NMAC to provide public notice by certified mail or electronic mail to the designated representative(s) of the recognized neighborhood associations and recognized coalitions that are within one-half mile of the exterior boundaries of the property on which the source is or is proposed to be located.

What is the Air Quality Permit application review process?

The City of Albuquerque, Environmental Health Department, Air Quality Program (Program) is responsible for the review and issuance of Air Quality Permits for any stationary source of air contaminants within Bernalillo County. Once the application is received, the Program reviews each application and rules it either complete or incomplete. Complete applications will then go through a 30-day public comment period. Within 90 days after the Program has ruled the application complete, the Program shall issue the permit, issue the permit subject to conditions, or deny the requested permit or permit modification. The Program shall hold a Public Information Hearing pursuant to 20.11.41.15 NMAC if the Director determines there is significant public interest and a significant air quality issue is involved.

Applicant Name	Curia New Mexico, LLC
Site or Facility Name	Curia New Mexico
Site or Facility Address	4272 Balloon Park Road and 4200 Balloon Park Road Albuquerque, NM 87109
New or Existing Source	Existing
Anticipated Date of Application Submittal	May 31, 2022
Summary of Proposed Source to Be Permitted	The application is to modify existing Construction Permit #491-M7-RV1. The modification includes the removal of permit conditions requiring annual stack testing for emergency generators (due to minimal usage).

What emission limits and operating schedule are being requested?

See attached Notice of Intent to Construct form for this information.

How do I get additional information regarding this proposed application?

For inquiries regarding the proposed source, contact:

- John Gerback.
- 4240 Balloon Park Road, Albuquerque, NM, 87109
- My contact information is listed below.

For inquiries regarding the air quality permitting process, contact:

- City of Albuquerque Environmental Health Department Air Quality Program
- aqd@cabq.gov
- (505) 768-1972

505.340.5989

John.GerbackJr@curiaglobal.com

CURIA NOTICE: This email message, and any attachments or hyperlinks within, contains information of Curia Global, Inc. (26 Corporate Circle, Albany, NY 12203, USA) and/or its affiliates (direct contact information for affiliate: Curia New Mexico, LLC, 4401 Alexander Boulevard NE, Albuquerque, NM 87107, USA) that may be confidential, proprietary, legally privileged, or otherwise protected from disclosure. It is intended solely for the use of the individual or entity named on this message. Access to this email by anyone else is unauthorized. If you are not the intended recipient, any disclosure or copying of the contents of this email or any action taken (or not taken) in reliance on it is unauthorized and may be unlawful. If you have received this email in error, please notify the sender immediately and destroy it.

CURIA

Notice of Intent_Curia_01May2022 (003).pdf 146K

NOTICE FROM THE APPLICANT Notice of Intent to Apply for Air Quality Construction Permit

You are receiving this notice because the New Mexico Air Quality Control Act (20.11.41.13B NMAC) requires any owner/operator proposing to construct or modify a facility subject to air quality regulations to provide public notice by certified mail or electronic mail to designated representatives of recognized neighborhood associations and coalitions within 0.5-mile of the property on which the source is or is proposed to be located.

This notice indicates that the <u>owner/operator intends to apply for an Air Quality Construction Permit</u> from the Albuquerque – Bernalillo County Joint Air Quality Program. Currently, <u>no application for this proposed project</u> <u>has been submitted</u> to the Air Quality Program. Applicants are required to include a copy of this form and documentation of mailed notices with their Air Quality Construction Permit Application.

Proposed Project Information

Applicant's name and address: Nombre y domicilio del solicitante:	<u>i roposed i roject information</u>
Owner / operator's name and address: Nombre y domicilio del propietario u operador:	
Contact for comments Datos actuales para come	entarios y preguntas:
Nar	ne (Nombre):
Addres Phone Number (Númer	ss (Domicilio):
E-mail Address (Correc	·
Fecha actual o estimada e Description of the sou Descripción de la fuente: Exact location of the s or proposed source: Ubicación exacta de la fue fuente propuesta:	source
Nature of business: Tipo de negocio:	
Process or change for permit is requested: Proceso o cambio para el permiso:	
Maximum operating s Horario máximo de opera	
Normal operating sch Horario normal de operac	

Preliminary estimate of the maximum quantities of each regulated air contaminant the source will emit:

Estimación preliminar de las cantidades máximas de cada contaminante de aire regulado que la fuente va a emitir:

Air Contaminant	Proposed Construction Permit Permiso de Construcción Propuesto		Net Changes (for permit modification or technical revision) Cambio Neto de Emisiones (para modificación de permiso o revisión técnica)	
Contaminante de aire	pounds per hour <i>libras por hora</i>	tons per year toneladas por año	pounds per hour <i>libras por hora</i>	tons per year toneladas por año
CO				
NOx				
VOC				
SO2				
PM10				
PM2.5				
НАР				

Questions or comments regarding this Notice of Intent should be directed to the Applicant. Contact information is provided with the Proposed Project Information on the first page of this notice. <u>To check the status</u> of an Air Quality Construction Permit application, call 311 and provide the Applicant's information, or visit www.cabq.gov/airquality/air-quality-permits.

The Air Quality Program will issue a Public Notice announcing a 30-day public comment period on the permit application for the proposed project when the application is deemed complete. The Air Quality Program does not process or issue notices on applications that are deemed incomplete. More information about the air quality permitting process is attached to this notice.

Air Quality Construction Permitting Overview

This is the typical process to obtain an Air Quality Construction Permit for Synthetic Minor and Minor sources of air pollution from the Albuquerque – Bernalillo County Joint Air Quality Program.

Step 1: Pre-application Meeting: The Applicant and their consultant must request a meeting with the Air Quality Program to discuss the proposed action. If air dispersion modeling is required, Air Quality Program staff discuss the modeling protocol with the Applicant to ensure that all proposed emissions are considered.

Notice of Intent from the Applicant: Before submitting their application, the Applicant is required to notify all nearby neighborhood associations and interested parties that they intend to apply for an air quality permit or modify an existing permit. The Applicant is also required to post a notice sign at the facility location.

Step 2: Administrative Completeness Review and Preliminary Technical Review: The Air Quality Program has 30 days from the day the permit is received to review the permit application to be sure that it is administratively complete. This means that all application forms must be signed and filled out properly, and that all relevant technical information needed to evaluate any proposed impacts is included. If the application is not complete, the permit reviewer will return the application and request more information from the Applicant. Applicants have three opportunities to submit an administratively complete application with all relevant technical information.

Public Notice from the Department: When the application is deemed complete, the Department will issue a Public Notice announcing a 30-day public comment period on the permit application. This notice is distributed to the same nearby neighborhood associations and interested parties that the Applicant sent notices to, and published on the Air Quality Program's website.

During this 30-day comment period, individuals have the opportunity to submit written comments expressing their concerns or support for the proposed project, and/or to request a Public Information Hearing. If approved by the Environmental Health Department Director, Public Information Hearings are held after the technical analysis is complete and the permit has been drafted.

Step 3: Technical Analysis and Draft Permit: Air Quality Program staff review all elements of the proposed operation related to air quality, and review outputs from advanced air dispersion modeling software that considers existing emission levels in the area surrounding the proposed project, emission levels from the proposed project, and meteorological data. The total calculated level of emissions is compared to state and federal air quality standards and informs the decision on whether to approve or deny the Applicant's permit.

Draft Permit: The permit will establish emission limits, standards, monitoring, recordkeeping, and reporting requirements. The draft permit undergoes an internal peer review process to determine if the emissions were properly evaluated, permit limits are appropriate and enforceable, and the permit is clear, concise, and consistent.

Public Notice from the Department: When the technical analysis is complete and the permit has been drafted, the Department will issue a second Public Notice announcing a 30-day public comment period on the technical analysis and draft permit. This second Public Notice, along with the technical analysis documentation and draft permit, will be published on the Air Quality Program's website, and the public notice for availability of the technical analysis and draft permit will only be directly sent to those who requested further information during the first comment period.

Air Quality Construction Permitting Overview

During this second 30-day comment period, residents have another opportunity to submit written comments expressing their concerns or support for the proposed project, and/or to request a Public Information Hearing.

Possible Public Information Hearing: The Environmental Health Department Director may decide to hold a Public Information Hearing for a permit application if there is significant public interest and a significant air quality issue. If a Public Information Hearing is held, it will occur after the technical analysis is complete and the permit has been drafted.

Step 4: Public Comment Evaluation and Response: The Air Quality Program evaluates all public comments received during the two 30-day public comment periods and Public Information Hearing, if held, and updates the technical analysis and draft permit as appropriate. The Air Quality Program prepares a response document to address the public comments received, and when a final decision is made on the permit application, the comment response document is published on the Air Quality Program's website and distributed to the individuals who participated in the permit process. If no comments are received, a response document is not prepared.

Step 5: Final Decision on the Application: After public comments are addressed and the final technical review is completed, the Environmental Health Department makes a final decision on the application. If the permit application meets all applicable requirements set forth by the New Mexico Air Quality Control Act and the federal Clean Air Act, the permit is approved. If the permit application does not meet all applicable requirements, it is denied.

Notifications of the final decision on the permit application and the availability of the comment response document is published on the Air Quality Program's website and distributed to the individuals who participated in the permit process.

The Department must approve a permit application if the proposed action will meet all applicable requirements and if it demonstrates that it will not result in an exceedance of ambient air quality standards. Permit writers are very careful to ensure that estimated emissions have been appropriately identified or quantified and that the emission data used are acceptable.

The Department must deny a permit application if it is deemed incomplete three times, if the proposed action will not meet applicable requirements, if estimated emissions have not been appropriately identified or quantified, or if the emission data are not acceptable for technical reasons.

For more information about air quality permitting, visit <u>www.cabq.gov/airquality/air-quality-permits</u>

City of Albuquerque Environmental Health Department Air Quality Program

Public Notice Sign Guidelines

Any person seeking a permit under 20.11.41 NMAC, Authority-to-Construct Permits, shall do so by filing a written application with the Department. *Prior to submitting an application, the applicant shall post and maintain a weather-proof sign provided by the department. The applicant shall keep the sign posted until the department takes final action on the permit application; if an applicant can establish to the department's satisfaction that the applicant is prohibited by law from posting, at either location required, the department may waive the posting requirement and may impose different notification requirements. A copy of this form must be submitted with your application.*

Applications that are ruled incomplete because of missing information will delay any determination or the issuance of the permit. The Department reserves the right to request additional relevant information prior to ruling the application complete in accordance with 20.11.41 NMAC.

Name: _	Curia New Mexico	
Contact	: John Gerback, Jr	
Compar	ny/Business: Curia New Mexico, LLC	

- \Box The sign must be posted at the more visible of either the proposed or existing facility entrance (or, if approved in advance and in writing by the department, at another location on the property that is accessible to the public)
 - \Box The sign shall be installed and maintained in a condition such that members of the public can easily view, access, and read the sign at all times.
 - \Box The lower edge of the sign board should be mounted a minimum of 2' above the existing ground surface to facilitate ease of viewing
- \square Attach a picture of the completed, properly posted sign to this document
- □ □ **Check here if the department has waived the sign posting requirement.** Alternative public notice details:

<u>.</u>	Proposed / ermiso de Cor	Air Quality Co Instrucción de Cal	nstruction Pe idad del Aire Pro	ermit opuesto		
Applicant's Name:	0	-				
Nombre del solicitonte. Owner or Operator	Ur	ia New	Mexico	LLC		
Nombre del Propietoria	U Operadas	LIKIA NA	IN MANUAR			
Actual or Estimated	Date the Application	Curia Ne	w Mexico,	LLC 14 15, 2022		
Fecho Actual o Estimad	a en que se Entrogará (a Solicitud ol Departamento:	ine Department:	lu 15. 2022		
Exact Location of th Ubicoción Excoto de lo	e Source or Propose	ed Source: 11777	d 11200 2	T. Dloud		
		sto:	9 4200 BO	alloon Park Rd Abg. N		
Descripción de la Fuen	· Two 2,200	HP STNORY / PMAYAN	POUL Assembly and	84 Miler Whr builer and 52 Miler Doiler		
Nature of Business	0.1.	in the state of th	ncy yourarons one	5.9 MIBTWAY DWICY and		
			min & Historical char	mentical medicals		
Process or change	for which a permit is	requested:	surger, a paralect the	MUCCHINGI PRODUCTS.		
Proceso o combio para	el cuól se solicita el per	miso: removal of per	mit conditions real	uing annual stack testing		
stimación preliminar de la	s contidades máximas a	ntities of each regulated : le codo contominante de oire i	air contaminant the sou	rce will emit:		
		e coou concominante de ave i				
	Burnaud Co	anterior Brownia		nge Emissions		
Air Contaminant	Proposed Co	nstruction Permit Istrucción Propuesto		vit modification)		
Contaminante	remisso de con	istraction Propuesto	Combio Neto de Emisiones			
de Aire	Pounds per hour	Tons per year	(para modificación de permiso) Pounds per hour Tons per year			
	libres por hore	tonelados por año	libras par hora	tonelodos por año		
NOx	92.9	25.7	(-) 55.6	(.) 17.0		
co	28.4	9.2	(-) 6.3	(-) 4.2		
VOC	8.3	21.3	(·) 1.1	(-) 0.2		
50 ₁	0.1	0.1	6) 41.2	(-) 11-8		
PM ₁₀	3.7	1.2	(c) 1.1	(-) 0.4		
PM2.5	5.7	1.2	6) 1.1	(-) 0.4		
HAP	1.5	6.1	0.15	0.04		
Maximum Operati	ne Schedule:	States of the second second	Sector Contractor	and the second		
	Schedule: erociones: Builers =	= 8760 arc/yrc, stand 87500 hrs/yrs, stand ents and inquiries				
Horario Normal de Op		6 10				
Horario Normal de Op Current Contact Int Datas actuales para Ci	John Gerbas	A, Un	de Marine State	99		
Horario Normal de Op Current Contact Int Datos actuales para Ci Nama (Nombre)	John Gerbac	Park Rd. Albumper	NEW MERICE #71			
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre): Address (Dombre):	John Gerbac	Park Rd. Albuquerque	, NEW MERICE #71			
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre): Address (Dominik	John Gerbac	Perk Rd. Albuquerque (cas) 923-1500				
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre): Address (Domicili Phone Number (Email Address (C	John Gerbac): 4240 Balloon 3 Número Telefónica): (orreo Electrónica): Joh	Park Rd. Albuquerque (503) 923-1500 A. Gerback Jr @ C	uniaglobal-com	ia a complaint.		
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre): Address (Domicili Phone Number (Email Address (C Cell 333	John Gerbac): 4240 Balloon 3 Número Telefónica): (orreo Electrónica): Joh for additional informatio	Park Rd. Albuquerque 509) 923-1500 (A. Gerback Jr C C In concerning this project, the	uniaglobal - com Air Quality Program, or to fil	e a complaint.		
Horario Normal de Op Current Contact Ini Datos octuales para Ci Name (Nombre): Address (Domicili Phone Number (Email Address (C Call 313 Liame al 313 para o	John Gerbac): 4240 Balloon 3 Número Telefónico): orreo Electrónico): for additional informatio beener información odicio	Park Rd. Albuquerque 503) 923 - 1500 (A. Gerback Jr C C on concerning this project, the not sobre este proyects, der Pro-	uriaglobal - com Air Quality Program, or to fil ograme de Calidad del Aire, o ac Chicana Trinh Chile Lucing	ie a complaint. para presenter una queja. Không Khi		
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre): Address (Domicili Phone Number (Email Address (C Call 311 Liame al 311 para ol dol	John Gerbac): 4240 Balloon Número Telefónica): (orreo Electrónica): Joh for additional informatio bener información odicio 813 de biés shém shóng ti	Park Rd. Albuquerque 509) 923 - 1500 A. Gerback Jr @ C on concerning this project, the nal sobre este proyecto, del Pri in holic dé kniéu nal vé du dn n	un'aglobal - 00 m Air Quality Program, or to fil ograme de Calidad del Aire, o dy, Chutang Trinh Chie Luong	e a complaint. para presenter una queja. Không Khí una Berenittina		
Horario Normal de Op Current Contact Ini Datos actuales para G Name (Nombre), Address (Domicili Phone Number (Email Address (C Call 311 Liome al 311 para o Gol. City of All	John Gerbac): 4240 Balloon Número Telefónica): orreo Electrónica): for additional informatio beener información adicio 813 de bute chem chang B suquerque, Environment arrenue. Departemento de	Perk Rd. Albuquerque 509) 923 - 1500 A. Gerback Jr @ C in concerning this project, the noil sobre este proyecto, del Pri in hoặc để khiểu nại về dự dn n al Health Department, Air Qui s Solud Ambientol, Programa d	uniaglobal - Com Air Quality Program, or to fil ograme de Calidad del Aire, o dy, Chutang Trinh Chile Luang ality Program – Stationary Son e Calidad del Aire - Permison p	le a complaint. para presenter una queja. Không Khi unce Permitting ara Fuentes Immévilles		
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre) Address (Domicili Phone Number (Email Address (C Call 311 Liome al 311 para ol Gol. City of All Ciudad de Albug	John Gerbac): 4240 Bolloon Número Telefónica): Joh for additional informatio bener información adicio 813 de biés chém chông ti puquenque, Environment venque, Deportamento de	Park R. Albuquerque 509) 923 - 1500 A. Gerback Jr C C in concerning this project, the nois sobre este proyects, del Pri in holic dé khiléu noi vé dy din n al Health Department, Air Qui i Solud Ambientol, Programa d (505) 768-1572, add@cab	un'aglobal - Com Air Quality Program, or to fil opromo de Calidod del Aire, o by, Chucing Trinh Châe Lucing Altry Program - Stationary Sos e Calidod del Aire - Permisos p 0.804	le a complaint. para presenter una queja. Không Khi unce Permitting ana Fuences Ismoluiles		
Horario Normal de Op Current Contact Ini Datos actuales para Ci Name (Nombre) Address (Domicili Phone Number (Email Address (C Call 311 Liome al 311 para ol Gol. City of All Ciudad de Albug	John Gerbac): 4240 Bolloon Número Telefónica): Joh for additional informatio bener información adicio 813 de biés chém chông ti puquenque, Environment venque, Deportamento de	Park R. Albuquerque 509) 923 - 1500 (A. Gerback Jr C C on concerning this project, the nois obre este proyects, del Pri in holic dé khiléu noi vé du dn n al Health Department, Air Qui chuid Ambientel, Programa d	un'aglobal - Com Air Quality Program, or to fil opromo de Calidod del Aire, o by, Chucing Trinh Châe Lucing Altry Program - Stationary Sos e Calidod del Aire - Permisos p 0.804	le a complaint. para presenter una queja. Không Khi unce Permitting ana Fuences Ismoluiles		

NEW ADDRESS OF A

Attachment 5

Ambient Impact Analysis Dispersion Model Report

DISPERSION MODEL REPORT FOR CURIA NEW MEXICO, LLC PERMIT #0491-M7-RV1 REVISION APPICATION

Albuquerque, New Mexico

PREPARED FOR CURIA NEW MEXICO, LLC

May 2, 2022

Prepared by

Montrose Air Quality Services, LLC

CONTENTS

TABLE OF CONTENTS	PAGE
1.0 INTRODUCTION	
2.0 DISPERSION MODELING PROTOCOL	
2.1 DISPERSION MODEL SELECTION	
2.2 BUILDING WAKE EFFECTS	7
2.3 METEOROLOGICAL DATA	9
2.4 RECEPTORS AND TOPOGRAPHY	9
2.5 MODELED EMISSION SOURCES INPUTS	9
2.6 PARTICLE SIZE DISTRIBUTION	
2.7 NO ₂ DISPERSION MODELING ANALYSIS	
2.8 PM _{2.5} SECONDARY EMISSIONS MODELING	
2.9 AMBIENT MODELING BACKGROUND	
3.0 MODEL SUMMARY	
3.1 SIGNIFICANT IMPACT LEVEL (SILs) MODELING ANALYSIS	
3.2 CUMULATIVE IMPACT ANALYSIS (CIA) MODEL RESULTS	
3.2.1 NO ₂ Cumulative Impact Analysis Modeling Results	
3.2.2 PM _{2.5} Direct and Secondary Formation CIA Modeling Results	

TABLES

PAGE

TADLE 1 Emergency Concreter Hours of Operation	С
TABLE 1 Emergency Generator Hours of Operation	<i>L</i>
TABLE 2 National and New Mexico Ambient Air Quality Standards	6
TABLE 3 Standards for Which Modeling Is Not Required by NMED AQB	6
TABLE 4 Model Inputs for Point Sources at the Curia Balloon Park – Maximum Operations	10
TABLE 5 Model Inputs for Point Sources at the Curia Balloon Park - Normal Operations	10
TABLE 6 Monitored Seasonal NO_2 Background – 3^{rd} Highest Hourly $\mu g/m^3$	15
TABLE 7 Summary of Air Dispersion Modeling Results below SILs	17
TABLE 8 Summary of CIA Modeling Results	18
TABLE 9 NO ₂ CIA Model Results	19
TABLE 10 PM _{2.5} CIA Model Results	23

FIGURES	PAGE
FIGURE 1 Curia Balloon Park Stack Location	3
FIGURE 2 Curia Balloon Park Location and Surrounding Area	4
FIGURE 3 Nearby Buildings Included in the Model Analysis	8
FIGURE 4 Aerial Map of NO2 1 Hour and Annual Model Result Maximum Operation (µg/	m ³)20
FIGURE 5 Aerial Map of NO ₂ 1 Hour and Annual Model Result Normal Operation ($\mu g/m^3$)21
FIGURE 6 Aerial Map of PM2.5 Annual Average Model Result Maximum Operation (µg/m	n^{3})24
FIGURE 7 Aerial Map of PM _{2.5} Annual Average Model Result Normal Operation (μ g/m ³).	25

1.0 INTRODUCTION

This dispersion modeling analysis will be conducted by Montrose Air Quality Service, LLC (Montrose) on behalf of Curia New Mexico, LLC (Curia), to evaluate ambient air quality impacts for Curia's Balloon Park Road facilities using updated information from the manufacturer for permitted, Units 5 and 6, emission sources in the permit modification of Permit #0491-M7-RV1. The approximate UTM coordinates of the Balloon Park Road facilities are; 354,450 meters E, 3,890,650 meters N, Zone 13, NAD 83. The objective of this evaluation is to determine whether ambient air concentrations from the maximum operation of the Balloon Park Road facilities for nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter; both 10 microns or less (PM₁₀) and 2.5 microns or less (PM_{2.5}); are below Class II federal and state ambient air quality standards (NAAQS and NMAAQS) found in 40 CFR Part 50 and the City of Albuquerque/Bernalillo County Health Division (AEHD) air quality regulation 20.11.8 NMAC, respectively.

The dispersion modeling will be conducted using the American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee Dispersion Model (AERMOD), *Version 21112*. This model is recommended by EPA for determining Class II impacts within 50 km of the source being assessed. Additionally, AERMOD was developed to handle complex terrain. Montrose employs the general modeling procedures outlined in "Permit Modeling Guidelines, Albuquerque Environmental Health Department", revised 10/10/2019, "New Mexico Air Pollution Control Bureau, Dispersion Modeling Guidelines", revised 10/26/2020, and the most up to date EPA's *Guideline on Air Quality Models*.

With this permit modification, Curia is requesting removal of all permit conditions requiring annual stack testing for emergency generators, Units 7 and 8. The permit presently includes three (3) steam boilers (Units 2, 5, and 6) and three (3) emergency generators (Units 1, 7, and 8). In addition to removing the permit conditions for stack test, Curia will be updating the Units 5 and 6 boiler emission rates and model stack parameters based on manufacturer data and site measurements. Also, Unit 2 will be moved from a regulated source to an exempt source due to the size of the boiler (< 5 MMBtu) and its function of produce steam for personal heating of air and water. The revised emission rates of Unit 5 and 6 will be included in the permit modification application. Each boiler is presently permitted to operate 8760 hours per year, which will not change with this permit modification. Maximum operation modeled will include both boilers operating at 100% load. Additional modeling will present normal operations with the Superior (Unit 5) at 100% load and the Cleaver-Brooks (Unit 6) operating at 75% load.

For the boilers modeled exhaust parameters, the boiler manufacturers were contacted and the manufacturer provided the following information; expected emission rates, stack exhaust temperature at maximum and exhaust flowrate at maximum (see Attachment A). Stack height and stack diameter were determined by site inspection.

The three (3) emergency generators included in Permit #0491-M7-RV1 will not be included in the dispersion modeling analysis, because these sources are intermittent. Emergency generators, with exception of loss of generating power, are tested monthly. Monthly testing takes less than an hour per engine and stack emission rate testing of Units 7 and 8 takes about 4 hours each annually. The following table summarizes the hours of operation for the emergency generators from 2016 through 2020.

Unit	2016 (Hours/Year)	2017 (Hours/Year)	2018 (Hours/Year)	2019 (Hours/Year)	2020 (Hours/Year)	Annual Average (Hours/Year)
Unit 1 Emergency Generator	29.0	15.4	31.3	38.5	35.5	30.3
Unit 7 Emergency Generator	14.1	24.5	16.8	10.0	5.8	14.2
Unit 8 Emergency Generator	16.2	25.8	16.7	10.8	6.2	15.1

TABLE 1: Emergency Generator Hours of Operation

Figure 1 below shows the Curia Balloon Park Road facilities restricted boundary and location of the existing permitted boiler stacks. Figure 2 shows the location of Curia Balloon Park Road facilities and surrounding area.

Curia modeled additional neighboring sources identified by the Albuquerque Environmental Health Department (AEHD) Air Quality Program (AQP) Modeling Section. Neighbors include; Materion (Permit #1962-M2-1AR), Materion (Permit #0494-M4-2AR), Mega Corp (Permit #1292), Roadrunner CBP (Permit #0271-2AR), Roadrunner CBP (Permit #0505-M1-4AR), Vulcan RAP Plant (Permit #1625-7AR), Vulcan Osuna HMA (Permit #0104-M2), American Gypsum (Permit #0752-M3), and PNM's Reeves Station (Permit #0499-M2-RN1).

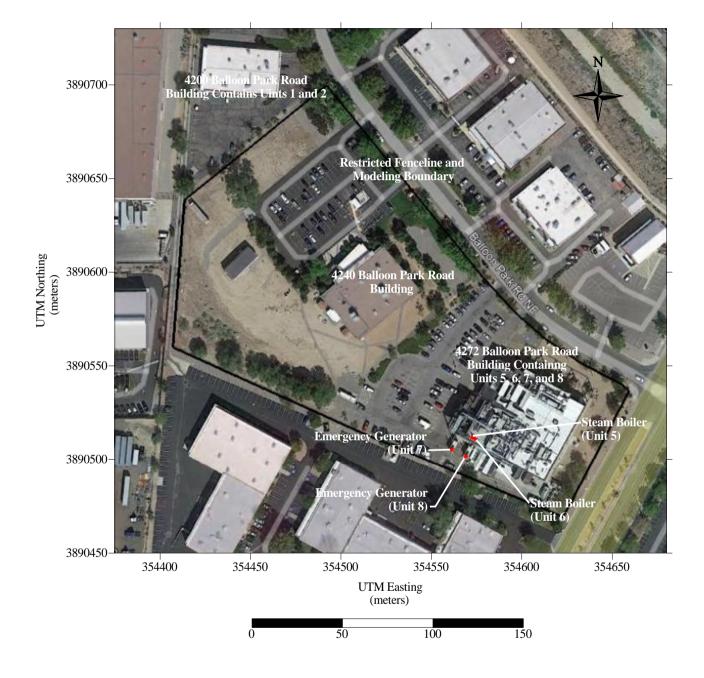


FIGURE 1: Curia Balloon Park Site Equipment Locations

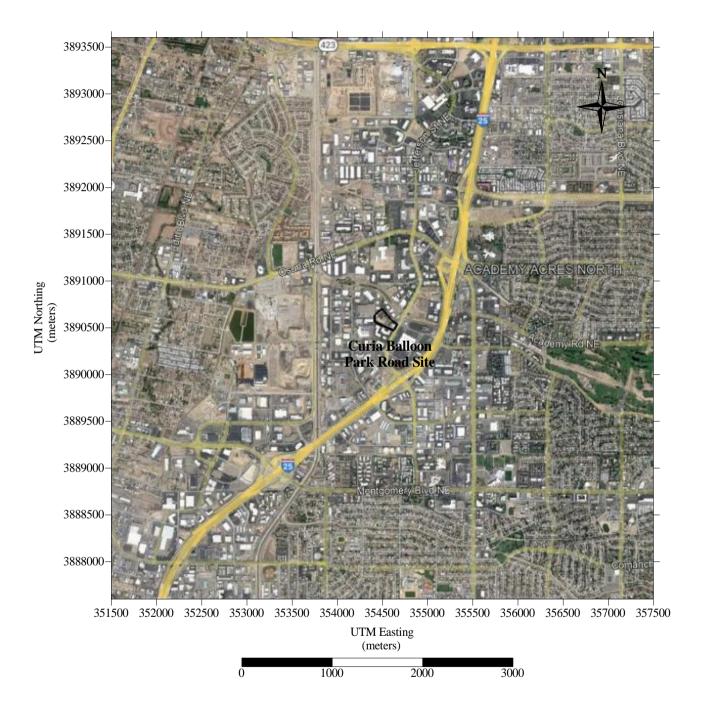


FIGURE 2: Curia Balloon Park Site Location and Surrounding Area

2.0 DISPERSION MODELING PROTOCOL

This section identifies the technical approach and dispersion model inputs that will be used for the Class II federal and State ambient air quality standards for this permit application. AEHD AQP requires that all applicable criteria pollutant emissions be modeled using the most recent versions of US EPA's approved models and the modeled concentrations be compared with National Ambient Air Quality Standards (NAAQS), and New Mexico Ambient Air Quality Standards (NMAAQS). Table 1 shows the NAAQS and NMAAQS that the source's ambient impacts must meet in order to demonstrate compliance. Table 1 also lists the Class II Significant Impact Levels (SILs) which are used to assess whether a source has a significant impact at downwind receptors.

The dispersion modeling analysis will be performed to estimate concentrations resulting from the maximum permitted operation of the Curia's Unit 5 and 6 steam boilers using the maximum permitted emission rates for operation of 8760 hours per year. Additional dispersion modeling analysis will be performed to estimate concentrations resulting from the normal operation of the Curia's Unit 5 and 6 steam boilers using the maximum permitted emission rates for operation of Unit 5 and 75% load for Unit 6. The modeling will determine the maximum off-site concentrations for NO₂, CO, SO₂, PM₁₀ and PM_{2.5}, for comparison with modeling significance levels, national/New Mexico/Bernalillo County ambient air quality standards (AAQS). For this modeling analysis, particulate emissions from Curia sources assumes PM = PM₁₀ = PM_{2.5} are equal. The modeling will follow the guidance and protocols outlined in the "Permit Modeling Guidelines, Albuquerque Environmental Health Department", revised 10/10/2019, "New Mexico Air Pollution Control Bureau, Dispersion Modeling Guidelines", revised 01/01/2019, and the most up to date EPA's *Guideline on Air Quality Models*.

Initial radius of impact (ROI) modeling will be performed for all Curia modeled sources only to determine pollutants and averaging periods that exceed significant impact levels (SILs). If initial modeling for any pollutant and averaging period exceeds SILs, then cumulative modeling will be performed for those pollutants and averaging periods. The cumulative impacts model will include all receptors for which the ROI model indicates that the SILs are exceeded, will include any identified neighboring emission sources, and will incorporate background ambient concentrations. Table 2 lists the SILs, NAAQS and NMAAQS for each pollutant averaging period. Table 3 lists ambient air quality standards for which modeling is not required by NMED AQB, when an approved surrogate standard is modeled.

TABLE 2. National and New Mexico Amblent An Quanty Standard Summary							
Pollutant	Avg. Period	Sig. Lev. (µg/m ³)	Class I Sig. Lev. (µg/m ³)	NAAQS	NMAAQS	PSD Increment Class I	PSD Increment Class II
СО	8-hour	500		9,000 ppb ⁽¹⁾	8,700 ppb ⁽²⁾		
0	1-hour	2,000		35,000 ppb ⁽¹⁾	13,100 ppb ⁽²⁾		
	annual	1.0	0.1	53 ppb ⁽³⁾	50 ppb ⁽²⁾	2.5 µg/m ³	25 µg/m ³
NO ₂	24-hour	5.0			100 ppb ⁽²⁾		
	1-hour	7.52		100 ppb ⁽⁴⁾			
DM	annual	0.2	0.05	$12 \ \mu g/m^{3(5)}$		$1 \ \mu g/m^3$	$4 \ \mu g/m^3$
PM _{2.5}	24-hour	1.2	0.27	$35 \ \mu g/m^{3(6)}$		$2 \ \mu g/m^3$	9 μg/m ³
DM	annual	1.0	0.2			$4 \ \mu g/m^3$	$17 \ \mu g/m^3$
PM_{10}	24-hour	5.0	0.3	$150 \ \mu g/m^{3(7)}$		8 μg/m ³	$30 \ \mu g/m^3$
	annual	1.0	0.1		20 ppb ⁽²⁾	$2 \ \mu g/m^3$	20 µg/m ³
SO_2	24-hour	5.0	0.2		100 ppb ⁽²⁾	5 µg/m ³	91 µg/m ³
	3-hour	25.0	1.0	500 ppb ⁽¹⁾		25 µg/m ³	$512 \ \mu\text{g/m}^3$
	1-hour	7.8		75 ppb ⁽⁸⁾			

TABLE 2: National and New Mexico Ambient Air Quality Standard Summary

Standards converted from ppb to $\mu g/m^3$ use a reference temperature of 25° C and a reference pressure of 760 millimeters of mercury.

(1) Not to be exceeded more than once each year.

(2) Not to be exceeded.

(3) Annual mean.

(4) 98th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

(5) Annual mean, averaged over 3 years.

(6) 98th percentile of 24-hour daily maximum concentrations, averaged over 3 years.

(7) Not to be exceeded more than once per year on average over 3 years.

(8) 99th percentile of 1-hour daily maximum concentrations, averaged over 3 years.

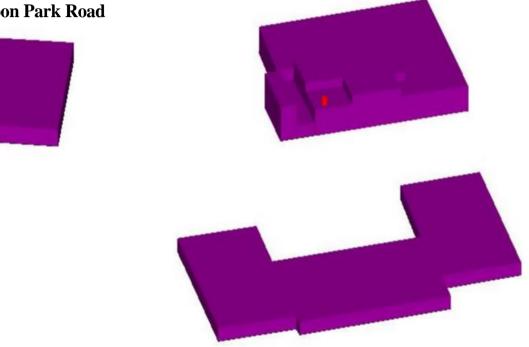
TABLE 3: Standards for Which	Modeling Is Not Required by NMED AQB

Standard not Modeled	Surrogate that Demonstrates Compliance
CO 8-hour NAAQS	CO 8-hour NMAAQS
CO 1-hour NAAQS	CO 1-hour NMAAQS
NO2 annual NAAQS	NO2 annual NMAAQS
NO2 24-hour NMAAQS	NO2 1-hour NAAQS
O3 8-hour	Regional modeling
SO ₂ annual NMAAQS	SO2 1-hour NAAQS
SO2 24-hour NMAAQS	SO2 1-hour NAAQS
SO ₂ 3-hour NAAQS	SO ₂ 1-hour NAAQS

2.1 DISPERSION MODEL SELECTION

The dispersion modeling will be conducted using the American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee Dispersion Model (AERMOD), *Version 21112*. This model is recommended by EPA for determining Class II impacts within 50 km of the source being assessed. Additionally, AERMOD was developed to handle complex terrain. In this analysis, AERMOD will be used to estimate pollutant ambient air concentrations for NO₂, CO, SO₂, PM₁₀ and PM_{2.5}, from the Curia Balloon Park facility emission sources.

AERMOD is a Gaussian plume dispersion model that is based on planetary boundary layer principles for characterizing atmospheric stability. The model evaluates the non-Gaussian vertical behavior of plumes during convective conditions with the probability density function and the superposition of several Gaussian plumes. The AERMOD modeling system has three components: AERMAP, AERMET, and AERMOD. AERMAP is the terrain preprocessor program. AERMET is the meteorological data preprocessor. AERMOD includes the dispersion modeling algorithms and was developed to handle simple and complex terrain issues using improved algorithms. AERMOD uses the dividing streamline concept to address plume interactions with elevated terrain. AERMOD will be run using all the regulatory default options.


AERMOD CIA modeling will be run using all the following regulatory default options including use of:

- Gradual Plume Rise
- Stack-tip Downwash
- Buoyancy-induced Dispersion
- Calms and Missing Data Processing Routine
- Upper-bound downwash concentrations for super-squat buildings
- Default wind speed profile exponents
- Calculate Vertical Potential Temperature Gradient
- No use of gradual plume rise
- Rural Dispersion

These regulatory default options are found in the AERMOD User's Manual. The model will incorporate local terrain into the calculations.

2.2 BUILDING WAKE EFFECTS

Buildings are located at the site that could impact plume downwash effects for the Curia Balloon Park sources. These buildings located within 5L (L = lesser dimension, height or projected width, of nearby structure(s)) of near point sources will be included in building downwash calculations. Figure 3 shows proposed Curia buildings location on the Balloon Park Road and other nearby buildings included in the model analysis.

4272 Balloon Park Road

5655 and 5659 Jefferson Street

4240 Balloon Park Road

FIGURE 3: Curia and Nearby Buildings Included in the Model Analysis

2.3 METEOROLOGICAL DATA

The meteorological data input file to be used in this dispersion modeling analysis is Albuquerque met data covering years 2014 through 2018 (AERMET *Version 19191* dated 01/31/2020) available from the AEHD AQP.

2.4 RECEPTORS AND TOPOGRAPHY

Modeling will be completed using as many receptor locations as required to ensure that the maximum estimated impacts are identified. ROI modeling will be performed with receptors within 20 kilometers of the model boundary. Because of the nature of the emissions from the site, it is expected the maximum modeled concentrations will be on or near the site's fenceline.

The refined receptor grid will include receptors located at 50-meter spacing from the facility boundary out to 500 meters; 100-meter spacing from 500 meters out to 1,000 meters; 250-meter spacing from 1,000 meters out to 3,000 meters; 500-meter spacing from 3,000 meters out to 5,000 meters; and 1000-meter spacing from 5,000 meters out to 10,000 meters, and 2500-meter spacing from 10,000 meters out to 20,000 meters. Fenceline receptor spacing will be 25 meters.

All model receptors will be preprocessed using the AERMAP software (*Version 18081*) associated with AERMOD. The AERMAP software establishes a base elevation and a height scale for each receptor location. The height scale is a measure of the receptor's location and base elevation and its relation to the terrain feature that has the greatest influence in dispersion for that receptor. AERMAP will be processed using U.S. Geological Survey (USGS) national elevation data (NED). Output from AERMAP will be used as input to the AERMOD runstream file for each model run.

2.5 MODELED EMISSION SOURCES INPUTS

Curia presently operates 2 regulated steam boilers under Permit #0491-M7-RV1. Each boiler is allowed to operate 8760 hours per year. Emissions from exhaust stacks will be modeled as point sources. Model input parameters are based on actual release height, release diameter, and manufacture specification release velocity or exhaust flow rate, and release temperature. Curia Balloon Park boilers modeled stack releases are vertical and include raincaps. Table 4 summarize the model inputs for the Curia Balloon Park emission sources. Table 5 summarize the model inputs for the Curia Balloon Park emission sources with Unit 5 operating at 100% load and Unit 6 operating at 75% load. For information on model inputs for Unit 6 operating at 75% load, the manufacture specifications for the Cleaver-Brooks Boiler, found in Attachment A, was used.

Source Description	Model ID	Stack Height (m)	Stack Temp. (K)	Exit Vel. (m/s)	Stack Dia. (m)	NOx Emission Rate (lb/hr)	CO Emission Rate (lb/hr)	SO2 Emission Rate (lb/hr)	PM Emission Rate (lb/hr)
Curia NG Boiler Unit 5	В5	12.1920	452.5944	7.8943	0.4318	0.25107	0.30965	0.00837	0.04017
Curia NG Boiler Unit 6	B6	11.6434	510.3700	8.6682	0.3810	0.36000	0.19000	0.00300	0.03900

TABLE 4: Model Inputs for Point Sources at the Curia Balloon Park Plant – NOx, CO, SO₂ and PM – 100% Load Unit 5 and 6

TABLE 5: Model Inputs for Point Sources at the Curia Balloon Park Plant – NOx, CO, SO₂ and PM – 100% Load Unit 5 and 75% Load Unit 6

Source Description	Model ID	Stack Height (m)	Stack Temp. (K)	Exit Vel. (m/s)	Stack Dia. (m)	NOx Emission Rate (lb/hr)	CO Emission Rate (lb/hr)	SO2 Emission Rate (lb/hr)	PM Emission Rate (lb/hr)
Curia NG Boiler Unit 5	В5	12.1920	452.5944	7.8943	0.4318	0.25107	0.30965	0.00837	0.04017
Curia NG Boiler Unit 6	B6	11.6434	494.8167	6.2631	0.3810	0.27000	0.14000	0.00230	0.02900

2.6 PARTICLE SIZE DISTRIBUTION

No particle size distribution will be included in the particulate modeling for either Curia or neighboring sources.

2.7 NO₂ DISPERSION MODELING ANALYSIS

The AERMOD model predicts ground-level concentrations of any generic pollutant without chemical transformations. Thus, the modeled NO_X emission rate will give ground-level modeled concentrations of NO_X. NAAQS values are presented as NO₂.

EPA has a three-tier approach to modeling NO₂ concentrations.

- Tier I total conversion, or all NOx = NO₂
- Tier II Ambient Ratio Method 2 (ARM2)
- Tier III case-by-case detailed screening methods, such as Ozone Limiting Method (OLM) and Plume Volume Molar Ratio Method (PVMRM) and NO₂/NO_X in-stack ratio

Initial modeling will be performed using the Tier II methodology (ARM2). If these modeling iterations demonstrate that less conservative methods for determining 1-hour and annual NO₂ compliance would be needed for this project, then the ambient impact of 1-hour and annual NOx predicted by the model will use Tier III – OLM or PVMRM.

When using ARM2, two inputs can be selected in the model. For this modeling analysis, EPA default minimum and maximum ambient NO₂/NO_x ratios for the ambient air of 0.50 and 0.90, respectively, will be used. For OLM or PVMRM, three inputs can be selected in the model: the in-stack-ratio (ISR), the NO₂/NO_x equilibrium ratio for the ambient air, and the ambient ozone concentration. The ISR will be determined for each source or group of sources. The NO₂/NO_x equilibrium ratio will be the EPA default of 0.90. Ozone input is determined from monitored ozone data collected from Del Norte city monitoring station matching the modeled met years 2014 – 2018.

To determine the ISR for each source, a search was performed for the Curia boilers. A document prepared by the California Air Pollution Control Officers Association (CAPCOA) released a guidance document named "Modeling Compliance of The Federal 1-Hour NO2 NAAQS", October 27, 2011 summarizes ISR values for various type of sources. In an effort to provide data needed for modeling and to address issues noted in EPA's NO₂ guidance memoranda, the San Joaquin Valley APCD has started gathering data from internal and external resources and has compiled a NO₂/NO_X ratio for a variety of sources. The document's Appendix C is found in Attachment B. Based on this ISR summary, the ISR range for natural gas boilers is 0.00 to 0.1579 with the CAPCOA recommendation of 0.10. Curia proposes an ISR for the 2 natural gas boilers a conservative ISR of 0.20. For neighboring sources, since the ISR has a diminishing impact on ambient NO₂/NO_X ratios as a plume is transported farther downwind due to mixing and reaction towards background ambient NO₂/NO_X ratios, neighboring sources within 1 kilometer of the site

will use an ISR of 0.30 or available source specific ISR data. For neighboring sources extended beyond 1 kilometer a default ISR of 0.20^1 will be used.

Model Ozone Data

For OLM or PVMRM, modeling of the project-generated 1-hour NO₂ concentrations requires use of ambient monitored ozone concentrations. This ozone data was provided by the AEHD AQP from the Del Norte monitoring station for the years 2014 - 2018. The Del Norte monitor best represents the Curia area consisting of mostly vehicle traffic emissions.

2.8 PM_{2.5} SECONDARY EMISSIONS MODELING

Particulate matter includes both "primary" PM, which is directly emitted into the air, and "secondary" PM, which forms in the atmosphere from chemical reactions involving primary gaseous emissions of precursor air contaminants. Primary PM consists of carbon (soot)—emitted from cars, trucks, heavy equipment, forest fires, and burning waste—and crustal material from unpaved roads, stone crushing, construction sites, and metallurgical operations. Secondary PM forms in the atmosphere from gases. Some of these reactions require sunlight and/or water vapor. Secondary PM includes:

- Sulfates formed from SO₂ emissions from power plants and industrial facilities;
- Nitrates formed from NO_X emissions from cars, trucks, industrial facilities, and power plants; and
- Carbon formed from reactive organic gas (ROG or VOC) emissions from cars, trucks, industrial facilities, forest fires, and biogenic sources such as trees.

AERMOD does not account for secondary formation of PM_{2.5} for near-field modeling. Any secondary contribution of the Curia source emissions is not explicitly accounted for in the model results. While representative background monitoring data for PM_{2.5} should adequately account for secondary contribution from existing background sources, the Curia assessment of their potential contribution to cumulative impacts as secondary PM_{2.5} was performed based on guidance from the NMED Modeling Section and using prescribed equations. The permit application for Curia Balloon Park emissions of precursors include:

- $NO_X 25.7$ tons per year (below SER)
- $SO_2 0.1$ tons per year (below SER)
- Volatile Organic Compounds (VOC) 21.3 tons per year (below SER)
- Particulate Matter with an aerodynamic diameter of 2.5 micron or less (PM_{2.5}) 1.2 tons per year (below SER).

The PM_{2.5} secondary emission concentration analysis will follow EPA and NMED AQB guidelines. Following recent EPA guidelines for conversion of NO_X and SO₂ emission rates to secondary PM_{2.5} emissions, Curia emissions are compared to appropriate western MERPs values (NO_X 24-Hr – 1155 tpy; NO_X Annual – 3184 tpy; SO₂ 24-Hr – 225 tpy; SO₂ Annual – 2289 tpy).

¹ Technical support document (TSD) for NO2-related AERMOD modifications, EPA- 454/B-15-004, July 2015

The following equation, found in NMED AQB modeling guidance document on MERPs, will be added to determine if secondary emission would cause violation with PM_{2.5} NAAQS.

 $PM_{2.5} \text{ annual} = ((NO_X \text{ emission rate (tpy)}/3184 + (SO_2 \text{ emission rate (tpy)}/2289)) \times 0.2 \ \mu\text{g/m}^3$ $PM_{2.5} \text{ annual} = ((25.7/3184) + (0.1/2289)) \times 0.2 \ \mu\text{g/m}^3 = 0.002 \ \mu\text{g/m}^3$ $PM_{2.5} 24 \text{ hour} = ((NO_X \text{ emission rate (tpy)}/1155 + (SO_2 \text{ emission rate (tpy)}/225)) \times 1.2 \ \mu\text{g/m}^3$ $PM_{2.5} 24 \text{ hour} = ((25.7/1155) + (0.1/225)) \times 1.2 \ \mu\text{g/m}^3 = 0.03 \ \mu\text{g/m}^3$

2.9 AMBIENT MODELING BACKGROUND

Ambient background concentrations, based on the Del Norte Monitoring Station for CO, NO₂, SO₂, and PM_{2.5} will be added to the dispersion modeling results and compared to the NAAQS and NMAAQS. Ambient background concentrations, based on the Jefferson Monitoring Station for PM₁₀ will be added to the dispersion modeling results and compared to the NAAQS and NMAAQS. Background concentrations were obtained from the AEHD AQP Modeling Section.

CO 1-hr:	1870 micrograms per cubic meter
CO 8-hr:	1336 micrograms per cubic meter
NO ₂ Annual:	19 micrograms per cubic meter
SO ₂ 1-hr:	13.1 micrograms per cubic meter
PM ₁₀ 24-hr:	31 micrograms per cubic meter
PM _{2.5} 24-hr:	16 micrograms per cubic meter
PM _{2.5} annual:	5.8 micrograms per cubic meter

NO₂ 1-hour Background data

 NO_2 1-hour background data was developed by the AEHD AQP based on the Tier 2 procedure found in EPA guidance documents² for determining background concentrations.

"Based on this guidance, we believe that an appropriate methodology for incorporating background concentrations in the cumulative impact assessment for the 1-hour NO_2 standard would be to use multivear averages of the 98th-percentile of the available background concentrations by season and hour-of-day, excluding periods when the source in question is expected to impact the monitored concentration (which is only relevant for modified sources). For situations involving a significant mobile source component to the background monitored concentrations, inclusion of a day-of-week component to the temporal variability may also be appropriate. The rank associated with the 98thpercentile of daily maximum 1-hour values should be generally consistent with the number of "samples" within that distribution for each combination based on the temporal resolution but also account for the number of samples "ignored" in specifying the 98thpercentile based on the annual distribution. For example, Table 1 in Section 5 of Appendix S specifies the rank associated with the 98th-percentile value based on the annual number of days with valid data. Since the number of days per season will range from 90 to 92, Table 1 would indicate that the 2nd-highest value from the seasonal distribution should be used to represent the 98th-percentile. On the other hand, use of the 2nd-highest value for each season would effectively "ignore" only 4 values for the year rather than the 7 values "ignored" from the annual distribution. Balancing these considerations, we recommend that background values by season and hour-of-day used in this context should be based on the 3rd-highest value for each season and hour-of-day combination, whereas the 8thhighest value should be used if values vary by hour-of-day only. For more detailed temporal pairing, such as season by hour-of- day and day-of-week or month by hour-ofday, the 1st-highest values from the distribution for each temporal combination should be used."

The NO₂ background data was provided by the AEHD AQP Modeling Section and is presented below in Table 5.

² Memo: "Additional Clarification Regarding Application of Appendix W Modeling Guidance for 1-hour N02 National Ambient Air Quality Standard" Tyler Fox, Leader, Air Quality Modeling Group, C439-01, dated March 1, 2011.

TABLE 0: Monitored Seasonal NO2 Background – 5 ⁻⁶ Hignest Houriy µg/m ⁶				
Hour	Winter	Spring	Summer	Fall
1	72.1	47.6	29.3	65.6
2	67.8	48.3	27.7	59.7
3	67.7	46.0	26.4	57.9
4	68.4	48.9	26.6	58.9
5	69.1	51.7	32.7	58.0
6	69.7	63.9	39.3	57.8
7	72.8	70.7	46.4	63.5
8	77.6	71.8	48.5	64.5
9	80.0	61.1	34.2	65.9
10	71.4	48.0	27.3	55.0
11	62.0	28.6	24.3	47.3
12	48.1	18.9	19.9	35.4
13	36.9	17.6	17.0	28.2
14	35.1	15.7	15.9	25.3
15	33.6	14.8	17.4	24.2
16	37.2	15.3	19.4	28.0
17	48.4	17.1	20.4	38.0
18	73.0	19.4	19.3	69.6
19	79.3	38.5	21.7	79.1
20	78.1	53.2	30.9	77.1
21	77.3	48.0	34.1	73.4
22	76.5	56.3	30.8	70.4
23	75.0	58.8	34.9	69.7
24	72.4	57.9	33.6	70.9

TABLE 6: Monitored Seasonal NO₂ Background – 3rd Highest Hourly µg/m³

3.0 MODEL SUMMARY

This section summarizes the model results, following the technical approach discussed in Section 2 of this report for Class II federal ambient air quality standards for this facility. Model results show for each criteria pollutant and applicable averaging periods for nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and particulate matter with aerodynamic diameter less than 10 micrometers (PM₁₀) and particulate matter with aerodynamic diameter less than 2.5 micrometers (PM_{2.5}), all model results are below ambient air quality standards. The modeling was used to evaluate ambient air quality impacts for Curia's Balloon Park Road facilities using updated information from the manufacturer for permitted, Units 5 and 6, emission sources in the permit modification of Permit #0491-M7-RV1. The modeling followed the guidance and protocols outlined in the protocol found in Section 2 of this report, the modeling procedures outlined in "Permit Modeling Guidelines, Albuquerque Environmental Health Department", revised 10/10/2019, "New Mexico Air Pollution Control Bureau, Dispersion Modeling Guidelines", revised 10/26/2020, and the most up to date EPA's *Guideline on Air Quality Models*.

With this permit modification, Curia is requesting removal of all permit conditions requiring annual stack testing for emergency generators, Units 7 and 8. The permit presently includes three (3) steam boilers (Units 2, 5, and 6) and three (3) emergency generators (Units 1, 7, and 8). In addition to removing the permit conditions for stack test, Curia will be updating Units 5 and 6 boiler emission rates and model stack parameters based on manufacturer data and site measurements. Also, Unit 2 will be moved from a regulated source to an exempt source due to the size of the boiler (< 5 MMBtu) and its function of produce steam for personal heating of air and water. The revised emission rates of Unit 5 and 6 will be included in the permit modification application. Each boiler is presently permitted to operate 8760 hours per year, which will not change with this permit modification. Maximum operation modeled will include both boilers operating at 100% load. Additional modeling will present normal operations at 75% load.

For the boilers modeled exhaust parameters, the boiler manufacturers were contacted and the manufacturer provided the following information; expected emission rates, stack exhaust temperature at maximum and exhaust velocity or flowrate at maximum for the Superior Boiler and both expected emission rates, stack exhaust temperature and exhaust flowrate at maximum and 75% load for the Cleaver-Brooks Boiler (see Attachment A). Stack height and stack diameter were determined by site inspection.

The three (3) emergency generators included in Permit #0491-M7-RV1 will not be included in the dispersion modeling analysis, because these sources are intermittent.

Curia modeled additional neighboring sources identified by the Albuquerque Environmental Health Department (AEHD) Air Quality Program (AQP) Modeling Section. Neighbors include; Materion (Permit #1962-M2-1AR), Materion (Permit #0494-M4-2AR), Mega Corp (Permit #1292), Roadrunner CBP (Permit #0271-2AR), Roadrunner CBP (Permit #0505-M1-4AR), Vulcan RAP Plant (Permit #1625-7AR), Vulcan Osuna HMA (Permit #0104-M2), American Gypsum (Permit #0752-M3), and PNM's Reeves Station (Permit #0499-M2-RN1).

3.1 SIGNIFICANT IMPACT LEVEL (SILs) MODELING ANALYSIS

Significant impact level AERMOD dispersion modeling (ROI) was completed for PM_{10} , $PM_{2.5}$, NO_X, CO, and SO₂. All significant impact models were run in terrain mode and building downwash with Curia emission sources only. Table 7 lists the results of the modeling for pollutant and averaging period that falls below the applicable SILs.

Parameter	Maximum Modeled Concentration (µg/m³)	Significant Impact Level (µg/m³)	% of SIL
CO 1 Hr.	22.5	2000	1.1
CO 8 Hr.	14.8	500	3.0
SO ₂ 1 Hr.	0.51	7.8	6.5
SO ₂ 3 Hr.	0.41	25	1.6
SO ₂ 24 Hr.	0.17	5	3.4
SO ₂ Annual	0.038	1	3.8
PM _{2.5} 24 Hr.	1.18	1.2	98.3
PM ₁₀ 24 Hr.	1.18	5	23.6

 TABLE 7: Summary of Air Dispersion Modeling Results below SILs

For ROI modeling results, the model operating at maximum produced the highest results. CO 1 hour and 8 hour; SO₂ 1 hour, 3 hour, 24 hour and annual average; $PM_{2.5}$ 24 hour; and PM_{10} 24 hour were below the SILs.

3.2 CUMULATIVE IMPACT ANALYSIS (CIA) MODEL RESULTS

The model results from either 100% load (Maximum Operation) or 75% load for Unit 6 (Normal Operations), significant neighboring sources, approved ambient background (see Section 2.9), and PM_{2.5} secondary emissions (see Section 2.8) are summarized below in Table 8. Dispersion modeling analysis followed the modeling protocol outline in Section 2 of this report.

TABLE 8: Summary of CIA Modeling Results Including all Applicable Neighboring Sources,
Approved Ambient Background, and for PM _{2.5} Secondary Emissions

Parameter	Maximum Curia Modeled Concentration (µg/m ³)	Significant Impact Level (µg/m³)	Maximum Modeled Concentration With Neighbor and Background (µg/m ³)	Lowest Applicable Standard (µg/m ³)	% of Standard
NO ₂ 1 Hr. 8 th highest 1-hour daily maximum	7.78	7.54	175.2	188.1	93.1
NO ₂ Annual	1.87	1.0	48.3	94.0	51.4
PM _{2.5} Annual	0.27	0.2	6.54	12	54.5

Note: Background concentrations are found in Section 2.9 of the modeling protocol. $PM_{2.5}$ secondary emission concentrations are found in Section 2.8 of the modeling protocol. Dispersion modeling inputs and settings are presented in Section 2.

3.2.1 NO₂ Cumulative Impact Analysis Modeling Results

NO₂ 1-hour and annual average modeling was performed with terrain elevations and building downwash for Curia modeled sources. Two models were run, one for maximum operation modeled for both boilers operating at 100% load and additional modeling with the facility operating in normal operating mode with the Superior Boiler (Unit 5) at 100% load and the Cleaver-Brooks Boiler (Unit 6) at 75% load. Additionally, all neighboring sources identified by the city air quality department were included in the cumulative impact analysis.

Dispersion modeling meteorology for this analysis included 5 years of data, 2014–2018 Albuquerque Meteorological data, was obtained from the AEHD AQP.

For NO₂ 1-hour modeling, the Tier II ARM2 approach found in Section 2.6 of this report was used for the analysis.

The seasonal NO₂ background -3^{rd} highest hourly, 1-hour NO₂ background concentrations found in Section 2.9 of this report was added to the modeled results and compared to the lowest applicable ambient standard.

CIA dispersion modeling showed exceedance of the NO₂ 8th highest 1-hour daily maximum NAAQS. The exceedance was the result of modeled emissions by neighboring sources. For each of the receptors that showed an exceedance of the NAAQS, it was determine that the contribution from Curia sources were below the NO₂ 1-Hour SIL. For model results with Curia sources above the SIL, the 8th highest 1-hour daily maximum occurred on Curia modeled fenceline.

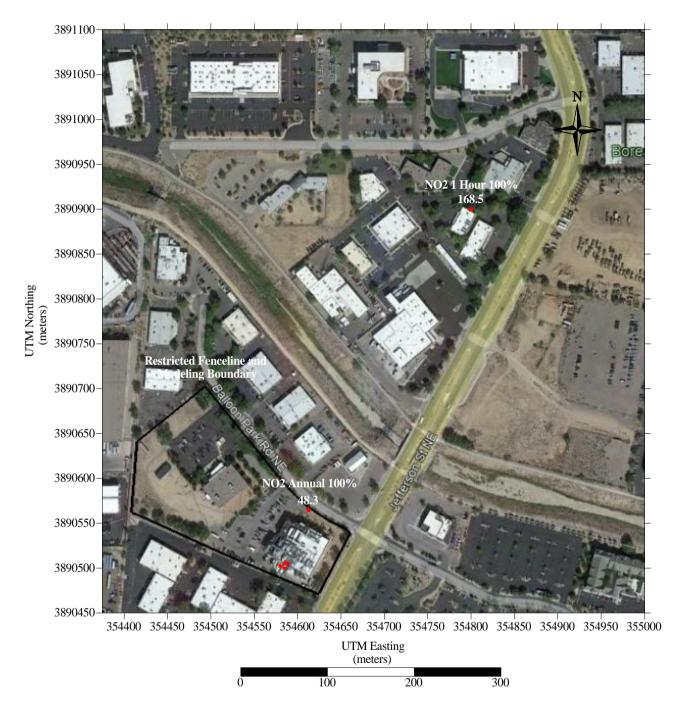

For NO₂ annual modeling, the highest concentrations result where Curia was a significant contributor occurred on Curia modeled fenceline.

Table 9 shows the NO₂ 1-Hour 8th highest 1-hour daily maximum and annual model results for and locations where is above the SILs.

	Curia Modeled Concentration (µg/m³)	Modeled Concentration With Neighbor and Background (µg/m ³)	Locat UTMs	
NO ₂ 1 Hr. 8 th highest 1-hour daily maximum 75% Load	7.78	175.2	354642.1	3890542.3
NO ₂ 1 Hr. 8 th highest 1-hour daily maximum 100% Load	8.48	168.5	354800.0	3890900.0
NO ₂ Annual 75% Load	1.70	48.2	354611.0	3890562.4
NO ₂ Annual 100% Load	1.87	48.3	354611.0	3890562.4

TABLE 9: NO2 CIA MODEL RESULTS

Figures 4 and 5 shows an aerial map of the NO₂ 8th highest 1-hour daily maximum and annual average concentrations and the location of the maximum modeled concentrations which includes background where Curia sources contribute above the NO₂ SIL.

Figure 4: Aerial Map of NO₂ 8th Highest 1-Hour Daily Maximum and Annual Average Model Results at Maximum Operations

 $(\mu g/m^3)$

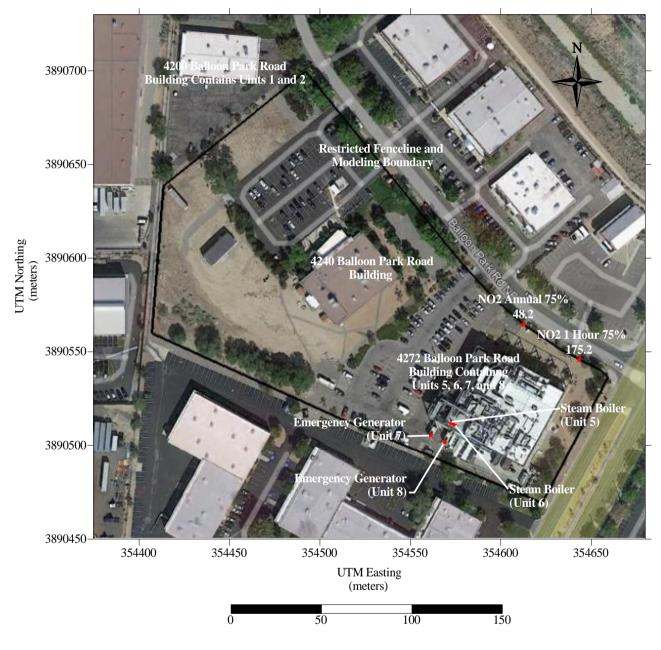


Figure 5: Aerial Map of NO₂ 8th Highest 1-Hour Daily Maximum and Annual Average Model Results at Normal Operations (µg/m³)

3.2.2 PM_{2.5} Direct and Secondary Formation CIA Modeling Results

Particulate matter includes both "primary" PM, which is directly emitted into the air, and "secondary" PM, which forms in the atmosphere from chemical reactions involving primary gaseous emissions of precursor air contaminants. Primary PM consists of carbon (soot)—emitted from cars, trucks, heavy equipment, forest fires, and burning waste—and crustal material from unpaved roads, stone crushing, construction sites, and metallurgical operations. Secondary PM forms in the atmosphere from gases. Some of these reactions require sunlight and/or water vapor. Secondary PM includes:

- Sulfates formed from SO₂ emissions from power plants and industrial facilities;
- Nitrates formed from NO_X emissions from cars, trucks, industrial facilities, and power plants; and
- Carbon formed from reactive organic gas (ROG or VOC) emissions from cars, trucks, industrial facilities, forest fires, and biogenic sources such as trees.

AERMOD does not account for secondary formation of $PM_{2.5}$ for near-field modeling. Any secondary contribution of the Curia source emissions is not explicitly accounted for in the model results. While representative background monitoring data for $PM_{2.5}$ should adequately account for secondary contribution from existing background sources, the Curia assessment of their potential contribution to cumulative impacts as secondary $PM_{2.5}$ was performed based on guidance from the NMED Modeling Section and using prescribed equations. The permit application for Curia Balloon Park emissions of precursors include:

- $NO_X 25.7$ tons per year (below SER)
- $SO_2 0.1$ tons per year (below SER)
- Volatile Organic Compounds (VOC) 21.3 tons per year (below SER)
- Particulate Matter with an aerodynamic diameter of 2.5 micron or less $(PM_{2.5}) 1.2$ tons per year (below SER).

The PM_{2.5} secondary emission concentration analysis will follow EPA and NMED AQB guidelines. Following recent EPA guidelines for conversion of NO_x and SO₂ emission rates to secondary PM_{2.5} emissions, Curia emissions are compared to appropriate western MERPs values (NO_x 24-Hr – 1155 tpy; NO_x Annual – 3184 tpy; SO₂ 24-Hr – 225 tpy; SO₂ Annual – 2289 tpy). The following equation, found in NMED AQB modeling guidance document on MERPs, will be added to determine if secondary emission would cause violation with PM_{2.5} NAAQS.

 $PM_{2.5}$ annual = ((NO_x emission rate (tpy)/3184 + (SO₂ emission rate (tpy)/2289)) x 0.2 µg/m³

 $PM_{2.5} annual = ((25.7/3184) + (0.1/2289)) \times 0.2 \ \mu g/m^3 = 0.002 \ \mu g/m^3$

 $PM_{2.5}$ 24 hour = ((NO_X emission rate (tpy)/1155 + (SO₂ emission rate (tpy)/225)) x 1.2 µg/m³

PM_{2.5} 24 hour = ((25.7/1155) + (0.1/225)) x 1.2 μ g/m³ = **0.03 \mug/m³**

Results of the secondary formation from the facility were added to the modeled value.

Del Norte monitor representative annual $PM_{2.5}$ background concentrations was added to the modeled results and compared to the lowest applicable ambient standard.

Two models were run, one for maximum operation modeled for both boilers operating at 100% load and additional modeling with the facility operating in normal operating mode with the Superior Boiler (Unit 5) at 100% load and the Cleaver-Brooks Boiler (Unit 6) at 75% load. Additionally, all neighboring sources identified by the city air quality department were included in the cumulative impact analysis.

The annual average results show that significant direct "primary" PM_{2.5} from Curia sources combined with neighboring sources are located on the Curia facility boundary.

The result from direct "primary" PM_{2.5} emissions dispersion modeling, secondary PM emissions, applicable neighboring sources, plus a representative PM_{2.5} background concentrations from Section 2.9 of this report, which includes monitored secondary PM_{2.5} concentrations, were used to show compliance with national PM_{2.5} annual average AAQS. PM_{2.5} model results are summarized in Table 10.

	Curia Modeled Concentration with Secondary PM (µg/m ³)	Modeled Concentration With Neighboring Sources and Background (µg/m ³)	Location UTMs E/N	
PM _{2.5} Annual Average 75% Load	0.25	6.53	354611.0	3890562.4
PM _{2.5} Annual Average 100% Load	0.27	6.54	354611.0	3890562.4

TABLE 10: PM_{2.5} CIA Model Results

Figures 6 and 7 summarize the results of the modeling analysis.

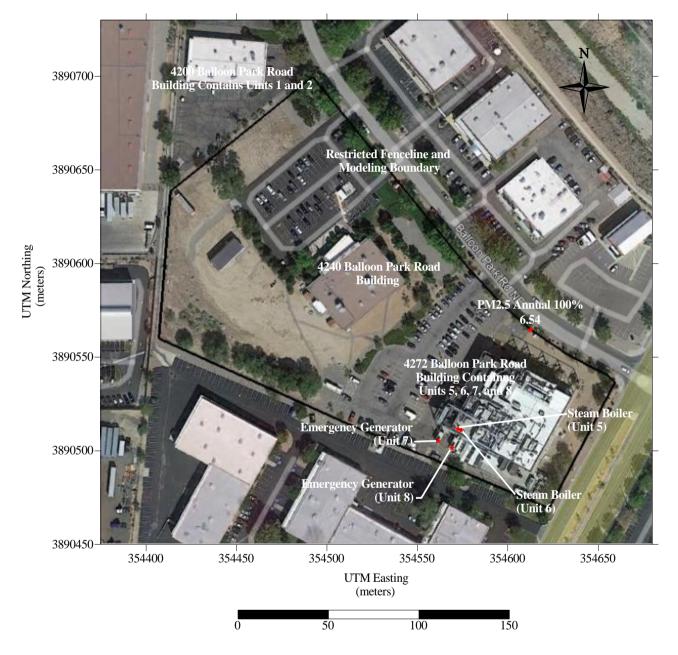


Figure 6: Aerial Map of PM_{25} Annual Average Model Results at Maximum Operations $(\mu g/m^3)$

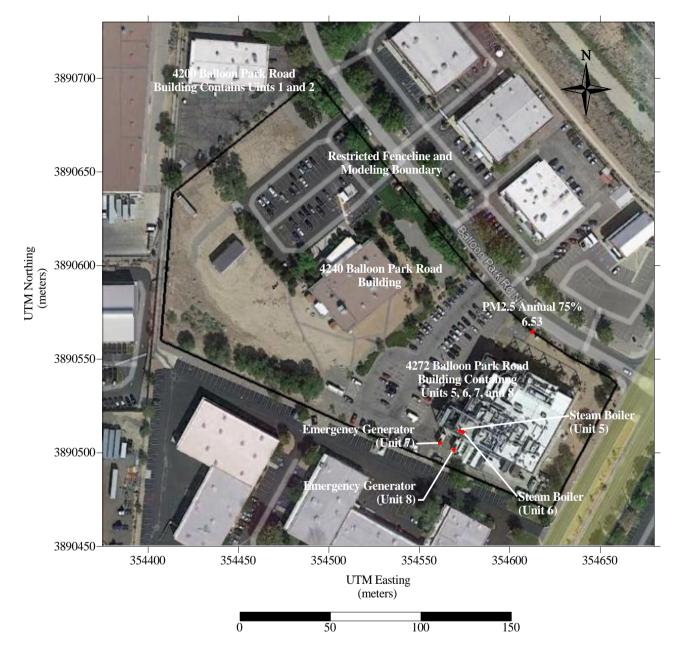


Figure 7: Aerial Map of PM₂₅ Annual Average Model Results at Normal Operations $(\mu g/m^3)$

Modeling File List

Model File Name	Description
Curia ROI Model 100	Curia Sources Only ROI modeling – 100% Load (Maximum Operations)
Curia ROI Model 75	Curia Sources Only ROI modeling – 100% Load (Unit 5) 75% Load (Unit 6)

Model File Name	Description
Curia NO2 1 Hour CIA Model 100	Cumulative NO ₂ Modeling – 1-Hour – 100% Load (Maximum Operations)
Curia NO2 1 Hour CIA Model 75	Cumulative NO ₂ Modeling – 1-Hour – 100% Load (Unit 5) 75% Load (Unit 6)
Curia NO2 Annual CIA Model 100	Cumulative NO ₂ Modeling – Annual Average – 100% Load (Maximum
Curra NO2 Annuar CIA Moder 100	Operations)
Curia NO2 Annual CIA Model 75	Cumulative NO ₂ Modeling – Annual Average – 100% Load (Unit 5) 75% Load
Curra NO2 Annuar CIA Model 75	(Unit 6)
Curia PM25 Annual CIA Model 100	Cumulative PM _{2.5} Modeling – Annual Average– 100% Load (Maximum
Curia FM25 Annuai CIA Model 100	Operations)
Curia PM25 Annual CIA Model 75	Cumulative PM _{2.5} Modeling – Annual Average– 100% Load (Unit 5) 75% Load
Curia FM25 Annual CIA Model 75	(Unit 6)

Attachment A

Boiler Manufacturer Data

Superior Boiler Unit 5

Estimated Emissions -JB and JBX Burners

The following emissions apply to all JB and JBX burners firing the fuels shown.

Estimated Emission Levels Firing Natural Gas						
Pollut	ant	Model JB	Model JBX			
NOx ^(B)	ppm	80	25			
	lb/mmbtu	0.096	0.03			
CO ^(A)	ppm	50	50			
	lb/mmbtu	0.037	0.037			
SOx ^(C)	ppm	1	1			
	lb/mmbtu	0.001	0.001			
HC / VOC	ppm	20	20			
	lb/mmbtu	0.008	0.008			
PM	ppm	na	na			
	lb/mmbtu	0.0048	0.0048			

Estimated Emission Levels Firing #2 Oil ^(D)						
Pollu	tant	Model JB	Model JBX			
NOx ^(B)	ppm	135	120			
	lb/mmbtu	0.176	0.157			
CO ^(A)	ppm	50	50			
	lb/mmbtu	0.04	0.04			
SOx ^(C)	ppm	278	278			
	lb/mmbtu	0.52	0.52			
HC / VOC	ppm	25	25			
	lb/mmbtu	0.013	0.013			
РМ	ppm	na	na			
	lb/mmbtu	0.014	0.014			

Assumption used for above (Contact Webster if different assumptions required)

- A. CO varies with firing rate. Lower levels available, contact sales.
- B. The ppm levels are corrected to 3% Oxygen (15% excess air) and dry volume basis.
- C. Maximum sulfur in natural gas is 0.0006% wt.
- D. ASTM #2 fuel, 0.02% Nitrogen, 0.5% Sulfur and 0.01% Ash (% by weight).
- E. All levels are above backround (ambient) conditions.
- F. Emission levels are based on a properly maintained and tuned burner.

= MG	mail Q Todd.Albers@curiaglobal.com	×	
	www.montrose-env.com		
	Albers, Todd to me, Matthew		
	Good morning Paul,		
	I have the following temps from the boilers:		
	Cleaver Brooks: 440 degrees F (pictures 4,5,6)		
1	Superior: 355 degrees F (pictures 1,2,3)		
M	I also send these back to Superior to see what further information they can provide. I'll pass anything along once I receive it.	1	
M	Thank you,		
	Todd		
	From: Albers, Todd		
	Sent: Monday, December 20, 2021 9:11 AM		
	To: 'Paul Wade' < <u>pwade@montrose-env.com</u> >		
	Cc: 'Matthew Lane' < <u>theenvironmentallane@gmail.com</u> >		

= M	Gmail Q Todd.Albers@curiaglobal.com	×	
\bigcirc	Thanks.		
	Todd		
	From: Jason Paxson [mailto:j <u>ason@csinm.com]</u> Sent: Wednesday, December 22, 2021 10:00 AM		
	To: Albers, Todd < <u>Todd.Albers@curiaglobal.com</u> >		
	Subject: Re: FW: stack parameter data		
	External: This message originated outside of the organization from <u>jason@csinm.com</u> . Do not click links of the organization from <u>jason@csinm.com</u> .	or ope	n attach
1	Hi Todd,		
м	I got the info back from Webster.		
М	For the Balloon Park Superior boiler the flue gas flow rate is 3351 acfm and the stack flue velocity is 25.9 ft/s.		
	For the Alexander Superior boiler the flue gas flow rate is 1340 acfm and the stack flue velocity is 16.3 ft/s.		
	Thanks,		
	Jason Paxson		
	Combustion Systems		

Cleaver-Brooks Boiler Unit 6

	Cleaver-Brooks Boiler Expected	Emission Data		_	
	Broducing Steem Firing		Not Coo		
	Producing Steam Firing BACKGROUND INFORMATION		Nat Gas	Boiler Model	CB(LE)
Date	12/01/21			Altitude (feet)	5300
Author	Don Betts			Operating Pressure (psig)	115.00
Customer	Curia Global			Furnace Volume (cuft)	33.36
City & State	Albuquerque, NM		Furna	ce Heat Release (btu/hr/cu ft)	91,270
Juy & State	Albuquerque, Nim		1 dina	Heating Surface (sqft)	625
				Nox System	60
Nat Gas				ng Rate	
		25%	50%	75%	100%
Horsepower		31	63	94	125
nput , Btu/hr		1,301,000	2,552,000	3,859,000	5,175,000
00	ppm	50	50	50	50
	lb/MMBtu	0.0375	0.0375	0.0375	0.0375
	lb/hr	0.05	0.10	0.14	0.19
	tpy	0.214	0.419	0.634	0.850
NOx.	ppm	60	60	60	60
	Ib/MMBtu	0.0700	0.0700	0.0700	0.0700
	lb/hr	0.09	0.18	0.27	0.36
	tpy	0.399	0.782	1.183	1.587
10	ppm	51.0	51.0	51.0	51.0
	lb/MMBtu	0.060	0.060	0.060	0.060
	lb/hr	0.08	0.15	0.23	0.31
	tpy	0.32	0.63	0.95	1.27
		0.0	0.0	0.0	
NO ₂	ppm	9.0	9.0	9.0	9.0
	Ib/MMBtu	0.011	0.011	0.011	0.011
	lb/hr	0.01	0.03	0.04	0.05
	tpy	0.08	0.16	0.24	0.32
SOx	ppm	0.34	0.34	0.34	0.34
	lb/MMBtu	0.0006	0.0006	0.0006	0.0006
	lb/hr	0.0008	0.0015	0.0023	0.0030
	tpy	0.003	0.007	0.010	0.013
/OCs	ppm	8	8	8	8
Non-Methane Only)	Ib/MMBtu	0.0036	0.0036	0.0036	0.0036
inditiand only	lb/hr	0.005	0.009	0.014	0.018
(00. I	tpy	0.020	0.040	0.060	0.081
/OCs does not include any packground VOC emissions.					
PM10 (Filterable)	ppm	N/A	N/A	N/A	N/A
	lb/MMBtu	0.0019	0.0019	0.0019	0.0019
	lb/hr	0.002	0.005	0.007	0.010
	tpy	0.011	0.021	0.031	0.042
M10 (Condensable)	lb/MMBtu	0.0056	0.0056	0.0056	0.0056
	lb/hr	0.007	0.0000	0.022	0.029
	tpy	0.032	0.062	0.094	0.127
		0.0015	0.00110	0.0015	
PM2.5 (Filterable)	Ib/MMBtu	0.0019	0.0019	0.0019	0.0019
	lb/hr tov	0.002 0.011	0.005	0.007 0.031	0.010
	tpy	0.011	0.021	0.001	0.042
PM2.5 (Condensable)	lb/MMBtu	0.0056	0.0056	0.0056	0.0056
	lb/hr	0.007	0.014	0.022	0.029
	tpy	0.032	0.062	0.094	0.127
xhaust Data					
Femperature, F		375	403	431	<mark>459</mark>
low	ACFM	556	969	1,513	2,094
	SCFM (70 Degrees Fah.)	297	501	757	1,015
	DSCFM	268	445	672	901
	lb/hr	1,337	2,253	3,407	4,568
Velocity	ft/sec	6.64	11.57	18.07	25.01
	ft/min	398	694	1,084	1,501

2) Emission data based on actual boiler efficiency.

3) % H2O , by volume in exhaust gas is	17.24	% O2, by volume	2.47
4) Water vapor in exhaust gas is		98.91	lbs/MMBtu of fuel fired
5) CO2 produced is		116.31	lbs/MMBtu of fuel fired

6) Particulate is exclusive of any particulates in combustion air or other sources of residual particulates from material. PM level indicated on this form is based on combustion air and fuel being clean and turndown up to 4:1.
7) Heat input is based on high heating value (HHV).
8.) Emission produced in tons per year (tpy) is based on 24 hours per day for 365 days = 8,760 hours per year
9.) Exhaust data is based on a clean and properly sealed boiler.
10.) Environment of the defense of the defense

10.) Emission data is based on a burner turndown of 4 to 1 above 40 hp.

14) Fuel High Heating Value =

1000

Btu/FT^3

Attachment B

ISR Ratio CAPCOA Guidance Document October 27, 2011 Appendix C

Appendix C - In-Stack NO₂/NOx Ratios

Appendix C Page 56

	Recommend In-stack NO2/NOx Ratios				
Refer #	Fuel	Equipment Category (Controls)	Range of Ratios (%)	Recommended Ratio (%)	
		Boilers	-		
1		Default	10	10	
2		6.6 MMBtu/Hr (Force Draft)* ^L	0.0 - 2.90	1.58**	
2	NG	7.6 MMBtu/Hr (SCR / FGR)*	3.45 – 15.79	9.65**	
2		11.4 MMBtu/Hr (Force Draft)* ^L	1.81 – 3.51	2.68**	
		Compressor IC Engines			
1		Default	60	60	
2a		225 BHP IGN Timing BTC 17***	11.61 – 11.86	11.76**	
2a		350 BHP IGN Timing BTC 18***	4.37 – 4.83	4.66**	
2a		550 BHP IGN Timing BTC 20***	0.93 – 2.98	1.96**	
2a		625 BHP IGN Timing BTC 10***	10.97 – 11.96	11.6**	
2a	NO	773 BHP IGN Timing BTC 9***	58.04 - 58.54	58.3**	
2a	NG	773 BHP IGN Timing BTC 20***	72.65 – 73.42	73.12**	
2a		880 BHP IGN Timing BTC 8***	9.79 – 14.14	11.93**	
2a		880 BHP IGN Timing BTC 15***	0.7 - 8.28	2.52**	
2a		1500 BHP IGN Timing BTC 12***	10.32 – 12.03	11.47**	
2a		1500 BHP IGN Timing BTC 6.5***	18.42 – 21.33	19.97**	
2a		4000 BHP IGN Timing BTC 5***	22.36 - 25.69	23.82**	
2a	Waste Gas	880 BHP IGN Timing BTC 20***	1.77 – 6.10	3.86**	
2a	(Field Gas)	1000 BHP***	0.40 – 0.81	0.64**	
		Dryer			
	NG	20 MMBTU/Hr (Milk -Tower Dryer)*	3.85 – 11.11	6.88**	
		Glass Furnace			
2	NG	Glass Furnace	2.45 – 11.59	4.32**	
		Heaters			
2	NG / Refinery Gas	14.1 MMBTU/Hr (John Zink PSMR)*	11.54 – 52.63	32.0**	

		Recommend In-stack NO2/NO	Dx Ratios			
Refer #	Fuel	Equipment Category (Controls) Range of Ratios (%)		Recommended Ratio (%)		
		IC Engines				
2	Biogas	200 BHP*		0.0 – 1.9	0	0.37**
1	Discal	Default		20		20
	Diesel	322 BHP (WP)*		0.0 – 50.	0	15.64**
4		Default – Lean Burn		5-10		10
2		120 BHP (3-Way Catalyst)*		0.1 – 2.8	3	0.9**
2		162 BHP (catalytic converter, air/fuel ratio)*		0.0 – 12.	5	1.81**
2		165 BHP (3-Way Catalyst)*		0.0 – 17.	58	3.16**
2	NG	180 BHP (NSCR)*		1.02 - 3.41		1.82**
2	NG	208 BHP (Catalytic converter, air/fuel ratio)*		0.0 - 1.44		0.48**
2		1,070 BHP (LB/WP–Turbocharger/Intercooler)*	70 BHP (LB/WP–Turbocharger/Intercooler)* 20.91 – 39.62		.62	34.41**
2		1,529 BHP (LB - CO Catalyst, SCR)*		2.70 - 4.58		3.59**
2		2,775 BHP (SCR)*		14.53 – 26		19.46**
2		4,175 BHP (SCR,CO & VOC Catalysts)*		0.0 - 21.28		1.15**
		Transportation Refrigeration U	nits (TRUs)			
			Fuel	Eng Speed	Exhaust	NO ₂ / NO _x Ratio
			CARB	High	Muffler	15.37
_		CARB= CARB Diesel	GTL	High	Muffler	16.17
5		GTL = Gas To Liquid	CARB	High	pDPF	25.71
			CARB	Low	Muffler	22.66
			GTL	Low	Muffler	25.12
			CARB	Low	pDPF	12.98
		Truck / Cars				
6	Gas/Diesel	Light / Medium Duty		16-25		25
0	Diesel	Heavy Duty		6-11		11
		Turbines				
3	NG	GE Turbines		8.33 – 9.1 9.1		

	Recommend In-stack NO2/NOx Ratios					
Refer #	Fuel	Equipment Category (Controls)	Range of Ratios (%)	Recommended Ratio (%)		
2a		Solar Centaur T-4702 (3.4 MW)***	8.43 – 12.42	10.32**		

* Samples taken each minute or several minutes

**Value represents the statistical average of all data points

*** 30 min / 1 hour Source

Test

L = Load ratings have been included in average

LB = Lean Burn

WP = Water Pump

References

- 1. Barrie Lawrence, Environmental Scientist, Government of Newfoundland and Labrador, "Guideline for Plume Dispersion Modeling" 1st Revision: November 20, 2006, Page 14
- 2. District Database "NO2 -NOx Ratio.mdb" Data is based on CEMs, source test, and portable analyzer data collected in the San Joaquin Valley
 - a. District Database "NO2 -NOx Ratio.mdb" Data is based on source test data collected from out of state (Arkansas Department of Environmental Quality Office of Air Quality)
- 3. Roointon Pavri and Gerald D. Moore, GE Energy Services Atlanta, GA, "Gas Turbine Emissions and Control" March 2001 Page 63
- **4.** Nigel N. Clark, Center for Alternative Fuels, Engines and Emissions Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, WV 26506, "Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines" April 30, 2007 Page 64
- Robb A. Barnitt, National Renewable Energy Laboratory, "Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices", May 1, 2010
- 6. P G Boulter, I S McCrae, and J Green, Transportation research Laboratory, "Primary NIO2 Emissions From Road Vehicles in the Hatfield and Bell Commons Tunnels", July 2007

Attachment 6

Basis for each emission rate

3.3 Gasoline And Diesel Industrial Engines

3.3.1 General

The engine category addressed by this section covers a wide variety of industrial applications of both gasoline and diesel internal combustion (IC) engines such as aerial lifts, fork lifts, mobile refrigeration units, generators, pumps, industrial sweepers/scrubbers, material handling equipment (such as conveyors), and portable well-drilling equipment. The three primary fuels for reciprocating IC engines are gasoline, diesel fuel oil (No.2), and natural gas. Gasoline is used primarily for mobile and portable engines. Diesel fuel oil is the most versatile fuel and is used in IC engines of all sizes. The rated power of these engines covers a rather substantial range, up to 250 horsepower (hp) for gasoline engines and up to 600 hp for diesel engines. (Diesel engines greater than 600 hp are covered in Section 3.4, "Large Stationary Diesel And All Stationary Dual-fuel Engines".) Understandably, substantial differences in engine duty cycles exist. It was necessary, therefore, to make reasonable assumptions concerning usage in order to formulate some of the emission factors.

3.3.2 Process Description

All reciprocating IC engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 methods used for stationary reciprocating IC engines: compression ignition (CI) and spark ignition (SI). This section deals with both types of reciprocating IC engines. All diesel-fueled engines are compression ignited, and all gasoline-fueled engines are spark ignited.

In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is then injected into the hot air. Ignition is spontaneous because the air temperature is above the autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve (for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is not present during compression; hence there is no danger of premature autoignition. Since engine thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained at the expense of poorer response to load changes and a heavier structure to withstand the higher pressures.¹

3.3.3 Emissions

Most of the pollutants from IC engines are emitted through the exhaust. However, some total organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank and carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the

atmosphere from the exhaust. Evaporative losses are insignificant in diesel engines due to the low volatility of diesel fuels.

The primary pollutants from internal combustion engines are oxides of nitrogen (NO_x), total organic compounds (TOC), carbon monoxide (CO), and particulates, which include both visible (smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides (SO_x) also appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO₂), are directly related to the sulfur content of the fuel.²

3.3.3.1 Nitrogen Oxides -

Nitrogen oxide formation occurs by two fundamentally different mechanisms. The predominant mechanism with internal combustion engines is thermal NO_x which arises from the thermal dissociation and subsequent reaction of nitrogen (N_2) and oxygen (O_2) molecules in the combustion air. Most thermal NO_x is formed in the high-temperature region of the flame from dissociated molecular nitrogen in the combustion air. Some NO_x , called prompt NO_x , is formed in the early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame. The second mechanism, fuel NO_x , stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Gasoline, and most distillate oils have no chemically-bound fuel N_2 and essentially all NO_x formed is thermal NO_x .

3.3.3.2 Total Organic Compounds -

The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only partially burned during the combustion process. Most unburned hydrocarbon emissions result from fuel droplets that were transported or injected into the quench layer during combustion. This is the region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early cooling of the gases by expansion of the combustion volume caused by piston motion before combustion is completed.²

3.3.3.3 Carbon Monoxide -

Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate combustion product that appears in the exhaust when the reaction of CO to CO_2 cannot proceed to completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel) molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be accelerated only to a certain extent by improvements in air and fuel mixing during the combustion process.²⁻³

3.3.3.4 Smoke and Particulate Matter -

White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as white smoke in the exhaust during an engine cold start, idling, or low load operation. These are formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the combustion chamber and is partially burned. Proper maintenance is the most effective method of preventing blue smoke emissions from all types of IC engines. The primary constituent of black smoke is agglomerated carbon particles (soot) formed in regions of the combustion mixtures that are oxygen deficient.²

3.3.3.5 Sulfur Oxides -

Sulfur oxides emissions are a function of only the sulfur content in the fuel rather than any combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is oxidized to SO_2 . The oxidation of SO_2 gives sulfur trioxide (SO_3), which reacts with water to give sulfuric acid (H_2SO_4), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur oxide emissions also contribute to corrosion of the engine parts.²⁻³

3.3.4 Control Technologies

Control measures to date are primarily directed at limiting NO_x and CO emissions since they are the primary pollutants from these engines. From a NO_x control viewpoint, the most important distinction between different engine models and types of reciprocating engines is whether they are rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric; therefore, the exhaust from these engines is characterized by medium to high levels of O_2 . The most common NO_x control technique for diesel and dual-fuel engines focuses on modifying the combustion process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR) which are post-combustion techniques are becoming available. Controls for CO have been partly adapted from mobile sources.⁴

Combustion modifications include injection timing retard (ITR), preignition chamber combustion (PCC), air-to-fuel ratio adjustments, and derating. Injection of fuel into the cylinder of a CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the combustion process to occur later in the power stroke when the piston is in the downward motion and combustion chamber volume is increasing. By increasing the volume, the combustion temperature and pressure are lowered, thereby lowering NO_x formation. ITR reduces NO_x from all diesel engines; however, the effectiveness is specific to each engine model. The amount of NO_x reduction with ITR diminishes with increasing levels of retard.⁴

Improved swirl patterns promote thorough air and fuel mixing and may include a precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that propagates to the main combustion chamber. The high exit velocity from the PCC results in improved mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature, thereby reducing NO_x emissions.⁴

The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under conditions of insufficient oxygen which causes NO_x to decrease because of lower oxygen and lower temperatures. Derating involves restricting the engine operation to lower than normal levels of power production for the given application. Derating reduces cylinder pressures and temperatures, thereby lowering NO_x formation rates.⁴

SCR is an add-on NO_x control placed in the exhaust stream following the engine and involves injecting ammonia (NH₃) into the flue gas. The NH₃ reacts with NO_x in the presence of a catalyst to form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle (load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust temperature and NO_x concentration which can create problems with the effectiveness of the SCR system.⁴

NSCR is often referred to as a three-way conversion catalyst system because the catalyst reactor simultaneously reduces NO_x , CO, and HC and involves placing a catalyst in the exhaust stream of the engine. The reaction requires that the O_2 levels be kept low and that the engine be operated at fuel-rich air-to-fuel ratios.⁴

The most accurate method for calculating such emissions is on the basis of "brake-specific" emission factors (pounds per horsepower-hour [lb/hp-hr]). Emissions are the product of the brake-specific emission factor, the usage in hours, the rated power available, and the load factor (the power actually used divided by the power available). However, for emission inventory purposes, it is often easier to assess this activity on the basis of fuel used.

Once reasonable usage and duty cycles for this category were ascertained, emission values were aggregated to arrive at the factors for criteria and organic pollutants presented. Factors in Table 3.3-1 are in pounds per million British thermal unit (lb/MMBtu). Emission data for a specific design type were weighted according to estimated material share for industrial engines. The emission factors in these tables, because of their aggregate nature, are most appropriately applied to a population of industrial engines rather than to an individual power plant. Table 3.3-2 shows unweighted speciated organic compound and air toxic emission factors based upon only 2 engines. Their inclusion in this section is intended for rough order-of-magnitude estimates only.

Table 3.3-3 summarizes whether the various diesel emission reduction technologies (some of which may be applicable to gasoline engines) will generally increase or decrease the selected parameter. These technologies are categorized into fuel modifications, engine modifications, and exhaust after-treatments. Current data are insufficient to quantify the results of the modifications. Table 3.3-3 provides general information on the trends of changes on selected parameters.

3.3.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- Text was revised concerning emissions and controls.
- The CO_2 emission factor was adjusted to reflect 98.5 percent conversion efficiency.

	Gasoline Fuel (SCC 2-02-003-01, 2-03-003-01)		Diesel Fuel (SCC 2-02-001-02, 2-03-001-01)		
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x	0.011	1.63	0.031	4.41	D
СО	6.96 E-03 ^d	0.99 ^d	6.68 E-03	0.95	D
SO _x	5.91 E-04	0.084	2.05 E-03	0.29	D
PM-10 ^b	7.21 E-04	0.10	2.20 E-03	0.31	D
CO ₂ ^c	1.08	154	1.15	164	В
Aldehydes	4.85 E-04	0.07	4.63 E-04	0.07	D
TOC					
Exhaust	0.015	2.10	2.47 E-03	0.35	D
Evaporative	6.61 E-04	0.09	0.00	0.00	Е
Crankcase	4.85 E-03	0.69	4.41 E-05	0.01	Е
Refueling	1.08 E-03	0.15	0.00	0.00	Е

Table 3.3-1. EMISSION FACTORS FOR UNCONTROLLED GASOLINE AND DIESEL INDUSTRIAL ENGINES^a

^a References 2,5-6,9-14. When necessary, an average brake-specific fuel consumption (BSFC) of 7,000 Btu/hp-hr was used to convert from lb/MMBtu to lb/hp-hr. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code. TOC = total organic compounds.

Classification Code. TOC = total organic compounds.
^b PM-10 = particulate matter less than or equal to 10 µm aerodynamic diameter. All particulate is assumed to be ≤ 1 µm in size.
^c Assumes 99% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 86 weight % carbon in gasoline, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and gasoline heating value of 20,300 Btu/lb.
^d Instead of 0.439 lb/hp-hr (power output) and 62.7 lb/mmBtu (fuel input), the correct emissions factors values are 6.96 E-03 lb/hp-hr (power output) and 0.99 lb/mmBtu (fuel input), respectively. This is an editorial correction. March 24, 2009

Table 3.3-2.SPECIATED ORGANIC COMPOUND EMISSIONFACTORS FOR UNCONTROLLED DIESEL ENGINES^a

Pollutant	Emission Factor (Fuel Input) (lb/MMBtu)		
Benzene ^b	9.33 E-04		
Toluene ^b	4.09 E-04		
Xylenes ^b	2.85 E-04		
Propylene 💬	2.58 E-03		
1,3-Butadiene ^{b,c}	<3.91 E-05		
Formaldehyde ^b	1.18 E-03		
Acetaldehyde ^b	7.67 E-04		
Acrolein ^b	<9.25 E-05		
Polycyclic aromatic hydrocarbons (PAH)			
Naphthalene ^b	8.48 E-05		
Acenaphthylene	<5.06 E-06		
Acenaphthene	<1.42 E-06		
Fluorene	2.92 E-05		
Phenanthrene	2.94 E-05		
Anthracene	1.87 E-06		
Fluoranthene	7.61 E-06		
Pyrene	4.78 E-06		
Benzo(a)anthracene	1.68 E-06		
Chrysene	3.53 E-07		
Benzo(b)fluoranthene	<9.91 E-08		
Benzo(k)fluoranthene	<1.55 E-07		
Benzo(a)pyrene	<1.88 E-07		
Indeno(1,2,3-cd)pyrene	<3.75 E-07		
Dibenz(a,h)anthracene	<5.83 E-07		
Benzo(g,h,l)perylene	<4.89 E-07		
TOTAL PAH	1.68 E-04		

^a Based on the uncontrolled levels of 2 diesel engines from References 6-7. Source Classification Codes 2-02-001-02, 2-03-001-01. To convert from lb/MMBtu to ng/J, multiply by 430.
 ^b Hazardous air pollutant listed in the *Clean Air Act*.
 ^c Based on data from 1 engine.

	Affecte	ed Parameter
Technology	Increase	Decrease
Fuel modifications		
Sulfur content increase	PM, wear	
Aromatic content increase	PM, NO _x	
Cetane number		PM, NO _x
10% and 90% boiling point		PM
Fuel additives		PM, NO _x
Water/Fuel emulsions		NO _x
Engine modifications		
Injection timing retard	PM, BSFC	NO _x , power
Fuel injection pressure	PM, NO _x	
Injection rate control		NO _x , PM
Rapid spill nozzles		PM
Electronic timing & metering		NO _x , PM
Injector nozzle geometry		PM
Combustion chamber modifications		NO _x , PM
Turbocharging	PM, power	NO _x
Charge cooling		NO _x
Exhaust gas recirculation	PM, power, wear	NO _x
Oil consumption control		PM, wear
Exhaust after-treatment		
Particulate traps		PM
Selective catalytic reduction		NO _x
Oxidation catalysts		TOC, CO, PM

Table 3.3-3. EFFECT OF VARIOUS EMISSION CONTROL TECHNOLOGIES ON DIESEL ENGINES^a

^a Reference 8. PM = particulate matter. BSFC = brake-specific fuel consumption.

References For Section 3.3

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume 1: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et al., Air Quality Trends In California's South Coast And Southeast Desert Air Basins, 1976-1990, Air Quality Management Plan, Appendix II-B, South Coast Air Quality Management District, July 1991.
- 4. R. B. Snyder, Alternative Control Techniques Document .. NO_x Emissions From Stationary Reciprocating Internal Combustion Engines, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- 5. C. T. Hare and K. J. Springer, *Exhaust Emissions From Uncontrolled Vehicles And Related Equipment Using Internal Combustion Engines, Part 5: Farm, Construction, And Industrial Engines*, APTD-1494, U. S. Environmental Protection Agency, Research Triangle Park, NC, October 1973.
- 6. *Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California*, ENSR 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 7. W. E. Osborn and M. D. McDannel, *Emissions Of Air Toxic Species: Test Conducted Under AB2588 For The Western States Petroleum Association*, CR 72600-2061, Western States Petroleum Association, Glendale, CA, May 1990.
- 8. Technical Feasibility Of Reducing NO_x And Particulate Emissions From Heavy-duty Engines, CARB Contract A132-085, California Air Resources Board, Sacramento, CA, March 1992.
- 9. G. Marland and R. M. Rotty, *Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1951-1981*, DOE/NBB-0036 TR-003, Carbon Dioxide Research Division, Office of Energy Research, U. S. Department of Energy, Oak Ridge, TN, 1983.
- 10. A. Rosland, *Greenhouse Gas Emissions in Norway: Inventories and Estimation Methods*, Oslo: Ministry of Environment, 1993.
- 11. Sector-Specific Issues and Reporting Methodologies Supporting the General Guidelines for the Voluntary Reporting of Greenhouse Gases under Section 1605(b) of the Energy Policy Act of 1992 (1994) DOE/PO-0028, Volume 2 of 3, U.S. Department of Energy.
- 12. G. Marland and R. M. Rotty, Carbon Dioxide Emissions From Fossil Fuels: A Procedure For Estimation And Results For 1950-1982, Tellus 36B:232-261, 1984.
- 13. Inventory Of U. S. Greenhouse Gas Emissions And Sinks: 1990-1991, EPA-230-R-96-006, U. S. Environmental Protection Agency, Washington, DC, November 1995.
- 14. *IPCC Guidelines For National Greenhouse Gas Inventories Workbook*, Intergovernmental Panel on Climate Change/Organization for Economic Cooperation and Development, Paris, France, 1995.

3.4 Large Stationary Diesel And All Stationary Dual-fuel Engines

3.4.1 General

The primary domestic use of large stationary diesel engines (greater than 600 horsepower [hp]) is in oil and gas exploration and production. These engines, in groups of 3 to 5, supply mechanical power to operate drilling (rotary table), mud pumping, and hoisting equipment, and may also operate pumps or auxiliary power generators. Another frequent application of large stationary diesels is electricity generation for both base and standby service. Smaller uses include irrigation, hoisting, and nuclear power plant emergency cooling water pump operation.

Dual-fuel engines were developed to obtain compression ignition performance and the economy of natural gas, using a minimum of 5 to 6 percent diesel fuel to ignite the natural gas. Large dual-fuel engines have been used almost exclusively for prime electric power generation. This section includes all dual-fuel engines.

3.4.2 Process Description

All reciprocating internal combustion (IC) engines operate by the same basic process. A combustible mixture is first compressed in a small volume between the head of a piston and its surrounding cylinder. The mixture is then ignited, and the resulting high-pressure products of combustion push the piston through the cylinder. This movement is converted from linear to rotary motion by a crankshaft. The piston returns, pushing out exhaust gases, and the cycle is repeated.

There are 2 ignition methods used in stationary reciprocating IC engines, compression ignition (CI) and spark ignition (SI). In CI engines, combustion air is first compression heated in the cylinder, and diesel fuel oil is then injected into the hot air. Ignition is spontaneous because the air temperature is above the autoignition temperature of the fuel. SI engines initiate combustion by the spark of an electrical discharge. Usually the fuel is mixed with the air in a carburetor (for gasoline) or at the intake valve (for natural gas), but occasionally the fuel is injected into the compressed air in the cylinder. Although all diesel- fueled engines are compression ignited and all gasoline- and gas-fueled engines are spark ignited, gas can be used in a CI engine if a small amount of diesel fuel is injected into the compressed gas/air mixture to burn any mixture ratio of gas and diesel oil (hence the name dual fuel), from 6 to 100 percent diesel oil.

CI engines usually operate at a higher compression ratio (ratio of cylinder volume when the piston is at the bottom of its stroke to the volume when it is at the top) than SI engines because fuel is not present during compression; hence there is no danger of premature autoignition. Since engine thermal efficiency rises with increasing pressure ratio (and pressure ratio varies directly with compression ratio), CI engines are more efficient than SI engines. This increased efficiency is gained at the expense of poorer response to load changes and a heavier structure to withstand the higher pressures.¹

3.4.3 Emissions And Controls

Most of the pollutants from IC engines are emitted through the exhaust. However, some total organic compounds (TOC) escape from the crankcase as a result of blowby (gases that are vented from the oil pan after they have escaped from the cylinder past the piston rings) and from the fuel tank

and carburetor because of evaporation. Nearly all of the TOCs from diesel CI engines enter the atmosphere from the exhaust. Crankcase blowby is minor because TOCs are not present during compression of the charge. Evaporative losses are insignificant in diesel engines due to the low volatility of diesel fuels. In general, evaporative losses are also negligible in engines using gaseous fuels because these engines receive their fuel continuously from a pipe rather than via a fuel storage tank and fuel pump.

The primary pollutants from internal combustion engines are oxides of nitrogen (NO_x) , hydrocarbons and other organic compounds, carbon monoxide (CO), and particulates, which include both visible (smoke) and nonvisible emissions. Nitrogen oxide formation is directly related to high pressures and temperatures during the combustion process and to the nitrogen content, if any, of the fuel. The other pollutants, HC, CO, and smoke, are primarily the result of incomplete combustion. Ash and metallic additives in the fuel also contribute to the particulate content of the exhaust. Sulfur oxides also appear in the exhaust from IC engines. The sulfur compounds, mainly sulfur dioxide (SO₂), are directly related to the sulfur content of the fuel.²

3.4.3.1 Nitrogen Oxides -

Nitrogen oxide formation occurs by two fundamentally different mechanisms. The predominant mechanism with internal combustion engines is thermal NO_x which arises from the thermal dissociation and subsequent reaction of nitrogen (N₂) and oxygen (O₂) molecules in the combustion air. Most thermal NO_x is formed in the high-temperature region of the flame from dissociated molecular nitrogen in the combustion air. Some NO_x , called prompt NO_x , is formed in the early part of the flame from reaction of nitrogen intermediary species, and HC radicals in the flame. The second mechanism, fuel NO_x , stems from the evolution and reaction of fuel-bound nitrogen compounds with oxygen. Gasoline, and most distillate oils, have no chemically-bound fuel N_2 and essentially all NO_x formed is thermal NO_x .

3.4.3.2 Total Organic Compounds -

The pollutants commonly classified as hydrocarbons are composed of a wide variety of organic compounds and are discharged into the atmosphere when some of the fuel remains unburned or is only partially burned during the combustion process. Most unburned hydrocarbon emissions result from fuel droplets that were transported or injected into the quench layer during combustion. This is the region immediately adjacent to the combustion chamber surfaces, where heat transfer outward through the cylinder walls causes the mixture temperatures to be too low to support combustion.

Partially burned hydrocarbons can occur because of poor air and fuel homogeneity due to incomplete mixing, before or during combustion; incorrect air/fuel ratios in the cylinder during combustion due to maladjustment of the engine fuel system; excessively large fuel droplets (diesel engines); and low cylinder temperature due to excessive cooling (quenching) through the walls or early cooling of the gases by expansion of the combustion volume caused by piston motion before combustion is completed.²

3.4.3.3 Carbon Monoxide -

Carbon monoxide is a colorless, odorless, relatively inert gas formed as an intermediate combustion product that appears in the exhaust when the reaction of CO to CO_2 cannot proceed to completion. This situation occurs if there is a lack of available oxygen near the hydrocarbon (fuel) molecule during combustion, if the gas temperature is too low, or if the residence time in the cylinder is too short. The oxidation rate of CO is limited by reaction kinetics and, as a consequence, can be accelerated only to a certain extent by improvements in air and fuel mixing during the combustion process.²⁻³

3.4.3.4 Smoke, Particulate Matter, and PM-10 -

White, blue, and black smoke may be emitted from IC engines. Liquid particulates appear as white smoke in the exhaust during an engine cold start, idling, or low load operation. These are formed in the quench layer adjacent to the cylinder walls, where the temperature is not high enough to ignite the fuel. Blue smoke is emitted when lubricating oil leaks, often past worn piston rings, into the combustion chamber and is partially burned. Proper maintenance is the most effective method of preventing blue smoke emissions from all types of IC engines. The primary constituent of black smoke is agglomerated carbon particles (soot).²

3.4.3.5 Sulfur Oxides -

Sulfur oxide emissions are a function of only the sulfur content in the fuel rather than any combustion variables. In fact, during the combustion process, essentially all the sulfur in the fuel is oxidized to SO_2 . The oxidation of SO_2 gives sulfur trioxide (SO_3), which reacts with water to give sulfuric acid (H_2SO_4), a contributor to acid precipitation. Sulfuric acid reacts with basic substances to give sulfates, which are fine particulates that contribute to PM-10 and visibility reduction. Sulfur oxide emissions also contribute to corrosion of the engine parts.^{2,3}

Table 3.4-1 contains gaseous emission factors for the pollutants discussed above, expressed in units of pounds per horsepower-hour (lb/hp-hr), and pounds per million British thermal unit (lb/MMBtu). Table 3.4-2 shows the particulate and particle-sizing emission factors. Table 3.4-3 shows the speciated organic compound emission factors and Table 3.4-4 shows the emission factors for polycyclic aromatic hydrocarbons (PAH). These tables do not provide a complete speciated organic compound and PAH listing because they are based only on a single engine test; they are to be used only for rough order of magnitude comparisons.

Table 3.4-5 shows the NO_x reduction and fuel consumption penalties for diesel and dual-fueled engines based on some of the available control techniques. The emission reductions shown are those that have been demonstrated. The effectiveness of controls on a particular engine will depend on the specific design of each engine, and the effectiveness of each technique could vary considerably. Other NO_x control techniques exist but are not included in Table 3.4-5. These techniques include internal/external exhaust gas recirculation, combustion chamber modification, manifold air cooling, and turbocharging.

3.4.4 Control Technologies

Control measures to date are primarily directed at limiting NO_x and CO emissions since they are the primary pollutants from these engines. From a NO_x control viewpoint, the most important distinction between different engine models and types of reciprocating engines is whether they are rich-burn or lean-burn. Rich-burn engines have an air-to-fuel ratio operating range that is near stoichiometric or fuel-rich of stoichiometric and as a result the exhaust gas has little or no excess oxygen. A lean-burn engine has an air-to-fuel operating range that is fuel-lean of stoichiometric; therefore, the exhaust from these engines is characterized by medium to high levels of O_2 . The most common NO_x control technique for diesel and dual fuel engines focuses on modifying the combustion process. However, selective catalytic reduction (SCR) and nonselective catalytic reduction (NSCR) which are post-combustion techniques are becoming available. Control for CO have been partly adapted from mobile sources.⁵

Combustion modifications include injection timing retard (ITR), preignition chamber combustion (PCC), air-to-fuel ratio, and derating. Injection of fuel into the cylinder of a CI engine initiates the combustion process. Retarding the timing of the diesel fuel injection causes the combustion process to occur later in the power stroke when the piston is in the downward motion and combustion chamber volume is increasing. By increasing the volume, the combustion temperature and pressure are lowered, thereby lowering NO_x formation. ITR reduces NO_x from all diesel engines; however, the effectiveness is specific to each engine model. The amount of NO_x reduction with ITR diminishes with increasing levels of retard.⁵

Improved swirl patterns promote thorough air and fuel mixing and may include a precombustion chamber (PCC). A PCC is an antechamber that ignites a fuel-rich mixture that propagates to the main combustion chamber. The high exit velocity from the PCC results in improved mixing and complete combustion of the lean air/fuel mixture which lowers combustion temperature, thereby reducing NO_x emissions.⁵

The air-to-fuel ratio for each cylinder can be adjusted by controlling the amount of fuel that enters each cylinder. At air-to-fuel ratios less than stoichiometric (fuel-rich), combustion occurs under conditions of insufficient oxygen which causes NO_x to decrease because of lower oxygen and lower temperatures. Derating involves restricting engine operation to lower than normal levels of power production for the given application. Derating reduces cylinder pressures and temperatures thereby lowering NO_x formation rates.⁵

SCR is an add-on NO_x control placed in the exhaust stream following the engine and involves injecting ammonia (NH₃) into the flue gas. The NH₃ reacts with the NO_x in the presence of a catalyst to form water and nitrogen. The effectiveness of SCR depends on fuel quality and engine duty cycle (load fluctuations). Contaminants in the fuel may poison or mask the catalyst surface causing a reduction or termination in catalyst activity. Load fluctuations can cause variations in exhaust temperature and NO_x concentration which can create problems with the effectiveness of the SCR system.⁵

NSCR is often referred to as a three-way conversion catalyst system because the catalyst reactor simultaneously reduces NO_x , CO, and HC and involves placing a catalyst in the exhaust stream of the engine. The reaction requires that the O_2 levels be kept low and that the engine be operated at fuel-rich air-to-fuel ratios.⁵

3.4.5 Updates Since the Fifth Edition

The Fifth Edition was released in January 1995. Revisions to this section since that date are summarized below. For further detail, consult the memoranda describing each supplement or the background report for this section.

Supplement A, February 1996

No changes.

Supplement B, October 1996

- The general text was updated.
- Controlled NO_x factors and PM factors were added for diesel units.
- Math errors were corrected in factors for CO from diesel units and for uncontrolled NO_x from dual fueled units.

	Diesel Fuel (SCC 2-02-004-01)		Dual Fuel ^b (SCC 2-02-004-02)			
Pollutant	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING	Emission Factor (lb/hp-hr) (power output)	Emission Factor (lb/MMBtu) (fuel input)	EMISSION FACTOR RATING
NO _x						
Uncontrolled	0.024	3.2	В	0.018	2.7	D
Controlled	0.013 ^c	1.9 ^c	В	ND	ND	NA
CO	5.5 E-03	0.85	С	7.5 E-03	1.16	D
SO _x ^d	8.09 E-03S ₁	1.01S ₁	В	4.06 E-04S ₁ + 9.57 E-03S ₂	$0.05S_1 + 0.895S_2$	В
\rm{CO}_2^e	1.16	165	В	0.772	110	В
PM	0.0007 ^c	0.1 ^c	В	ND	ND	NA
TOC (as CH ₄)	7.05 E-04	0.09	С	5.29 E-03	0.8	D
Methane	f	f	Е	3.97 E-03	0.6	E
Nonmethane	f	f	Е	1.32 E-03	0.2 ^g	E

Table 3.4-1. GASEOUS EMISSION FACTORS FOR LARGE STATIONARY DIESEL AND ALL STATIONARY DUAL-FUEL ENGINES^a

^a Based on uncontrolled levels for each fuel, from References 2,6-7. When necessary, the average heating value of diesel was assumed to be 19,300 Btu/lb with a density of 7.1 lb/gallon. The power output and fuel input values were averaged independently from each other, because of the use of actual brake-specific fuel consumption (BSFC) values for each data point and of the use of data possibly sufficient to calculate only 1 of the 2 emission factors (e. g., enough information to calculate lb/MMBtu, but not lb/hp-hr). Factors are based on averages across all manufacturers and duty cycles. The actual emissions from a particular engine or manufacturer could vary considerably from these levels. To convert from lb/hp-hr to kg/kw-hr, multiply by 0.608. To convert from lb/MMBtu to ng/J, multiply by 430. SCC = Source Classification Code.

- с
- Dual fuel assumes 95% natural gas and 5% diesel fuel. References 8-26. Controlled NO_x is by ignition timing retard. Assumes that all sulfur in the fuel is converted to SO₂. $S_1 = \%$ sulfur in fuel oil; $S_2 = \%$ sulfur in natural gas. For example, if sulfer d content is 1.5%, then S = 1.5.
- ^e Assumes 100% conversion of carbon in fuel to CO₂ with 87 weight % carbon in diesel, 70 weight % carbon in natural gas, dual-fuel mixture of 5% diesel with 95% natural gas, average BSFC of 7,000 Btu/hp-hr, diesel heating value of 19,300 Btu/lb, and natural gas heating value of 1050 Btu/scf.
- Based on data from 1 engine, TOC is by weight 9% methane and 91% nonmethane.
- ^g Assumes that nonmethane organic compounds are 25% of TOC emissions from dual-fuel engines. Molecular weight of nonmethane gas stream is assumed to be that of methane.

Table 3.4-2. PARTICULATE AND PARTICLE-SIZING EMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

Pollutant	Emission Factor (lb/MMBtu) (fuel input)
Filterable particulate ^b	
< 1 µm	0.0478
< 3 µm	0.0479
< 10 µm	0.0496
Total filterable particulate	0.0620
Condensable particulate	0.0077
Total PM-10 ^c	0.0573
Total particulate ^d	0.0697

EMISSION FACTOR RATING: E

^a Based on 1 uncontrolled diesel engine from Reference 6. Source Classification Code 2-02-004-01. The data for the particulate emissions were collected using Method 5, and the particle size distributions were collected using a Source Assessment Sampling System. To convert from lb/MMBtu to ng/J, multiply by 430. PM-10 = particulate matter ≤ 10 micrometers (µm) aerometric diameter.

^b Particle size is expressed as aerodynamic diameter.

^c Total PM-10 is the sum of filterable particulate less than 10 μ m aerodynamic diameter and condensable particulate.

^d Total particulate is the sum of the total filterable particulate and condensable particulate.

Table 3.4-3. SPECIATED ORGANIC COMPOUND EMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

Pollutant	Emission Factor (lb/MMBtu) (fuel input)
Benzene ^b	7.76 E-04
Toluene ^b	2.81 E-04
Xylenes ^b	1.93 E-04
Propylene	2.79 E-03
Formaldehyde ^b	7.89 E-05
Acetaldehyde ^b	2.52 E-05
Acrolein ^b	7.88 E-06

EMISSION FACTOR RATING: E

^aBased on 1 uncontrolled diesel engine from Reference 7. Source Classification Code 2-02-004-01. Not enough information to calculate the output-specific emission factors of lb/hp-hr. To convert from lb/MMBtu to ng/J, multiply by 430. ^bHazardous air pollutant listed in the *Clean Air Act*.

Table 3.4-4. PAH EMISSION FACTORS FOR LARGE UNCONTROLLED STATIONARY DIESEL ENGINES^a

EMISSION FACTOR RATING: E

РАН	Emission Factor (lb/MMBtu) (fuel input)
Naphthalene ^b	1.30 E-04
Acenaphthylene	9.23 E-06
Acenaphthene	4.68 E-06
Fluorene	1.28 E-05
Phenanthrene	4.08 E-05
Anthracene	1.23 E-06
Fluoranthene	4.03 E-06
Pyrene	3.71 E-06
Benz(a)anthracene	6.22 E-07
Chrysene	1.53 E-06
Benzo(b)fluoranthene	1.11 E-06
Benzo(k)fluoranthene	<2.18 E-07
Benzo(a)pyrene	<2.57 E-07
Indeno(1,2,3-cd)pyrene	<4.14 E-07
Dibenz(a,h)anthracene	<3.46 E-07
Benzo(g,h,l)perylene	<5.56 E-07
TOTAL PAH	<2.12 E-04

^a Based on 1 uncontrolled diesel engine from Reference 7. Source Classification Code 2-02-004-01. Not enough information to calculate the output-specific emission factors of lb/hp-hr. To convert from lb/MMBtu to ng/J, multiply by 430. ^b Hazardous air pollutant listed in the *Clean Air Act*.

		Diesel (SCC 2-02-004-01)		Dual Fuel (SCC 2-02-004-02)	
Control Approach		NO _x Reduction (%)	ΔBSFC ^b (%)	NO _x Reduction (%)	ΔBSFC (%)
Derate	10%	ND	ND	<20	4
	20%	<20	4	ND	ND
	25%	5 - 23	1 - 5	1 - 33	1 - 7
Retard	2°	<20	4	<20	3
	4°	<40	4	<40	1
	8°	28 - 45	2 - 8	50 - 73	3 - 5
Air-to-fuel	3%	ND	ND	<20	0
	±10%	7 - 8	3	25 - 40	1 - 3
Water injection (H ₂ O/fuel ratio)	50%	25 - 35	2 - 4	ND	ND
SCR		80 - 95	0	80 - 95	0

Table 3.4-5.NOx REDUCTION AND FUEL CONSUMPTION PENALTIES FOR LARGE
STATIONARY DIESEL AND DUAL-FUEL ENGINES^a

^a References 1,27-28. The reductions shown are typical and will vary depending on the engine and duty cycle. SCC = Source Classification Code. Δ BSFC = change in brake-specific fuel consumption. ND = no data.

References For Section 3.4

- 1. H. I. Lips, et al., Environmental Assessment Of Combustion Modification Controls For Stationary Internal Combustion Engines, EPA-600/7-81-127, U. S. Environmental Protection Agency, Cincinnati, OH, July 1981.
- 2. Standards Support And Environmental Impact Statement, Volume I: Stationary Internal Combustion Engines, EPA-450/2-78-125a, U. S. Environmental Protection Agency, Research Triangle Park, NC, July 1979.
- 3. M. Hoggan, et. al., *Air Quality Trends in California's South Coast and Southeast Desert Air Basins, 1976-1990*, "Air Quality Management Plan, Appendix II-B", South Coast Air Quality Management District, July 1991.
- 4. *Limiting Net Greenhouse Gas Emissions In the United States, Volume II: Energy Responses,* report for the Office of Environmental Analysis, Office of Policy, Planning and Analysis, Department of Energy (DDE), DOE/PE-0101 Volume II, September 1991.
- Snyder, R. B., Alternative Control Techniques Document—NO_x Emissions from Stationary Reciprocating Internal Combustion Engines, EPA-453/R-93-032, U. S. Environmental Protection Agency, Research Triangle Park, July 1993.
- C. Castaldini, Environmental Assessment Of NO_x Control On A Compression Ignition Large Bore Reciprocating Internal Combustion Engine, Volume I: Technical Results, EPA-600/7-86/001a, U. S. Environmental Protection Agency, Cincinnati, OH, April 1984.
- 7. Pooled Source Emission Test Report: Oil And Gas Production Combustion Sources, Fresno And Ventura Counties, California, ENSR # 7230-007-700, Western States Petroleum Association, Bakersfield, CA, December 1990.
- 8. Final Report For An Emission Compliance Test Program On Two Standby Generators Located At American Car Company, Greenwich, CT, York Services Corp., 1987.
- 9. Final Report For An Emission Compliance Test Program On A Standby Diesel Generator At South Central Connecticut Regional Water Authority, West Haven, CT, York Services Corp., 1988.
- 10. Air Emission From Stationary Diesel Engines For The Alaska Rural Electric Cooperative Association, Environmetrics, 1992.
- 11. *Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator*, St. Mary's Hospital, Waterburg, CT, TRC Environmental Consultants, 1987.
- 12. Compliance Measured Particulate Emissions From An Emergency Diesel Generator, Silorsky Aircraft, United Technologies, Stratford, CT, TRC Environmental Consultants, 1987.
- 13. Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator, Colonial Gold Limited Partnership, Hartford, CT, TRC Environmental Consultants, 1988.
- 14. *Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator*, CIGNA Insurance Company, Bloomfield, CT, TRC Environmental Consultants, 1988.

- 15. *Compliance Test Report For Particulate Emission From A Waukesha Diesel Generator*, Bristol Meyers, Wallinsford, CT, TRC Environmental Consultants, 1987.
- 16. *Compliance Test Report For Particulate Emissions From A Cummins Diesel Generator*, Connecticut General Life Insurance, Windsor, CT, TRC Environmental Consultants, 1987.
- 17. *Compliance Measured Particulate Emissions From An Emergency Diesel Generator*, Danbury Hospital, Danbury, CT, TRC Environmental Consultants, 1988.
- 18. *Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator*, Colonial Metro Limited Partnership, Hartford, CT, TRC Environmental Consultants, 1988.
- 19. Compliance Test Report For Particulate Emissions From A Caterpillar Diesel Generator, Boehringer -Ingelheim Pharmaceuticals, Danbury, CT, TRC Environmental Consultants, 1988.
- 20. Compliance Test Report For Emissions Of Particulate From An Emergency Diesel Generator, Meriden - Wallingford Hospital, Meriden, CT, TRC Environmental Consultants, 1987.
- 21. Compliance Test Report Johnson Memorial Hospital Emergency Generator Exhaust Stack, Stafford Springs, CT, ROJAC Environmental Services, 1987.
- 22. Compliance Test Report Union Carbide Corporation Generator Exhaust Stack, Danbury, CT, ROJAC Environmental Services, 1988.
- 23. Compliance Test Report Hartford Insurance Company Emergency Generator Exhaust Stack, Bloomfield, CT, ROJAC Environmental Services, 1987.
- 24. *Compliance Test Report Hartford Insurance Group Emergency Generator Exhaust Stack*, Hartford, CT, ROJAC Environmental Services, 1987.
- 25. Compliance Test Report Southern New England Telephone Company Emergency Generator Exhaust Stack, North Haven, CT, ROJAC Environmental Services, 1988.
- 26. *Compliance Test Report Pfizer, Inc. Two Emergency Generator Exhaust Stacks*, Groton, CT, ROJAC Environmental Services, 1987.
- L. M. Campbell, et al., Sourcebook: NO_x Control Technology Data, Control Technology Center, EPA-600/2-91-029, U. S. Environmental Protection Agency, Cincinnati, OH, July 1991.
- 28. *Catalysts For Air Pollution Control*, Manufacturers Of Emission Controls Association (MECA), Washington, DC, March 1992.

Estimated Emissions -JB and JBX Burners

The following emissions apply to all JB and JBX burners firing the fuels shown.

Estimated Emission Levels Firing Natural Gas						
Pollutant Model JB Model JBX						
NOx ^(B)	ppm	80	25			
	lb/mmbtu	0.096	0.03			
CO ^(A)	ppm	50	50			
	lb/mmbtu	0.037	0.037			
SOx ^(C)	ppm	1	1			
	lb/mmbtu	0.001	0.001			
HC / VOC	ppm	20	20			
	lb/mmbtu	0.008	0.008			
PM	ppm	na	na			
	lb/mmbtu	0.0048	0.0048			

Estimated Emission Levels Firing #2 Oil ^(D)						
Pollutant Model JB Model JBX						
NOx ^(B)	ppm	135	120			
	lb/mmbtu	0.176	0.157			
CO ^(A)	ppm	50	50			
	lb/mmbtu	0.04	0.04			
SOx ^(C)	ppm	278	278			
	lb/mmbtu	0.52	0.52			
HC / VOC	ppm	25	25			
	lb/mmbtu	0.013	0.013			
РМ	ppm	na	na			
	lb/mmbtu	0.014	0.014			

Assumption used for above (Contact Webster if different assumptions required)

- A. CO varies with firing rate. Lower levels available, contact sales.
- B. The ppm levels are corrected to 3% Oxygen (15% excess air) and dry volume basis.
- C. Maximum sulfur in natural gas is 0.0006% wt.
- D. ASTM #2 fuel, 0.02% Nitrogen, 0.5% Sulfur and 0.01% Ash (% by weight).
- E. All levels are above backround (ambient) conditions.
- F. Emission levels are based on a properly maintained and tuned burner.

FW: stack parameter data

Albers, Todd <Todd.Albers@curiaglobal.com> To: Paul Wade <pwade@montrose-env.com> Cc: Matthew Lane <theenvironmentallane@gmail.com>

Paul,

See below from Combustion Systems.

Thanks.

Todd

From: Jason Paxson [mailto:jason@csinm.com] Sent: Wednesday, December 22, 2021 10:00 AM To: Albers, Todd <Todd.Albers@curiaglobal.com> Subject: Re: FW: stack parameter data

External: This message originated outside of the organization from jason@csinm.com. Do not click links or open attachments unless you recognize the sender or know the content is safe.

Hi Todd,

I got the info back from Webster.

For the Balloon Park Superior boiler the flue gas flow rate is 3351 acfm and the stack flue velocity is 25.9 ft/s.

For the Alexander Superior boiler the flue gas flow rate is 1340 acfm and the stack flue velocity is 16.3 ft/s.

Thanks,

Jason Paxson

Combustion Systems

Wed, Dec 22, 2021 at 10:50 AM

protected from disclosure. It is intended solely for the use of the individual or entity named on this message. Access to this email by anyone else is unauthorized. If you are not the intended recipient, any disclosure or copying of the contents of this email or any action taken (or not taken) in reliance on it is unauthorized and may be unlawful. If you have received this email in error, please notify the sender immediately and destroy it.

CURIA

	Cleaver-Brooks Boiler Expected	Emission Data		_	
	Producing Steam Firing		Nat Gas		
	BACKGROUND INFORMATION		Nat Gas	Boiler Model	CB(LE)
Date	12/01/21			Altitude (feet)	5300
withor	Don Betts			Operating Pressure (psig)	115.00
Customer	Curia Global			Furnace Volume (cuft)	33.36
City & State	Albuquerque, NM		Furna	ce Heat Release (btu/hr/cu ft)	91,270
ony a onate	/ ibuquerque, rim		1 dina	Heating Surface (sqft)	625
				Nox System	60
Nat Gas				ng Rate	
		25%	50%	75%	100%
Horsepower		31	63	94	125
nput , Btu/hr		1,301,000	2,552,000	3,859,000	5,175,000
0	ppm	50	50	50	50
	lb/MMBtu	0.0375	0.0375	0.0375	0.0375
	lb/hr	0.05	0.10	0.14	0.19
	tpy	0.214	0.419	0.634	0.850
lOx	ppm	60	60	60	60
	lb/MMBtu	0.0700	0.0700	0.0700	0.0700
	lb/hr	0.09	0.18	0.27	0.36
	tpy	0.399	0.782	1.183	1.587
10	ppm	51.0	51.0	51.0	51.0
	lb/MMBtu	0.060	0.060	0.060	0.060
	lb/hr	0.08	0.15	0.23	0.31
	tpy	0.32	0.63	0.95	1.27
		0.0	0.0	0.0	~ ~
NO2	ppm Ib/MMBtu	9.0	9.0	9.0	9.0
		0.011	0.011	0.011	0.011
	lb/hr	0.01 0.08	0.03 0.16	0.04 0.24	0.05
	tpy	0.00	0.10	0.24	0.32
60x	ppm	0.34	0.34	0.34	0.34
	lb/MMBtu	0.0006	0.0006	0.0006	0.0006
	lb/hr	0.0008	0.0015	0.0023	0.0030
	tpy	0.003	0.007	0.010	0.013
/OCs	ppm	8	8	8	8
Non-Methane Only)	Ib/MMBtu	0.0036	0.0036	0.0036	0.0036
	lb/hr	0.005	0.009	0.014	0.018
/OCs does not include any	tpy	0.020	0.040	0.060	0.081
ackground VOC emissions.					
PM10 (Filterable)	ppm	N/A	N/A	N/A	N/A
	Ib/MMBtu	0.0019	0.0019	0.0019	0.0019
	lb/hr tny	0.002 0.011	0.005	0.007 0.031	0.010
	tpy	0.011	0.021	0.001	0.042
M10 (Condensable)	lb/MMBtu	0.0056	0.0056	0.0056	0.0056
	lb/hr	0.007	0.014	0.022	0.029
	tpy	0.032	0.062	0.094	0.127
	Ib/MAAD4	0.0010	0.0010	0.0010	0.0010
PM2.5 (Filterable)	lb/MMBtu lb/hr	0.0019 0.002	0.0019 0.005	0.0019 0.007	0.0019 0.010
	tpy	0.002	0.005	0.007	0.010
PM2.5 (Condensable)	lb/MMBtu	0.0056	0.0056	0.0056	0.0056
	lb/hr	0.007	0.014	0.022	0.029
	tpy	0.032	0.062	0.094	0.127
xhaust Data					
<u>exhaust Data</u> emperature, F		375	403	431	459
lemperature, F	ACFM	556	969	1,513	2,094
1011	SCFM (70 Degrees Fah.)	297	501	757	1,015
	DSCFM	268	445	672	901
	lb/hr	1,337	2,253	3,407	4,568
/elocity	ft/sec	6.64	11.57	18.07	25.01
	.: 500				

2) Emission data based on actual boiler efficiency.

3) % H2O , by volume in exhaust gas is	17.24	% O2, by volume	2.47
4) Water vapor in exhaust gas is		98.91	lbs/MMBtu of fuel fired
5) CO2 produced is		116.31	lbs/MMBtu of fuel fired

6) Particulate is exclusive of any particulates in combustion air or other sources of residual particulates from material. PM level indicated on this form is based on combustion air and fuel being clean and turndown up to 4:1.
7) Heat input is based on high heating value (HHV).
8.) Emission produced in tons per year (tpy) is based on 24 hours per day for 365 days = 8,760 hours per year
9.) Exhaust data is based on a clean and properly sealed boiler.
10.) Environment of the defense of the defense

10.) Emission data is based on a burner turndown of 4 to 1 above 40 hp.

14) Fuel High Heating Value =

1000

Btu/FT^3

EMISSIONS COMPLIANCE TEST REPORT

Of Two Cummins Diesel Generator Engines

Performed At The Curia New Mexico LLC 4272 Balloon Park Campus Albuquerque, NM 87109

Test Date(s) November 04, 2021

Project No. TRC Environmental Corporation Project No. 454646.0000.0000

Report No.
TRC Environmental Corporation Report No. 454646.0000.0000

Original Report Submittal Date November 24, 2021

TRC Environmental Corporation 400 Corporate Circle Suite P Golden, Colorado 80401 USA

T (281) 979-5801

Report Certification

I certify that to the best of my knowledge:

- Testing data and all corresponding information have been checked for accuracy and completeness.
- Sampling and analysis have been conducted in accordance with the approved protocol and applicable reference methods (as applicable).
- All deviations, method modifications, or sampling and analytical anomalies are summarized in the appropriate report narrative(s).
- This report includes a total of 108 pages (including cover, table of contents, and certification pages).

Associate Project Manager

<u>November 24, 2021</u> Date

TRC was operating in conformance with the requirements of ASTM D7036-04 during this test program.

PP

Bruce Randall TRC Emission Testing Technical Director

Table of Contents

I. INTRODUCTION	4
I.A Reasons for conducting test	4
I.B APPLICABLE REGULATIONS AND PERMITS	4
I.C DATE OF TEST	4
I.D. STARTUP DATE:	4
I.E. DATE OF ACHIEVEMENT OF MAXIMUM PRODUCTION RATE:	4
I.F. DESCRIPTION OF PLANT PROCESS AND SAMPLING POINTS	
I.G, H, & I: PROJECT CONTACT AND FACILITY INFORMATION	
I.J: LIST OF TEST PARTICIPANTS AND THEIR AFFILIATIONS	
I.K UNIT DESCRIPTION AND DESIGN CAPACITIES	
I.L CONTROL EQUIPMENT DESCRIPTION	6
	~
II.A-B SUMMARY OF RESULTS	
II.A-C. SUMMARY OF RESULTS, RUNS 1 – 3	
II.A-C. SUMMARY OF RESULTS, RUNS 4 – 6	
II.C CONTROL EQUIPMENT OPERATING PARAMETERS	
II.D Comparison of Measured and Modeled Parameters	9
III. Test Procedures	9
III.A Schematic Drawing of Exhaust Stack	. 10
III.B SCHEMATIC DRAWINGS OF SAMPLING DEVICES/TRAINS	. 10
III.C DESCRIPTIONS OF EPA REFERENCE TEST METHODS	
III.C.1 DETERMINATION OF SAMPLE POINT LOCATIONS BY USEPA METHOD 1	
III.C.2 VOLUMETRIC FLOW RATE DETERMINATION BY USEPA METHOD 2	
III.C.3 DETERMINATION OF THE CONCENTRATION OF GASEOUS POLLUTANTS USING A MULTI-POLLUTANT SAMPLING	
System	. 13
III.C.3.A CO ₂ Determination by USEPA Method 3A	. 14
III.C.3.B O ₂ Determination by USEPA Method 3A	
III.C.3.D NO_x Determination by USEPA Method 7E	
III.C.3.E CO DETERMINATION BY USEPA METHOD 10	
III.C.4 MOISTURE DETERMINATION BY USEPA METHOD 4	
III.C.5 VISIBLE EMISSIONS DETERMINATION BY USEPA METHOD 9	
III.D Deviations from EPA Reference Test Methods	
III.E ANALYTICAL INSTRUMENTATION	. 15
III.F METHOD(S) FOR OBTAINING OPERATIONAL DATA	
IV. Data and Calculations	4.0
	-
IV.A RAW EMISSION TEST DATA	
IV.B LABORATORY DATA	
IV.C COPY OF DATA LOG RECORDS	
IV.D EXAMPLE CALCULATIONS	. 55
IV.E DOCUMENTATION OF ANALYSIS AND CERTIFICATION FOR CALIBRATION GASES	~ ~
AND CALIBRATION OF SAMPLING EQUIPMENT	
IV.F AUDIT SAMPLE RESULTS	
IV.G VISIBLE EMISSIONS FIELD SHEETS AND METHOD 9 CERTIFICATION	
IV.H SAMPLE CHAIN OF CUSTODY	104
V. Appendix	105
V.A COMPLICATIONS DURING TESTING	105
V.B Special Information	105
V.C Test Contractors' Resumes & Qualified Individual Certifications	105

EMISSIONS COMPLIANCE TEST REPORT

I. INTRODUCTION

I.A REASONS FOR CONDUCTING TEST

TRC Environmental Corporation (TRC) performed an emissions compliance test program on the Units 7 & 8 at the 4272 Balloon Park Campus of Curia New Mexico LLC (Curia) in Albuquerque, NM on November 4, 2021. The tests were authorized by and performed for Curia.

The purpose of this test program was to determine emissions of the nitrogen oxides (NOx) and carbon monoxide (CO) while operating at a load greater than 90%. The results of the test program will be used to determine compliance with Albuquerque / Bernalillo County Air Quality Program (A/BCAQP) Authority to Construct (ATC) Permit No. 0491-M7-RV1. The test program was conducted according to the TRC Test Protocol 454646.0000.0000 dated August 16, 2021.

I.B APPLICABLE REGULATIONS AND PERMITS

Albuquerque / Bernalillo County Air Pollution Control Board Authority to Construct Permit No. 0491-M7-RV1.

All testing was performed in accordance with the Code of Federal Regulations, Title 40, Part 60, Appendix A, Methods 1-4, 7E, 9, and 10.

I.C DATE OF TEST

The testing was conducted on November 4, 2021.

I.D. STARTUP DATE:

Unit 7 was installed during July 2003. Unit 8 was installed during December 2003.

Both units are Model Year 2000 generator sets, purchased used and installed at the facility to replace an older Caterpillar generator set.

I.E. DATE OF ACHIEVEMENT OF MAXIMUM PRODUCTION RATE:

The generator was available for use immediately after installation was completed.

I.F. DESCRIPTION OF PLANT PROCESS AND SAMPLING POINTS

These units are used for the emergency generation of electricity. The gaseous sampling took place in the exhaust stacks of each engine. These stacks are

approximately 35 feet tall, and discharge vertically into the atmosphere. Sample ports were located approximately 33 feet off the ground after the silencer. These sample ports are located in a section of duct with adequate upstream and downstream distances to meet the requirements of EPA Method 1.

I.G, H, & I: PROJECT CONTACT AND FACILITY INFORMATION

Participants									
Test Facility	Curia New Mexico LLC 4272 Balloon Park Rd. NE Albuquerque, NM 87109	Todd Albers Environmental Health & Safety (505) 923-1500 x 33151 (phone) Todd.Albers@curiaglobal.com							
Air Emissions Testing Body (AETB)	TRC Environmental Corporation 400 Corporate Circle Suite P Golden, Colorado 80401	Caleb Bradley Associate Project Manager (281) 979-5801 (phone) CBradley@trccompanies.com							

I.J: LIST OF TEST PARTICIPANTS AND THEIR AFFILIATIONS

TRC Environmental

Caleb Bradley Panteleimon Statopulos

Mountaintop Services, LLC

Richard Kingsbury

Albuquerque / Bernalillo County Air Quality Program (A/BCAQP)

Not present

I.K UNIT DESCRIPTION AND DESIGN CAPACITIES

Unit 7: Cummins KTA50-G9 16-cylinder turbocharged, after-cooled, diesel engine. This engine powers a DFLE-4487400 generator. This generator set is utilized for the emergency generation of electricity, which is used at the facility in the event of a grid power failure. The engine burns low-sulfur diesel oil as a fuel source. The engine/generator set is rated for 1500 kilowatts. Engine Serial Number is 77931-132 and generator Serial Number is K000172332.

Unit 8: Cummins KTA50-G9 16-cylinder turbocharged, after-cooled, diesel engine. This engine powers a DFLE-4487400 generator. This generator set is utilized for the emergency generation of electricity. The engine burns low-sulfur diesel oil as a fuel source. The engine/generator set is rated for 1500 kilowatts. Engine Serial Number is 77931-97 and generator Serial Number is G000131896.

I.L CONTROL EQUIPMENT DESCRIPTION

The units tested utilize no pollution control equipment.

II.A-B SUMMARY OF RESULTS

No problems were encountered with the testing equipment during the test program. No changes or problems were encountered that required modification of any procedures presented in the test plan. No adverse test or environmental conditions were encountered during the conduct of this test program. The table of results are on the following pages.

II.A-C. SUMMARY OF RESULTS, RUNS 1-3

(Unit #7, Test Summary)

Client:	Curia
Plant Name:	Curia New Mexico LLC
Sampling Location:	Emergency Generator 7
Date:	11/04/2021
Technicians:	CRB & PSS

Test Number	1	2	3		
Load Condition	101%	102%	103%		
Date	11/04/21	11/04/21	11/04/21		
Start Time	11:00 AM	12:10 PM	1:29 PM		
Stop Time	12:00 PM	1:10 PM	2:29 PM		
Engine/Generator Operation					
Engine Speed, rpm	1800.0	1800.0	1800.0		
Power (kW)	1444	1444	1444		
Frequency (Hz)	60.0	60.0	60.0		
Voltage (V)	483	483	483		
Current (Amps)	1732	1730	1730		
Calculated on-site rated Hp	1911	1890	1876		
Horsepower (estimated from power)	1936	1936	1936		
Ambient Conditions					
Atmospheric Pressure (in. Hg)	25.12	25.09	25.05		
Temperature (°F dry)	55.0	60.0	63.0		
Measured Emissions (dry) (correcte	d for instrum	ent drift)		Averages	
NOx (ppmv)	1206.9	1224.3	1243.4	1224.85	
CO (ppmv)	593.5	643.0	684.6	640.36	
O2 (%)	8.33	8.12	7.99	8.15	
CO2 (%)	9.26	9.38	9.44	9.36	
Exhaust Flow Rates					
via EPA Methods 1-4 (SCFH, dry)	228801.29	226311.68	226928.62	227347.19	Permit
Mass Emission Rates (Based on Me	thods 1-4)				Limits
NOx (lbs/hr)	33.0	33.1	33.7	33.3	69.3
CO (lbs/hr)	9.9	10.6	11.3	10.6	15.9
NOx (tons/yr) {based on 500 hrs/year}	8.2	8.3	8.4	8.3	17.3
$CO (tons/yr)$ {based on 500 hrs/year}	2.5	2.6	2.8	2.6	4.0

II: A-C. Summary of Results, Runs 1-3 (Unit #8, Test Summary)

Operational Data, Concentrations, Exhaust Flow Rates,

Mass Emission Rates

	Mass Em
Client:	Curia
Plant Name:	Curia New Mexico LLC
Sampling Location:	Emergency Generator 8
Date:	11/04/2021
Technicians:	Curia New Mexico LLC

Test Number	1	2	3		
Load Condition	104%	104%	103%		
Date	11/04/21	11/04/21	11/04/21		
Start Time	3:55 PM	5:03 PM	6:13 PM		
Stop Time	4:55 PM	6:03 PM	7:13 PM		
Engine/Generator Operation					
Engine Speed, rpm	1800.0	1800.0	1800.0		
Power (kW)	1449	1444	1444		
Frequency (Hz)	60.0	60.0	60.0		
Voltage (V)	484	484	484		
Current (Amps)	1734	1731	1730		
Calculated on-site rated Hp	1861	1861	1878		
Horsepower (estimated from power)	1943	1936	1936		
Ambient Conditions	<u>.</u>	• •			
Atmospheric Pressure (in. Hg)	24.99	24.98	24.97		
Temperature (°F dry)	66.0	66.0	61.0		
Measured Emissions (dry) (corrected	for instrumer	nt drift)		Averages	
NOx (ppmv)	1258.1	1262.6	1244.4	1255.04	
CO (ppmv)	613.9	628.2	617.1	619.74	
O2 (%)	7.96	7.89	7.97	7.94	
CO2 (%)	9.54	9.56	9.47	9.52	
Exhaust Flow Rates					
via EPA Methods 1-4 (SCFH, dry)	242124.20	237391.14	225139.55	234884.96	Permit
Mass Emission Rates (Based on Meth	nods 1-4)	• •			Limits
NOx (lbs/hr)	36.4	35.8	33.5	35.2	69.3
CO (lbs/hr)	10.8	10.8	10.1	10.6	15.9
NOx (tons/yr) {based on 500 hrs/year}	9.1	9.0	8.4	8.8	17.3
$CO(tons/yr)$ {based on 500 hrs/year}	2.7	2.7	2.5	2.6	4.0

II.C CONTROL EQUIPMENT OPERATING PARAMETERS Not Applicable

II.D COMPARISON OF MEASURED AND MODELED PARAMETERS Not Applicable

III. TEST PROCEDURES

All testing, sampling, analytical, and calibration procedures used for this test program were performed in accordance with the methods presented in the following sections. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, USEPA 600/R-94/038c, September 1994 was used to supplement procedures.

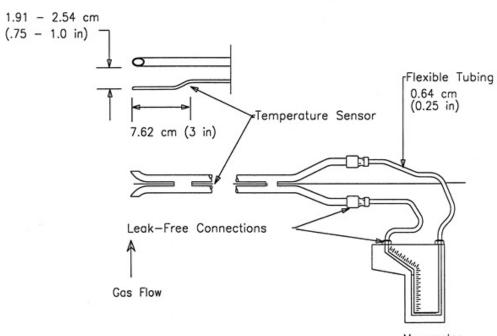
TRC integrates our Quality Management System (QMS) into every aspect of our testing service. We follow the procedures specified in current published versions of the test Method(s) referenced in this report. Any modifications or deviations are specifically identified in the body of the report. We routinely participate in independent, third party audits of our activities, and maintain:

• Accreditation from the Stack Testing Accreditation Council (STAC) and the American Association for Laboratory Accreditation (A2LA) that our operations conform with the requirements of ASTM D 7036 as an Air Emission Testing Body (AETB).

These accreditations demonstrate that our systems for training, equipment maintenance and calibration, document control and project management will fully ensure that project objectives are achieved in a timely and efficient manner with a strict commitment to quality.

All calibrations are performed in accordance with the test Method(s) identified in this report. If a Method allows for more than one calibration approach, or if approved alternatives are available, the calibration documentation in the appendices specifies which approach was used. All measurement devices are calibrated or verified at set intervals against standards traceable to the National Institute of Standards and Technology (NIST). NIST traceability information is available upon request.

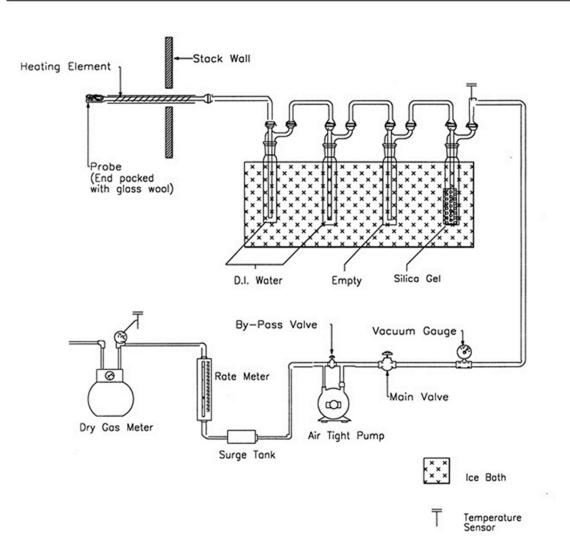
ASTM D7036-04 specifies that: "AETBs shall have and shall apply procedures for estimating the uncertainty of measurement. Conformance with this section may be demonstrated by the use of approved test protocols for all tests. When such protocols are used, reference shall be made to published literature, when available, where estimates of


uncertainty for test methods may be found." TRC conforms to this section by using approved test protocols for all tests.

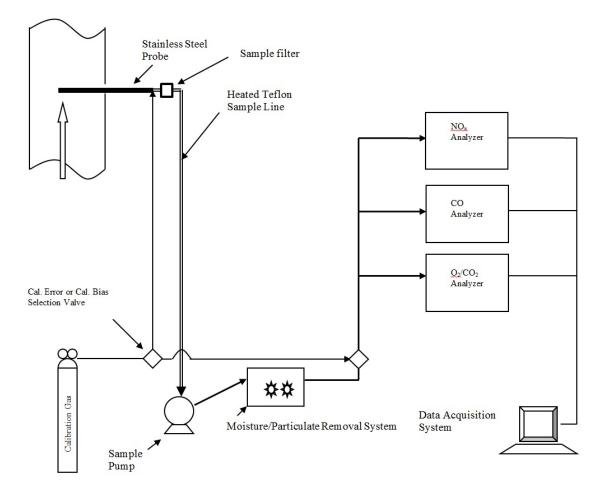
III.A SCHEMATIC DRAWING OF EXHAUST STACK

Please see Section IV.A.

III.B SCHEMATIC DRAWINGS OF SAMPLING DEVICES/TRAINS


USEPA Promulgated Test Method 2

Manometer



USEPA Promulgated Method 4

Gaseous Test Methods (EPA Methods 3A, 7E, & 10):

III.C DESCRIPTIONS OF EPA REFERENCE TEST METHODS

III.C.1 DETERMINATION OF SAMPLE POINT LOCATIONS BY USEPA METHOD 1

This method is applicable to gas streams flowing in ducts, stacks, and flues and is designed to provide guidance for the selection of sampling ports and traverse points at which sampling for air pollutants will be performed. Sample ports must be located at least two duct diameters downstream and a half a duct diameter upstream from any flow disturbance.

The cross-section of the measurement site was divided into a number of equal areas, and the traverse points were located in the center of each area. The minimum number of points were determined from Figure 1-2 (non-particulate) of the Method.

III.C.2 VOLUMETRIC FLOW RATE DETERMINATION BY USEPA METHOD 2

This method is applicable for the determination of the average velocity and the volumetric flow rate of a gas stream.

The gas velocity head (ΔP) and temperature were measured at traverse points defined by USEPA Method 1. The velocity head was measured with a standard pitot tube and oil-filled manometer; and the gas temperature was measured with a Type K thermocouple. The average gas velocity in the flue was calculated based on: the gas density (as determined by USEPA Methods 3A and 4); the flue gas pressure; the average of the square roots of the velocity heads at each traverse point, and the average flue gas temperature.

III.C.3 DETERMINATION OF THE CONCENTRATION OF GASEOUS POLLUTANTS USING A MULTI-POLLUTANT SAMPLING SYSTEM

Concentrations of the pollutants in the following sub-sections were determined using one sampling system. The number of points at which sample was collected was determined in accordance with Method 7E specifications.

A straight-extractive sampling system was used. A data logger continuously recorded pollutant concentrations and generated one-minute averages of those concentrations. All calibrations and system checks were conducted using USEPA Procedure G1 gases. Three-point linearity checks were performed prior to sampling, and in the event of a failing system bias or drift test (and subsequent corrective action). System bias and drift checks were performed using the low-level gas and either the high- or mid-level gas (as specified in the appendices) prior to and following each test run.

III.C.3.A CO₂ DETERMINATION BY USEPA METHOD 3A

This method is applicable for the determination of CO_2 concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The CO_2 analyzer was equipped with a non-dispersive infrared (IR) detector.

III.C.3.B O₂ DETERMINATION BY USEPA METHOD 3A

This method is applicable for the determination of O_2 concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The O_2 analyzer was equipped with a paramagnetic-based detector.

III.C.3.D NO_x DETERMINATION BY USEPA METHOD 7E

This method is applicable for the determination of NO_x concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The NO_x analyzer utilized a photomultiplier tube to measure the linear and proportional luminescence caused by the reaction of nitric oxide and ozone.

III.C.3.E CO DETERMINATION BY USEPA METHOD 10

This method is applicable for the determination of CO concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The non-dispersive infrared analyzer (NDIR) CO analyzer was equipped with an internal gas correlation filter wheel, which eliminates potential detector interference. As such, use of an interference removal trap was not required.

III.C.4 MOISTURE DETERMINATION BY USEPA METHOD 4

This method is applicable for the determination of the moisture content of stack gas.

A gas sample was extracted at a constant rate from the source. Moisture was removed from the sample stream by a series of pre-weighed impingers immersed in an ice bath. A minimum of 21 dry standard cubic feet of flue gas was collected during each sample run.

III.C.5 VISIBLE EMISSIONS DETERMINATION BY USEPA METHOD 9

This method is applicable for the determination of the opacity of emissions from stationary sources pursuant to § 60.11(b) and for visually determining opacity of emissions.

Opacity observations were made by a qualified observer. Observations were made at the point of greatest opacity in the portion of the plume where condensed water vapor was not present. Observations were made at 15-second intervals for a six (6) minute period once during each test run.

III.D DEVIATIONS FROM EPA REFERENCE TEST METHODS

There were no deviations from published test methods.

III.E ANALYTICAL INSTRUMENTATION

Parameter	Manufacturer	Model	Serial Number
Nitrogen Oxides (NO _x)	Thermo	42i	1151350002
Carbon Monoxide (CO)	Thermo	48i	1171950007
Oxygen (O ₂)	Servomex	1440	01440D1/4115
Carbon Dioxide (CO ₂)	Servomex	1440	01440D1/4115

III.F METHOD(S) FOR OBTAINING OPERATIONAL DATA

Operational data was taken from available instrumentation control panels or gauges by Mountaintop personnel at regular intervals during the test program. Operational parameters obtained during the testing included engine rpm, engine temperature, generator voltage, current, power output, and other data as available.

IV. DATA AND CALCULATIONS

IV.A RAW EMISSION TEST DATA

Mountaintop Services, LLC

Richard Kingsbury Power Generation Systems Specialist

505-559-3426

Load Bank Test Report

Date 11/4/2021CustomerCU	URIA Site 42	TZ WEST Hours 345
Engine Model <u>FTASD</u> G Gen Model D	FLE-4487400 SINKOC	00172332 KW Rating 1500
Voltage 480/277	Phase3	Max AMPS804

		OUTPUT	VOLTAGE			CURRENT						AMBIENT
Time	AB	BC	CA	HZ	A	В	<u> </u>	КW	O/PRES	W/TEMP	O/TEMP	TEMP
9:00	482	482	483	60.2	854	850	1840	712	94	151	113	44
9:15	483	483	483	60.1	1724	1722	1726	144/4	77	172	182	45
9:30	483	483	483	60.1	1722	1719	1730	14/1/	70	173	205	46
10:00	483	483	483	602	1723	1720	1731	1444	70	174	201	49
10:30	483	483	483	102	1773	1719	1733	14/1/2	70	173	207	51
11:00	483,	483	483	60.2	1727	1719	1728	1444	69	174	207	52
11:30	483	483	483	10.2	1723	1721	1733	1445	109	174	209	55
12:00	483	483	A 4 473 min 1	12.00	1723	1719	1734	1444	69	174	206	56
12:30	1183	483	483	1,02	1721	1719	1727	1444	1,8	174	209	59
1:00	483	483	483	1,0.2	1720	1718	1734	1944	68	176.	208	60
1:30	483	483	483	60.2	1721	1717	[73]	1444	67	176	209	61
J:00	483	483	483	102	1721	1719	1729	1444	61		209	63
2:30	483	483	483	100.2	1719	17/9	1728	1444	107	1770	Q08	63
									4			
			``									

Notes:

a baikelene

na popula National de -3.0q

t No. 4 5-1 646.0000.0000	Date 11-04 - 2021
CUTTO NEW MARTCO LLC	Operator Name P. Stathopulos
VENTIN NEW MAXICO LLC	source Generator, Cumins
isions	Stack / Ports Stack Type: Circular Rectangular
ar Rectangular (inside dimension	
all to Outside of Port (in.) 12.25 Stack Width (in.) N/A	Port Inside Diameter (in.) > 3/4 "
$\frac{1}{100} \frac{1}{100} \frac{1}$	Distance to Flow Disturb. Reference: Disturbance Port
Diameter or Depth (in.) 12.0 Equiv. Stack Diameter (in.)	
A B (A x B) C (A x Internal Internal Distance from	(B) + C Upstream (U) 1 2 2 Downstream (D) 1 <t< td=""></t<>
	Location Number of Traverse Points Particulates Velocity
	.05 Minimum Required - &
12.0 25 3.0 0.25 3	.25 Number of Ports Used - 2
	- 25 Points per Port - 4
12.0 93.3 11-2 0.25 11.	イ 5 Test Location Schematic(s)
	 Include distances to disturbances and note what they are. Show and label all ports. Note which was used for each test type.
	3. Indicate the air flow direction.
	2 11 (2")
	T
	14/ Wall D
	$ \longrightarrow 1 $
	52" Biameter
	Diameter Examples
	From Baghouse
inente:	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ients:	60" B 4 Points per Port 16 points Total

n						·	•		<u>as-</u>			
									4		- 14 g	
	©TRC	•	— 		-				Page	of		
		4	0 CFR 60	Methods	2 an	d 4 VE	ELOCITY	and I	NOISTUR	RÉ [®]		
	Project No.	160-24 PSS Date /1-04-									121	
	Client Cut		en Mexi	70 11.0								
			Lexico L			1.2 0		1 1		1		
					PTCF Interna	al	Z /4		auge Sensitivity			
			il Grens		i -	sions (in.)	2/8	тт	hermocouple ID		1475	
•	Sampling Location	or Stack		7	Meter	Console ID JC	12012	N	leter Console Y			
	Condition	oad E	<u>sank</u>		Meter I	01204	011	N	leter Console D	и _@ 1. 8	50	
					Barom	eter ID Z 6	17226	В	arometric Press	ure (in. Hg)	25.12	
	Ve	locity Traverse	Data				Moisture	e Sample	Data			
e e e e e e e e e e e e e e e e e e e	Run No.		10 01-11-11-01	Test Tim	e		DGM Te	mp. (°F)	Run No.	1		
	Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. H₂O) + 4, 9		lapaca	DGM Reading			- Transmin State D H	Vacu	um Imp. Exit	
	Run Time	Start ///1	Stop 27		(min)	(ft ³)		Outle	et (in. H ₂			
	(24-hr)	<u></u>	1121	1100	0	516,065	11	74	0.0	2 5-0		
	T	Eluo Coo Torres	DP	1105	5	518.63	75	75	0.8			
	Traverse Point No.	Flue Gas Temp. (°F)	(in H ₂ O)	1110	10	521,45	75	75	0.4			
an a	A1	891	5-01	1115	15	524.32	76	76	Û. 9	. –		
5.60	2	897	5-66-	1120	20	527:26	76	76	0.9		58	
A. C. L.	3	895	5.63	1125	25	530.44	77	77	0.0			
11-0:1-21	4	892	5,12	1130	30	533,43	78	78	0.0	7 5.0	63	
1	\sim			1135	35	536.44	79	. ٦٥	7 0.0	3 5.0		
2 CN 3 CN 3	BI	892	5.05	7140	.40	539,39	79	79	0.9	5.0	1 59	
	2	896	5.64	1145	45	542 53	79	79	0.9	3 5.0		
545.61	3	896	5.65	1150	50 ·	145-61	79	79	0.95			
P 55	<u> </u>	891	5.09	1155	55	548.79	81	81	0.9			
11-64-2)				1200		551.895						
							Moisture A	nalysis F	alysis Results			
			/			Deerent	#1	#2	#3 3 MT	#4	Silica Gel	
						Reagent	160	1420		+ + + + + + + + + + + + + + + + + + +	57	
		/-				inal Weight (g)		743.			965.9	
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	N					iitial Weight (g)		738			957.0	
		/		Net M	oisture V	Veight Gain (g)	41.2	5.9	0,0	-	8.4	
-		L /		-					Total Moistur	re (g) 5	6.4	
		/			Leak	Check Data		r	<u>,</u> 0	2 / CO2 Data		
				Meter Cons	ole -				Fyrite	o Orsa	t <u>CEM</u>	
\mathbf{N}		/			010	Pre-Test	Post-Test		02%			
\sum		1		Vacuum	(in Hg)	5.0	5.0	. C	02 %		\searrow	
				Rat	e (cfm)	0.001	0.001	•	Balance T	racking Infor	mation	
				D4-17-1		Pre-Test	Post-Test	Field Ba	alance IDOHA			
\backslash	~			Pitot Tube	,	+	+/			5NL9		
N	AVERAGE			•				Actual (g): Meas		Delta:	
						1.1	7 1 1	500	·	99.8	0.7	
	$\sim $				las		n all	W		155 1-4-21		
				Checked By:	M	VIII	1UN					
	le le			(Project Ma	anagero ##	r QA Manager	- sign and trate))			AM-FDS-	
	TRC Rep	ort No: 454646	6.0000.0000		-1)/	122/20	021			F	Page 19 of 108	
			,								-	

(·					,)	
	STR	C 4	0 CFR 60	Methods	2 an	d 4 VF		and I	MOIS	Page (STURE	of	
Г	Project No.	5464	6,000	0.000	2 un	160-	24 P\$5	-2.	Date /	11-0-1	- 2021	<i>i</i> .
			Messiro L		Pitot II		CB 11-01	1-2021	Operato	r Name P.	Statue,	oules
	Facility Curic	h New M	Lexico L	PTCF		4-1.00	M 99		Samaitivity 1	,01	11.20	
ļ	Source (UM)	n' Desil	Cyenna	fol	Interna Dimen	l sions (in.)		-	Thermo		7080	173
5	Sampling Location	Stack	(·		Console ID 1 2	0-1011			onsole Y	.00	-
1	Condition 6	ad Ba	~K			DJLIZ				onsole ∆ H@	1-85	0
			Probe Temp °F		Barom	eter ID 76	,-1722	6	Baromet	tric Pressure (ir	n. Hg) 25.	,09
F		ocity Traverse I	Data	· · · · · · · · · · · · · · · · · · ·			Moistur	e Sample	Data		-	-
ŀ	Run No. Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. H ₂ O)	Test T	ime		DGM Te	mp. (°F)		Run No.	£	
Ì			+4.2	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³)	Inlet	Out	let	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
2.2%	Run Time (24-hr) 【2	Start 26	Stop 1236	1210	0	502.245	81	81		0.85	6.0	67
,5 -1-21				1215	5	555. 18	81	81		0.85	6.0	61
	Traverse Point No.	Flue Gas Temp. (°F)	∆ P (in H₂O)_	1220	10	558.13	81	81		0.87	6.0	59
	AI	891	5.01	1225	15	561.09	81	81		6.87	6.0	59
	2	895	5.63	12 30	20	564.03	81	81		<u> </u>	6.0	59
	3	897	5.58	1235	25	366.98	82	82		0.87	6.0	61
<u>ر</u>	<u> </u>	892	5.09	12 40	30	369,88	82	52	2	0.9	6.0	61
5 7			<u> </u>	1245	35	372.16	83	B	7	0.85	6.0	62
λ [6			12 50	40	57452	<u>\$3</u> 83	Ø	2	U185	6.0	62
	\sim	<u> </u>	5.09	12 55	45	518,20	<u>07</u> &Z	83	7	<u>().85</u> 0.85	6.0	63 63
-	131	892		1300	50 55	581.55	87	83		0.85 0.85	6.0	64
	3	896	5.61	1310	60	587,305					0	
ŀ	<u>ר</u> ע	896	5.12	1 2 10		101.10						
	<u> </u>	2.0	5.10				Moisture	Analysis	Resulf	l	1	L
Ч							#1	#		#3	#4	Silica Ge
			1			Reagent	HO	1420		MT	1	51
						Final Weight (g)	871.7	671		597.5		8417.
						initial Weight (g)	830.3	663		596.6		8394
				Ne	t Moisture	Weight Gain (g)	41.4	<u>ר </u>	2	0.9	. {	7.5
									То	otal Moisture (g)	5	<u>ר</u>
				 	Lea	k Check Data		7		O ₂ / C	CO₂ Data	
		/		Meter C	onsole		1	┦┍──		Fyrite	Orsat	CEM
	/	/				Pre-Test	Post-Test	-	O ₂ %			
	/-			ł	um (in Hg	0.0	8.0		CO2 %	.	\	
	/				Rate (cfm	Pre-Test	0,001 Post-Teest		Balanc	Balance Trac	king Informat	ion
	\vdash			Pitot 1	Гube	Tre-rest			dard We			
		+	\geq	4		$ \overline{\mathbf{v}}$			al (g):	Measure	d (g): Deli	a:
\	AVERAGE	<u> </u>							/			
					1.1	1 Asi	rnd I A	\checkmark				

NA = Not Applicable	
TRC Re	port No: 454646.0000.0000

Checked By: (Project Manager or QA Manager - sign and date)

AM-FDS-35 Rev 2_04/11/2019 Page 20 of 108

Project No. U	54 64(0 CFR 60	0000		160-	·24 PSS	11-18-21 Dat	te 11-0	-1-202	_)
. (J17	New Me	11 ATA	L	Pitot ID	24	0.94	213 11-4-21 Ope	erator Name	?. Stath	
Facility (2 New	Mexizo L	,LC	PTCF	1 Cp - 0-8	4.6001	124 11-41 Gai	uge Sensitivity	0.01	
Source (UM	ins Desil	Generat	01	Interna		3/4	The	ermocouple ID	-1708-	173
	stack				Console ID 17	<u>~ 0</u>	Met	ter Console V	1.00	
	oud E	Sank			10 JC12		Me	ter Console ∆ ⊦	1.85	,0
		Probe Temp °F	<u> </u>		eter ID Z6			rometric Pressur	<u> </u>	5-05
Ve	locity Traverse [Data	·····				e Sample D		`	
Run No. 3 Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. H₂O)	Test Tim	e		DGM Te	mp. (°F)	Run No.	3	
Olack CO ₂ (76)		Ч.I		lapsed (min)	DGM Reading (ft ³)	Inlet	Outlet	∆ H (in. H₂O	Vacuum) (in. Hg)	Imp. Exi Temp. (°f
Run Time (24-hr)	Start /460	Stop 1416	1329	0	587.734	82	82	0.85		66
(24-11)			1334	5	590.65	82	82	0.88		63
Traverse Point No.	Flue Gas Temp. (°F)	∆ P (in H₂O)	1339	10	593.74	82	82	0.84		60
17 1	892	5.02	1344	15	596.78	82	82	B. 88		59
2	917	5.54	1349	20	599.63	ξz	82	0.88		59
3	916	5.61	1354	25	602.59	82	82	0.48		55
Ч	909	5.12	1359	30	605.71	82	82	-		51
·	<u> </u>		7364	35	608.70	82	82	0.88		59
BI	911	5.13	1369	40	611,65	82	82	0.88		58
Z	921	5.67	1414	45	614.63	82	82	0.88		58
3	914	5.69	1919	50	617.68	82	82	U V ·		58
9	908	5,09	1424	55	620.66	४२	82	0.88	5.0	58
,	<u> </u>	7	142g	60	623,646					
		/	· · · · ·			Moisture /				
	/	1			Reagent	#1 H20	#2 14,0	#3 M4	#4	Silica Ge
					Final Weight (g)	11	750.		5	473.3
					nitial Weight (g)	1	743.			965.0
	-/		Net N		Weight Gain (g)		6.8	1.6		7.9
	1/					·		Total Moisture	^(g) 58	7
	/			Leak	Check Data		_	0;	2 / CO2 Data	
	/		Meter Con	sole				Fyrite	Orsat	CEM,
/	/			3010	Pre-Test	Post-Test		D ₂ %		
			Vacuun	n (in Hg)	8.0	8.0	c	D ₂ %		
/			Ra	ate (cfm)	0.001	0.001			racking Informa	tion
(Pitot Tub	e	Pre-Test	Post-Test	Field Ba			
						+	Standard Actual (g	d Weight ID	ured (g): De	Ita:
AVERAGE					·					
				al	III Bri	sd III	1			
IA = Not Applica	ible		Checked By:		or OA Managar	- sign and date	<u>a)</u>		AM-FDS-35 I	Rev 2 04/11/:

 $(A_{i},A_{i}) = (A_{i},A_{i}) = (A_{i},A_{i})$

0 11-11

Mountaintop Services, LLC

Richard Kingsbury Power Generation Systems Specialist

505-559-3426

Load Bank Test Report

1	
Date 11/4/2021 Customer CURIA	Site 4277 FAST Hours 332
bale 11/ 11/2010 - Customer - 11/201/-2	
Engine Model KTA 50-69 Gen Model DFLC - 44779762	S/N GOOD 131896 KW Rating 1500
400/277 218	1906
Voltage 780/ x / Phase 0	Max AMPSS Comp

		OUTPU'	T VOLTAGE			CURRENT						AMBIENT
Time	AB	BC	CA	HZ	A	В	C	ĸw	O/PRES	W/TEMP	O/TEMP	TEMP
2:50	484	484	484	60.1	1724	1715	1734	1947	80	174	170	64
3:20	484	484	484	60.1	1726	1715	1736	1449	78	178	183	65
3:50	484	484	484	60.1	1727	1715	1736	1449	77	179	183	65
4:20	484	484	484	60.1	1719	1713	1731	1444	70	186	215	66
4:50	484	484	484	00.1	1721	1714	1734	1449	70	189	218	67
5720	484	484	484	6.0.1	1721	1715	1731	1444	69	189	220	66
5:50	484	484	484	(0.2)	1724	1719	1736	1444	70	188	216	66
6:20	484 1	184	484	W.2-	1721	1715	1727	1444	70	188	218	64
6:57	怒り	484	454	10.2	1719	1715	1731	1447	70	185	216	610
1.20 H	84	189	784 L	10.6	1720	1717	1732	447	71	185	218	60
					ţ,							
								-				
				~~~~								
										2. 1		/

Notes:

5 40

Projec	t No. 456	1646.00	00.000	,0		Date	11-04-20	121
lient	Curia	New Me	silo LLC	, 		Opera	ator Name P. St	tathopulo
acilit	r		N Meriz		Sourc		VMINS	
mer	sions				·······	Stack / Ports Stack Type:	ilar Rectangular	r
rcula	r 1		Rectan	gular (inside di	mensions)	Number and Type of Ports Available	2, dr:1	red
		Port (in.) 12			//A	Port Inside Diameter (in.)	3/4 inch	,
ort Le	ngth (in.)	0.25	Depth (i		/A	Distance to Flow Disturb. Refere	ence: Disturbanc	ce <u>1</u> Port
ack [	)iameter or Dep	oth (in.) 12	. Ö Equiv. S	Stack Diameter (			Distance (ft)	Diameters
	A	В	(A x B)	с	(A x B) + C	Upstream (U)	2	٤
oint	Internal Dimension	Internal Dimension	Distance from Inside Wall	Port Length	Point Location	Downstream (D) Number of Traverse Points	ıH)	<u>14</u>
<u>lo.</u>	(in.)	(%)	(in.) 0. 8	(in.) 0.25	(in.)	Minimum Required	Particulates	Velocity
1 2	12.0	25	3.0	0.25	3.25	Number of Ports Used		2
_	12.0	75	9.0	0.25	9,25	Points per Port		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3		93.3	11.2	0.25	1.45	Test Location Schematic(s)		
1	12.0			0.1	11.15	1. Include distances to disturbances a		
					$\square$	<ol> <li>Show and label all ports. Note whi</li> <li>Indicate the air flow direction.</li> </ol>	ch was used for eac	h test type.
						-		<
					1			$\mathbf{X}$
						911 AV		A .
							JE 120	were a
				<u>/</u>		1110 1	y" E	
	· <u> </u>		/		·		Jall	
						14 4 +	hick ()	
			/					
		/	1					
				1		- Iflow -		
							1	
		1					(	
						1 4		
						52"	01	······
						Diameter	Exan	nples
				-	· · · · · · · · · · · · · · · · · · ·			
	/						From Baghouse	
	/		1				Baghouse	
4			+				- 12"	13
omn	l ients:	.1	<u>.</u>	<u> </u>			TRAVERSE POINTS 4 Points 4 Points per Port 16 points Total	
								To ID Fan
				1 1 1				To ID Fan

Project No. V	16-16.	0 CFR 60	000				Date	11-041-	2021				
Client Curic	n New	Mexico	LLC	Pitot ID	160-2	.~)	Opera	Operator Name P. Statuop. WS					
Facility (VI7	n New	MAXIO	uc	PTCF /	Ср 🖸	.99	Gauge	Gauge Sensitivity 0 - 0 I					
Source (Uri)	ns Die	ser Gru	Water	Internal Dimens	ions (in.)	/8	Therm	iocouple ID 47	68417	3			
Sampling Location					Console ID 17	07011		Console Y	1-00				
Condition		Bank	-	Meter II		2012		Console ∆ H@	1.85	0			
		Probe Temp °F			- eter ID 26-			netric Pressure (ir	n. Hg) Z	1.99			
, Velo	ocity Traverse D	L				-	Sample Data						
Run No.			Test T	ime		DGM Te	mp. (°F)	Run No. 🕴					
Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. $H_2O$ ) <b>2.9</b>	Clock	Liupoou	DGM Reading			ΔH	Vacuum	Imp. Exit			
Run Time	Start /620	Stop /630	(24-hr) 15 \$5	(min) 0	(11) (45-815	Inlet	Outlet	(in. H ₂ O)	(in. Hg)	Temp. (°F)			
(24-hr)	1620	16 )0		5		53							
Traverse	Flue Gas Temp.	ΔP	1600	5 10	<u>648.63</u> (51.57	83	83	0.88	5,0 5-0	67			
Point No.	(°F) <b>1</b> 10	(in H ₂ O) 5.02		15	621. 21		82	~9	5.0	63			
A1 2	911	5.37	1610	20	(57 5 K	82	82	0.88	5.0	58			
3	915	5.56	16 20		660.45	83	83	0.00	5.0	57			
<u> </u>	909	5.22	16 25		663.40	83	83	0.88	6.0	56			
· · · · · · · · · · · · · · · · · · ·			16 30	35	666.37	82	82	0.88	6-0	56			
B 1	911	5.11	16 35	40	669.36	82	82	0.88	6.0	57			
2	912 5.38 1640				672.33	82	82	0.88	6.0	57			
3					675.32	82	82	0-88	6.0	57			
<u> </u>	911	5.25	16 45		678.32	82	82	0-88	6.0	58			
، میروند ا			16 55	60	681,300					-			
		1											
					Moisture Analysis Results								
						#1	#2	#3	#4	Silica Gel			
, ,	/	1			Reagent	H2O	420	Mt		51			
				F	inal Weight (g)	758.7	-			857.0			
				lr	nitial Weight (g)	•	672.8	598.4		\$ 50.2			
			Ne	t Moisture V	Veight Gain (g)	40.4	7.0	1.6		6.8			
	/						٦	rotal Moisture (g)	55.8	·			
/	<u> </u>			Leak	Check Data		7	02/0	O₂ Data				
/			Meter C	onsole	[·			Fyrite	Orsat	CEM			
/			l		Pre-Test	Post-Test	O2	%					
/			Vacu	ium (in Hg)	0	8.0	CO ₂	%					
/				Rate (cfm)	0. 001	0.001		Balance Trac	king Informat	tion			
		<u> </u>	Pitot -	Гube	Pre-Test	Post-Test	Field Balan	<					
		<u> </u>			+	⁺ −−∕	Standard V Actual (g):	Veight HD Measured	T(g): Delt	a:			
AVERAGE													
					II A	. IIn							
			Checked By:	Mals	()   //	M/////////////////////////////////////							

-

÷

ient WST acility (UST	54 646.							Date	11-041-	· 60°C	
acility (uri	· • • • • • • • • • • • • • • • • • • •				160-7	2.4	<u> </u>		•		out a S
<u> </u>					<u> </u>	<u> </u>		Operato	or Name P.		
r i	· V	MCKICO		PTCF/Cp Ø.99						0-01	
		13e1 C74	Nrator		Internal Dimensions (in.) 3/8				ocouple ID ィ	7080	13
ampling Locatio	, Stuck			Meter	Console ID	204011		Meter C	Console Y	.00	
ondition	oud 13	an K			10 3617			Meter C	Console ∆ H@	1.850	7
		Probe Temp °F			eter ID 26-			Barome	etric Pressure (ir	л. Hg) <b>2 Ч</b>	.98
Vel	ocity Traverse D	· · ·				Moisture	Samp				
	<u>}</u>		Test 1	est Time DGM Temp. (°F) Run No.					Run No.	<u>}</u>	
Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. $H_2O$ ) <b>3</b> · $\mathcal{J}$	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	0	utiet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
un' Time 24-hr)	Start 17.23	Stop 1733	1703	0	681.840	8.1	8	1	0.88	5.0	65
►-T-III/			1708	5	684.81	82	8	2	0.88	5.0	58
Traverse	Flue Gas Temp.	ΔP	1713	10	687.73		8	2	0.88	⁰ . ک	55
Point No.	(°F) 91%	(in H ₂ O) 5.0~1	1718	15	690.71	<u>० ८</u> ४१		- []	0.88	5.0	3-1
2	921	5.47	1723	20	693.67			· I	0.88	5.0	52
3	920	5.38	1728	25	696.65	81 81		<u>،</u>	6,88	5.0	S 2
<u>ح</u>	920	5.11		30	616.63	<u> </u>			0.88	5.0	S2
•	711	2.1.	1733	35	702.62		<u> </u> &	۱ 1	0.88		52
<u> </u>	611	EAG	1743			81	5			5.0	52
BI	916	5.89		40	705.59	81		• •	6.88	5.0	
2	919	5.50	17 48	45	708.55		_	· C	0.88	5.0	53
3	920	5-49	1753	50	711.50	80	1	0 0	0.88	5.0	53
٦	917	5,21	1758	55	71-1.56	80	0		0.88	5.0 53	
<u> </u>				60	717.571			·····			
			· · · · ·			Moisture A	nalysi	s Resul	ts		
						#1		#2	#3	#4	Silica Gel
					Reagent	120	142		MT	7	SI
					Final Weight (g)	9.775	75	6.5	626.1		983.1
				I	nitial Weight (g)		55	1.2	623.9		973.5
	1		Ne	et Moisture	Weight Gain (g)	41.9	S	.3	2.2	1	9.6
	/							Тс	otal Moisture (g)	59.0	
	/			Leal	k Check Data		-		O ₂ / C	O₂ Data	
/	·		Meter C	onsole					Fyrite	Orsat	CEM
/					Pre-Test	Post-Test		O ₂ %		$\sum$	
/			Vacu	uum (in Hg)	8.0	8.0		CO2 %			
				Rate (cfm)	0.001	0.001			Balance Track	king Informat	ion
			Pitot ⁻	Tube	Pre-Test	Post-Test	Fiet	Balanc	e ID		
$\subseteq$			1 100	lube			Sta	ndard W	elght ID		
AVERAGE							Act	ual (g):	Measured	(g): Delt	a:
	I	I		/	1.10	11		$\overline{\mathcal{V}}$			
			a <del>.</del>		111 112	1/1////////////////////////////////////		1			
A = Not Applica	ble		Checked By: (Projec	t Manager	or QA Manager		f			AM-FDS-35 R Page 25 d	ev 2_04/11/20

STR	C 40	_ 0 CFR 60	Methods	s 2 an	d 4 VE	LOCITY	and	MOI	Page   STURE	of		
Project No. 5		. 0000.						Date		-2021		
Client (UC	a New	Mexizo	un	Pitot ID	16	0-24		Operator Name P. Statup los				
Facility CUT		Mererco		PTCF	2	99		Gauge Sensitivity 0.01				
Source (JM	ins Pri	esel C	renvetor	Interna Dimen	sions (in.) 3	18		Thermo	couple ID Y	7084	73	
Sampling Locatio	51					20401	1		onsole Y	(.00		
Condition	Lord			Meter I	D 261	2012		Meter C	onsole ∆ H@	1- %		
		Probe Temp °F		Barom	Barometer ID 26 1.7226 Barometric Pressure (in. Hg) 24							
	ocity Traverse D	ata				Moisture	Sample	e Data				
Run No. Stack CO ₂ (%)	<b>3</b> Stack O ₂ (%)	P Static (in. H ₂ O)	Test	ime		DGM Ter	mp. (°F)			2		
		3.4	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Out	tlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)	
Run Time (24-hr)	Start 1822	Stop 1832	1813	0	717.925	79	70	9	0.88	5.0	62	
			1818	5	720.99	79	?'	7	0.88	6.0	59	
Traverse Point No.	Flue Gas Temp. (°F)	Δ Ρ (in H ₂ O)	1823	10	723.86		7 '		6.88	6.0	58	
AI	920	5.12	1828	15	726.81	78	79		0-88	6.0	58	
2	925	5.41	1833	20	729.78		79		0.88	6.0	58	
3 7	424	5.48	1838	25	732.77		74		0-88	6.0	57	
	921	2.01	18 43	30 	735.76	78 78	י <u>ר</u> ר		0.88	6.0	58	
17	422	5.14	18 53	40	741.70	78	7	-	0.88	6.0	58	
31	926	5.46	18 58	45	744.68	78	7		0.88	6.0	58	
3	925	5.44	14 03	50	7-17.69	78	7		0.88	6.0	57	
Ч	921	5.28	19 08	55	790.66	78	74	¥	0.88	6.0	37	
		4	1913	60	753.636							
					Moisture Analysis Results							
	/					#1		2	#3	#4	Silica Gel	
	ļ/						420	)	MT		51	
					Final Weight (g)	799.5		2.9	600.5		863.9	
					nitial Weight (g)		67		600.0	<u> </u>	837.0	
	+/				Weight Gain (g)		ι.		tal Moisture (g)	50.	6.9	
	/			ادم ا	Check Data			10		O ₂ Data	0	
	4			Lear	Check Data		1		Fyrite	Orsat	СЕМ	
			Meter C	onsole	Pre-Test	Post-Test		O ₂ %		Uisat		
			Vac	uum (in Hg)	8.0	8.0		CO ₂ %				
				Rate (cfm)	A	0-001			Balance Traci	king Informat	ion	
			Pitot	Tube	Pre-Test	Post-Test	Field	Balanc	e ID			
					+/	+/		dard We			<u></u>	
AVERAGE							Actu	al (g):	Measurec	I (g): Delt	а.	
<b></b>		······		1	M. A	1 all		1/				
NIA - Not Anne	blo		Checked By	JA	W 1	Wen	<u> </u>				ev 2_04/11/2019	
NA = Not Applica TR(		4646.0000.0000			or QA Manager	- sign and date				Page 26 (		

11/22/2021

Contraction and the second

----

-

## **CTRC**

____

			VELOCITY	and MOIS	TURE	Calculatio	n - Run	1			
Project No.	454646							Date			11/04/21
								Operator			
Client	Curia New Mo	exico LLC			Pitot II	0	160-24	Name			PSS
acility	Curia New M	exico LLC			PTCF	/ Cp	0.99	Measurement Device Sensitivity			
-					Interna						
Source	Emergency Ge	enerator #7			Dimen	sions (in.)	3/8	Thermocou	ole ID		470847
Sampling Loca	tion	Exhaust			Barometer ID 2647226		Meter Cons	ole Y			
Condition	90% + Load				Meter	Console ID	1204011	Meter Cons	ole $\Delta$ H@		1.8
			Moisture Probe Temperature	250° +	Meter	ID	JC12012	Barometric Pressure (ir	n. Hg)		25.1
/elocity Trav	verse Data			Moisture Sa	mple Data	1					
Run No.		1		Test T	•		DGM Te	mp (°E)	Run No.		1
Stack CO2 (%) 9.26	Stack O2 (%) 8.33	P Static (in. H2C	9) 4.9	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Ex Temp. (°
Run Time	Start	Stop		11:00	0	516.065	74	74	0.9	5.0	67
(24-hr)	11:17	11:27 Flue Gas		11:05	5	518.63	75	75	0.9	5.0	61
Traverse	$\Delta P$ (in H ₂ O)	Temp.	V∆ P	11:10	10	521.45	75	75	0.9	5.0	58
Point No. 1	5.01	(°F) 891	2.238	11:15	15	524.32	76	76	0.9	5.0	58
2	5.60	897	2.366	11:20	20	527.26	76	76	0.9	5.0	58
3	5.63	895	2.373	11:25	25	530.44	77	77	0.9	5.0	60
4	5.12	892	2.263	11:30	30	533.43	78	78	0.9	5.0	63
5	5.05	892	2.247	11:35	35	536.44	79	79	0.9	5.0	61
6	5.64	896	2.375	11:40	40	539.39	79	79	0.9	5.0	59
7	5.65	896	2.377	11:45	45	542.53	79	79	0.9	5.0	59
8	5.09	891	2.256	11:50	50	545.61	79	79	1.0	5.0	59
$\searrow$				11:55	55	548.78	81	81	1.0	5.0	59
				12:00	60	551.895					
				Totals / A	verages	35.830	77.3		0.9	5.0	60.2
				Moisture An	alysis Re	sults		ľ	T	ľ	
		$\overline{}$					#1	#2	#3	#4	Silica G
						Reagent	$H_2O$	$H_2O$	Dry		Silica G
			$\searrow$		Fi	nal Weight (g)	875.3	743.9	622.7		965.4
					Ini	tial Weight (g)	834.1	738.0	621.8		957.0
AVERAGE	5.349	893.8	2.312	Net	Moisture W	/eight Gain (g)	41.2	5.9	0.9		8.4
								Tota	l Moisture (g)	5	6.4

Moisture Calculation (EPA Method 4)		
Sample volume, corrected to STP:	29.56	SCF
Volume of moisture collected on first 3 impingers:	2.263	$\mathrm{ft}^3$
Volume of moisture collected on silica gel impinger:	0.396	$\mathrm{ft}^3$
Stack exhaust moisture content:	8.3%	
Dry gas fraction:	0.9175	
Molecular Weight (M _s ):	28.84	lb/lb-mole

Flow Rate Calculation (EPA Method 2	:)	
Sum of square root of $\Delta P$ 's :	18.495	
Stack Diameter:	12	inches
Stack area:	0.79	ft ²
Stack velocity:	15932.92	ft/min
Stack flow rate:	2.29E+05	SCFH (dry)

## **CTRC**

_

			VELOCIT	Y and MOIS	STURE	Calculati	on - Run	2			
Project No.	454646							Date			11/04/21
Client	Curia New M	exico LLC			Pitot ID	)	160-24	Operator Name			PSS
Oliciti								Measureme			
Facility	Curia New M	exico LLC			PTCF /		0.99	Device Sens	sitivity		±0.01
Source	Emergency G	enerator #7				sions (in.)	3/8	Thermocoup	ple ID		4708473
Sampling Loca	ation	Exhaust			Barom	eter ID	264722	6 Meter Cons	ole Y		1
Condition	90% + Load				Meter	Console ID	1204011	Meter Cons	ole $\Delta$ H@		1.85
			Moisture Probe Temperature	2500	Meter		IC12012	Barometric Pressure (in	Ha)		24.85
			Temperature	250° +			JC12012	l lessure (il	i. rig)		24.83
Velocity Tra Run No.	verse Data			Moisture Sar	nple Data				Run No.		2
Stack CO2 (%)	Stack O2 (%)	2 P Static (in. H2C		Test Ti	me	DGM	DGM Te	mp. (°F)			2
9.38	8.12		4.2	Clock (24-hr)	Elapsed (min)	Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
Run Time (24-hr)	Start 12:26	Stop 12:36		12:10	0	552.245	81	81	0.9	6.0	67
(= · · · · )		Flue Gas		12:15	5	555.18	81	81	0.9	6.0	61
Traverse Point No.	∆ P (in H ₂ O)	Temp. (°F)	V∆ P	12:20	10	558.13	81	81	0.9	6.0	59
1	5.01	891	2.238	12:25	15	561.09	81	81	0.9	6.0	59
2	5.63	895	2.373	12:30	20	564.03	81	81	0.9	6.0	59
3	5.58	897	2.362	12:35	25	566.98	82	82	0.9	6.0	61
4	5.09	892	2.256	12:40	30	569.88	82	82	0.9	6.0	61
5	5.09	892	2.256	12:45	35	572.76	83	83	0.9	6.0	62
6	5.61	896	2.369	12:50	40	575.68	83	83	0.9	6.0	62
7	5.59	896	2.364	12:55	45	578.530	83	83	0.9	6.0	63
8	5.12	893	2.263	13:00	50	581.550	83	83	0.9	6.0	63
$\searrow$				13:05	55	584.370	83	83	0.9	6.0	64
				13:10	60	587.305					
				Totals / Av	rages	35.060	82.0	82.0	0.9	6.0	61.8
				Moisture Ana	alysis Res	ults			T	I	T
							#1	#2	#3	#4	Silica Gel
						Reagent	H ₂ O	H ₂ O	Dry	$\square$	Silica Gel
			$\searrow$		Fi	nal Weight (g)	871.7	671.0	597.5		847.0
	1	T			Ini	tial Weight (g)	830.3	663.8	596.6		839.5
AVERAGE	5.340	894.0	2.310	Net I	Moisture W	eight Gain (g)	41.4	7.2	0.9		7.5

Moisture Calculation (EPA Method 4)										
Sample volume, corrected to STP:	28.37	SCF								
Volume of moisture collected on first 3 impingers:	2.334	ft ³								
Volume of moisture collected on silica gel impinger:	0.354	$\mathrm{ft}^3$								
Stack exhaust moisture content:	8.7%									
Dry gas fraction:	0.9135									
Molecular Weight (M _s ):	28.80	lb/lb-mole								

Flow Rate Calculation (EPA Method 2)										
Sum of square root of $\Delta P$ 's :	18.481									
Stack Diameter:	12	inches								
Stack area:	0.79	ft ²								
Stack velocity:	16033.87	ft/min								
Stack flow rate:	2.26E+05	SCFH (dry)								

## **CTRC**

_

			VELOCIT	Y and MOIS	STURE	Calculati	on - Run	3			
Project No.	454646							Date			11/04/21
Client	Curia New M	aviao LLC		Pitot IE	\ \	160-24	Operator Name			PSS	
Client					FILOLIL	)	100-24	Measureme	nt		
Facility	Curia New M	exico LLC			PTCF /	•	0.99	Device Sens	sitivity		±0.01
Source	Emergency G	enerator #7				sions (in.)	3/8	Thermocoup	ple ID		4708473
Sampling Loca	lion	Exhaust			Barom	eter ID	2647226	Meter Conse	ole Y		1
Condition	90% + Load				Meter	Console ID	1204011	Meter Conse	ole $\Delta$ H@		1.85
			Moisture Probe Temperature	250° +	Meter	D	JC12012	Barometric Pressure (in	n. Hg)		24.82
Velocity Trav	erse Data			Moisture Sar	nple Data						
Run No.		3		Test Ti			DGM Ter	mp. (°F)	Run No.		3
Stack CO2 (%) 9.44	Stack O2 (%) 7.99	P Static (in. H2C	9) 4.1	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F
Run Time (24-hr)	Start 14:00	Stop 14:10		13:29	0	587.734	82	82	0.9	5.0	66
(2111)	11.00	Flue Gas		13:34	5	590.65	82	82	0.9	5.0	63
Traverse Point No.	∆ P (in H₂O)	Temp. (°F)	V∆ P	13:39	10	593.74	82	82	0.9	5.0	60
1	5.020	910	2.241	13:44	15	596.78	82	82	0.9	5.0	59
2	5.540	917	2.354	13:49	20	599.63	82	82	0.9	5.0	59
3	5.610	916	2.369	13:54	25	602.59	82	82	0.9	5.0	59
4	5.120	909	2.263	13:59	30	605.71	82	82	0.9	5.0	59
5	5.130	911	2.265	14:04	35	608.70	82	82	0.9	5.0	59
6	5.670	921	2.381	14:09	40	611.65	82	82	0.9	5.0	58
7	5.690	914	2.385	14:14	45	614.63	82	82	0.9	5.0	58
8	5.090	908	2.256	14:19	50	617.68	82	82	0.9	5.0	58
				14:24	55	620.66	82	82	0.9	5.0	58
				14:29	60	623.646					
	$\searrow$			Totals / Av	rages	35.912	82.0	82.0	0.9	5.0	59.7
	$\sim$	<		Moisture Ana	alysis Res	ults					
							#1	#2	#3	#4	Silica Gel
						Reagent	H ₂ O	$H_2O$	Dry	Ν	Silica Gel
			$\searrow$		Fi	nal Weight (g)	835.1	738.4	622.7		958.3
					Ini	tial Weight (g)	794.6	734.3	621.8		952.8
AVERAGE	5.359	913.3	2.314	Net I	Moisture W	eight Gain (g)	40.5	4.1	0.9	$  \setminus$	5.5
								Tota	l Moisture (g)	5	1.0

Moisture Calculation (EPA Method 4)										
Sample volume, corrected to STP:	29.02	SCF								
Volume of moisture collected on first 3 impingers:	2.145	$\mathrm{ft}^3$								
Volume of moisture collected on silica gel impinger:	0.259	$\mathrm{ft}^3$								
Stack exhaust moisture content:	7.7%									
Dry gas fraction:	0.9235									
Molecular Weight (M _s ):	28.92	lb/lb-mole								

Flow Rate Calculation (EPA Method 2)										
Sum of square root of $\Delta P$ 's :	18.513									
Stack Diameter:	12	inches								
Stack area:	0.79	ft ²								
Stack velocity:	16153.14	ft/min								
Stack flow rate:	2.27E+05	SCFH (dry)								

#### II: A-C. Summary of Results, Runs 1-3 (Unit #8, Test Summary) Operational Data, Concentrations, Exhaust Flow Rates, Mass Emission Rates

_

## **CTRC**

			VELOCITY	' and MOIS	TURE	Calculatio	n - Run	1			
Project No.	454646							Date 11/04/2			
Client	Curia New M	evico II C		Pitot II	ח	160-24	Operator Name		PSS		
							Measureme				
Facility	Curia New M	exico LLC			PTCF Interna		0.99	Device Sen	sitivity		±0.01
Source	Emergency G	enerator #8				isions (in.)	3/8	Thermocou	ole ID		4708473
Sampling Loca	tion	Exhaust			Barom	neter ID	2647226	Meter Cons	ole Y		1
Condition	90% + Load				Meter	Console ID	1204011	Meter Cons	ole $\Delta$ H@		1.85
			Moisture Probe Temperature	250° +	Meter	ID	JC12012	Barometric Pressure (ir	n. Hg)		25.12
Velocity Trav	erse Data			Moisture Sa	mple Data	a	-				-
Run No.		1		Test Ti	•		DGM Te	mp (°F)	Run No.		1
Stack CO2 (%) 9.54	Stack O2 (%) 7.96	P Static (in. H2C	D) 2.9	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
Run Time (24-hr)	Start 16:20	Stop 16:30		15:55	0	645.815	83	83	0.9	5.0	67
(24-111)	10.20	Flue Gas		16:00	5	648.63	83	83	0.9	5.0	67
Traverse Point No.	∆ P (in H₂O)	Temp. ( °F)	V∆ P	16:05	10	651.57	83	83	0.9	5.0	63
1	5.02	910	2.241	16:10	15	654.52	82	82	0.9	5.0	59
2	5.37	911	2.317	16:15	20	657.5	82	82	0.9	5.0	58
3	5.56	910	2.358	16:20	25	660.45	83	83	0.9	5.0	57
4	5.22	909	2.285	16:25	30	663.4	83	83	0.9	6.0	56
5	5.11	911	2.261	16:30	35	666.37	82	82	0.9	6.0	56
6	5.38	912	2.319	16:35	40	669.36	82	82	0.9	6.0	57
7	5.62	911	2.371	16:40	45	672.33	82	82	0.9	6.0	57
8	5.25	911	2.291	16:45	50	675.32	82	82	0.9	6.0	57
				16:50	55	6278.32	82	82	0.9	6.0	58
				16:55	60	681.300					
	$\overline{}$			Totals / Av	verages	5632.505	82.4		0.9	5.5	59.3
				Moisture An	alysis Re	sults					
		$\searrow$					#1	#2	#3	#4	Silica Gel
		$\sim$				Reagent	$H_2O$	H ₂ O	Dry		Silica Gel
			$\searrow$		F	inal Weight (g)	758.7	679.8	600.0		857.0
					In	itial Weight (g)	718.3	672.8	598.4		850.2
AVERAGE	5.316	910.6	2.305	Net	Moisture V	/eight Gain (g)	40.4	7.0	1.6	\	6.8
								Tota	I Moisture (g)	5	5.8

Moisture Calculation (EPA Method 4)										
Sample volume, corrected to STP:	4603.21	SCF								
Volume of moisture collected on first 3 impingers:	2.310	$\mathrm{ft}^3$								
Volume of moisture collected on silica gel impinger:	0.321	$\mathrm{ft}^3$								
Stack exhaust moisture content:	0.1%									
Dry gas fraction:	0.9994									
Molecular Weight (M _s ):	29.84	lb/lb-mole								

Flow Rate Calculation (EPA Method 2)										
Sum of square root of $\Delta P$ 's :	18.443									
Stack Diameter:	12	inches								
Stack area:	0.79	ft ²								
Stack velocity:	15761.93	ft/min								
Stack flow rate:	2.42E+05	SCFH (dry)								

#### II: A-C. Summary of Results, Runs 1-3 (Unit #8, Test Summary) Operational Data, Concentrations, Exhaust Flow Rates, Mass Emission Rates

-

—

**CTRC** 

			VELOCIT	Y and MOI	STURE	Calculatio	on - Run 2	2			
Project No.	454646							Date			11/04/21
Client	Curia New M	exico LLC		Pitot I	)	160-24	Operator Name			PSS	
							Measureme				
acility	Curia New M	exico LLC			PTCF Interna	-	0.99	Device Sen	sitivity		±0.01
Source	Emergency G	enerator #8			Dimen	sions (in.)	3/8	Thermocou	ple ID		4708473
Sampling Loca	tion	Exhaust			Barom	eter ID	2647226	Meter Cons	ole Y		1
Condition	90% + Load				Meter	Console ID	1204011	Meter Cons	ole ∆H@		1.85
			Moisture Probe Temperature	250° +	Meter	ID	JC12012	Barometric Pressure (ir	n. Hg)		24.85
/elocity Trav	erse Data			Moisture Sa	mple Data	1					
Run No.		2		Test T	ime	2014	DGM Ten	np. (°F)	Run No.		2
Stack CO2 (%) 9.56	Stack O2 (%) 7.89	P Static (in. H20	D) 3.2	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F
Run Time (24-hr)	Start 17:23	Stop 17:33		17:03	0	681.840	81	81	0.9	5.0	65
(24-111)	11.20	Flue Gas		17:08	5	684.81	82	82	0.9	5.0	58
Traverse Point No.	∆ P (in H₂O)	Temp. (°F)	v∆ P	17:13	10	687.73	82	82	0.9	5.0	55
1	5.04	918	2.245	17:18	15	690.71	81	81	0.9	5.0	54
2	5.47	921	2.339	17:23	20	693.67	81	81	0.9	5.0	52
3	5.38	920	2.319	17:28	25	969.65	81	81	0.9	5.0	52
4	5.11	919	2.261	17:33	30	699.62	81	81	0.9	5.0	52
5	5.09	916	2.256	17:38	35	702.62	81	81	0.9	5.0	52
6	5.50	919	2.345	17:43	40	705.59	81	81	0.9	5.0	52
7	5.49	920	2.343	17:48	45	708.550	81	81	0.9	5.0	53
8	5.21	917	2.283	17:53	50	711.500	80	80	0.9	5.0	53
				17:58	55	714.560	80	80	0.9	5.0	53
				18:03	60	717.571					
	$\searrow$			Totals / A	verages	287.810	81.0	81.0	0.9	5.0	54.3
				Moisture An	alysis Re	sults					
		$\overline{}$					#1	#2	#3	#4	Silica Ge
						Reagent	H ₂ O	$H_2O$	Dry		Silica Ge
			$\searrow$		Fi	nal Weight (g)	777.6	756.5	626.1		983.1
					Ini	tial Weight (g)	735.7	751.2	623.9		973.5
AVERAGE	5.286	918.8	2.299	Net	Moisture W	'eight Gain (g)	41.9	5.3	2.2		9.6
								Tota	I Moisture (g)	5	9.0

Moisture Calculation (EPA Method 4)		
Sample volume, corrected to STP:	233.30	SCF
Volume of moisture collected on first 3 impingers:	2.329	$\mathrm{ft}^3$
Volume of moisture collected on silica gel impinger:	0.453	$\mathrm{ft}^3$
Stack exhaust moisture content:	1.2%	
Dry gas fraction:	0.9882	
Molecular Weight (M _s ):	29.71	lb/lb-mole

Flow Rate Calculation (EPA Method 2)										
Sum of square root of $\Delta P$ 's :	18.391									
Stack Diameter:	12	inches								
Stack area:	0.79	ft ²								
Stack velocity:	15877.18	ft/min								
Stack flow rate:	2.37E+05	SCFH (dry)								

#### II: A-C. Summary of Results, Runs 1-3 (Unit #8, Test Summary) Operational Data, Concentrations, Exhaust Flow Rates, Mass Emission Rates

—

**CTRC** 

			VELOCIT	Y and MOI	STURE	Calculatio	on - Run	3			
Project No.	454646							Date			11/04/21
Client	Curia New M	exico LLC			Pitot I	)	160-24	Operator Name			PSS
							Measureme				
acility	Curia New M	exico LLC			PTCF	-	0.99	Device Sen	sitivity		±0.0
Source	Emergency G	enerator #8			Dimen	sions (in.)	3/8	Thermocou	ole ID		4708473
Sampling Loca	tion	Exhaust			Barom	eter ID	2647226	Meter Cons	ole Y		
Condition	90% + Load				Meter	Console ID	1204011	Meter Cons	ole $\Delta$ H@		1.8
			Moisture Probe Temperature	250° +	Meter	ID	JC12012	Barometric Pressure (ir	n. Hg)		24.82
Velocity Trav	erse Data			Moisture Sa	mple Data	1					
Run No.		3		Test T	ime		DGM Tei	mp. (°F)	Run No.		3
Stack CO2 (%) 9.47	Stack O2 (%) 7.97	P Static (in. H20	D) 3.4	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³ )	Inlet	Outlet	∆ H (in. H₂O)	Vacuum (in. Hg)	Imp. Exi Temp. (°l
Run Time (24-hr)	Start 18:22	Stop 18:32		18:13	0	717.925	79	79	0.9	5.0	62
(2 · · · · )		Flue Gas		18:18	5	720.99	79	79	0.9	6.0	59
Traverse Point No.	∆ P (in H₂O)	Temp. (°F)	v∆ P	18:23	10	723.86	78	78	0.9	6.0	58
1	5.120	920	2.263	18:28	15	726.81	78	78	0.9	6.0	58
2	5.410	925	2.326	18:33	20	729.78	78	78	0.9	6.0	57
3	5.480	924	2.341	18:38	25	732.77	78	78	0.9	6.0	58
4	5.210	921	2.283	18:43	30	735.76	78	78	0.9	6.0	57
5	5.140	922	2.267	18:48	35	738.72	78	78	0.9	6.0	58
6	5.460	926	2.337	18:53	40	741.70	78	78	0.9	6.0	58
7	5.440	925	2.332	18:58	45	744.68	78	78	0.9	6.0	58
8	5.280	921	2.298	19:03	50	747.69	78	78	0.9	6.0	57
$\overline{}$				19:08	55	750.66	78	78	0.9	6.0	57
				19:13	60	753.636					
	$\searrow$			Totals / A	verages	35.711	78.2	78.2	0.9	5.9	58.1
				Moisture An	alysis Re	sults					
		$\overline{}$					#1	#2	#3	#4	Silica G
						Reagent	H ₂ O	$\rm H_2O$	Dry		Silica Ge
			$\searrow$		Fi	nal Weight (g)	799.5	682.4	600.5		863.9
					Ini	tial Weight (g)	758.7	679.8	600.0		857.0
AVERAGE	5.318	923.0	2.306	Net	Moisture W	'eight Gain (g)	40.8	2.6	0.5		6.9
								Tota	I Moisture (g)	5	0.8

Moisture Calculation (EPA Method 4)		
Sample volume, corrected to STP:	29.06	SCF
Volume of moisture collected on first 3 impingers:	2.070	$\mathrm{ft}^3$
Volume of moisture collected on silica gel impinger:	0.325	$\mathrm{ft}^3$
Stack exhaust moisture content:	7.6%	
Dry gas fraction:	0.9239	
Molecular Weight (M _s ):	28.93	lb/lb-mole

Flow Rate Calculation (EPA Method 2)		
Sum of square root of $\Delta P$ 's :	18.446	
Stack Diameter:	12	inches
Stack area:	0.79	ft ²
Stack velocity:	16166.04	ft/min
Stack flow rate:	2.25E+05	SCFH (dry)



IV.B LABORATORY DATA Not Applicable



IV.C COPY OF DATA LOG RECORDS NO_x, CO, O₂, and CO₂

454645Curia Initi Date/Time: Result:	al Calibration Error Tes 11/4/2021 PASS	st 8:27:43		
Operator:	CRB/PS			
Plant:	Curia New Mexico LL	.C		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel Gen	erator Engies		
Reference Cylind	er IDs			
	Zero ID:	Low ID:	Mid ID:	High ID:
02	CC704230		CC84055	CC210288
CO2	CC704230		CC84055	CC210288
NOx	CC704230		CC129528	CC280768
СО	CC704230		EB0067614	CC427696
Calibration Error	Results			
Channel:	02	CO2	NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	806.2	200.7
Range:	25	25	1000	500
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Zero Ref:	0	0	0	0
Zero Cal:	0.097	0.184	0.910	0.377
Zero Error:	0.40%	0.80%	0.10%	0.20%
Low Ref:				
Low Cal:				
Low Error:				
Mid Ref:	10.02	9.936	408.9	102.8
Mid Cal:	10.104	9.972	406.884	101.088
Mid Error:	0.40%	0.20%	-0.30%	-0.90%
High Ref:	22.03	21.69	806.2	200.7
High Cal:	22.086	21.645	807.357	201.256
High Error:	0.30%	-0.20%	0.10%	0.30%
Cal Result:	PASSED	PASSED	PASSED	PASSED

454645Curia Initi	al NOX CE Test			
Date/Time:	11/4/2021	8:29:34		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico I	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel Generator Engies			
Reference Cylinder IDs				
	NOx (NO2) ID			
NOx	CC507600			
NOx Converter Ef	ficiency Results			
NOx Converter Ef Channel:	ficiency Results NOx			
	-			
Channel:	NOx			
Channel: Units:	NOx ppm			
Channel: Units: Span:	NOx ppm 806.2			
Channel: Units: Span: Range:	NOx ppm 806.2 1000			
Channel: Units: Span: Range:	NOx ppm 806.2 1000			
Channel: Units: Span: Range: Method:	NOx ppm 806.2 1000 EPA 7E			
Channel: Units: Span: Range: Method: NOx Ref:	NOx ppm 806.2 1000 EPA 7E 50.12			
Channel: Units: Span: Range: Method: NOx Ref: NOx Cal:	NOx ppm 806.2 1000 EPA 7E 50.12 49.824			
Channel: Units: Span: Range: Method: NOx Ref: NOx Cal:	NOx ppm 806.2 1000 EPA 7E 50.12 49.824			

454645Curia In	itial System Bias Cheo	:k		
Date/Time:	11/4/2021	8:43:02		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	ienerator Engies		
Reference Cylir	nder IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC129528	CC280768	
СО	CC704230	EB0067614	CC427696	
System Bias Ch	eck Results			
Analyte:	02	CO2	NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	806.2	200.7
Range:	25	25	1000	500
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	0.097	0.184	0.910	0.377
Low Sys:	0.188	0.202	1.675	0.383
Low Bias:	0.40%	0.10%	0.10%	0.00%
Upscale Cal:	10.104	9.972	406.884	101.088
Upscale Sys:	10.054	9.868	417.503	101.094
Upscale Bias	-0.20%	-0.50%	1.30%	0.00%
Bias Result:	PASSED	PASSED	PASSED	PASSED

454645Curia Response Time				
Date/Time:	11/4/2021	8:51:44		
Operator				

operator.	chb/r 5
Plant:	Curia New Mexico LLC
Location:	Albuquerque NM
Source ID:	Cummins Diesel Generator Engies

Response Time Re								
Analyte:	02		CO2		NOx		CO	
Units: Span:	ppm 22.03		ppm 21.69		ppm 806.2		ppm 200.7	
Range:	22.05		21.69		1000		500	
Method:	EPA 7E		EPA 7E		EPA 7E		EPA 7E	
Wethou.	6475				LIA/L		LIA/L	
Upscale Lvl:	9.551		9.368		396.628		96.039	
Dnscale LvI:	1.102		1.085		40.31		10.035	
Upscale (s):	0:25		0:37		0:59		1:09	
Dnscale (s):	0:31		0:33		0:59		1:10	
	Upscale	Dnscale	Upscale	Dnscale	Upscale	Dnscale	Upscale	Dnscale
	0.159 0.153	10.030 10.032	0.186 0.189	9.827 9.838	1.390	416.504 416.471	20.333 20.341	97.299 99.635
	0.153	10.032	0.189	9.838	1.414 1.447	416.517	20.341	99.625
	0.160	10.040	0.192	9.836	1.425	416.500	20.329	99.634
	0.154	10.038	0.187	9.835	1.430	416.513	20.335	99.624
	0.151	10.030	0.193	9.839	1.425	416.506	20.338	99.626
	0.158	10.034	0.185	9.836	1.421	416.533	20.320	99.642
	0.157	10.034	0.195	9.833	1.427	416.508	15.104	99.640
	0.147	10.040	0.183	9.842	1.408	416.546	4.686	99.638
	0.157	10.039	0.193	9.838	1.397	416.513	4.706	99.610
	0.158	10.028	0.190	9.846	1.405	416.462	4.695	99.843
	0.154	10.037	0.192	9.847	1.414	416.559	4.690	100.289
	0.156 0.152	10.048 10.038	0.198 0.205	9.841 9.850	1.449 1.414	416.487 416.504	4.694 4.702	100.298 100.301
	0.152	10.038	0.205	9.850	1.414	416.504	4.702	100.301
	0.149	10.038	0.191	9.856	1.390	416.552	4.688	100.289
	0.162	10.031	0.199	9.860	1.412	416.495	4.687	100.288
	0.150	10.038	0.185	9.852	1.456	416.537	3.646	100.288
	0.160	10.045	0.188	9.854	1.394	416.504	1.528	100.307
	0.160	10.040	0.190	9.858	1.403	416.583	1.544	100.298
	0.167	10.058	0.183	9.853	1.414	416.493	1.546	100.424
	0.387 1.840	10.272 10.818	0.199 0.198	9.861 9.829	1.421 1.416	416.519 416.535	1.541 1.552	100.684 100.669
	5.217	11.107	0.198	9.609	1.410	416.535	1.552	100.669
	8.635	10.580	0.210	9.167	1.405	416.495	1.544	100.680
	9.823	9.233	0.212	8.721	1.438	416.519	1.526	100.704
		7.148	0.252	8.040	1.443	416.561	1.532	100.691
		4.936	0.387	6.750	1.390	416.574	2.704	100.688
		3.177	0.940	5.121	1.386	416.537	5.060	100.683
		2.027	2.163	3.543	1.403	416.620	5.055	100.677
		1.327	4.009	2.348	1.405	416.852	5.069	97.402
		0.901	5.770 7.114	1.531 1.118	1.419 1.405	416.815 416.800	5.067 5.057	90.799 90.798
			8.117	0.847	1.386	416.754	5.061	90.785
			8.752		1.419	416.817	5.071	90.791
			9.126		1.412	416.763	5.066	90.806
			9.351		1.408	416.802	5.062	90.813
			9.502		1.408	416.784	13.726	90.801
					13.150	416.784	31.006	90.797
					36.603 36.630	406.365 385.496	31.017 31.015	90.822 81.314
					36.614	385.498	31.027	62.315
					36.605	385.492	31.013	62.310
					36.621	385.476	30.998	62.310
					36.603	385.487	31.017	62.327
					36.621	385.505	31.022	62.324
					36.621	385.525	31.014	62.330
					36.627	385.505 385.468	40.504	62.317
					149.063 373.969	273.445	59.445 59.439	62.315 62.341
					373.984	49.285	59.449	53.068
					374.023	49.281	59.437	34.550
					373.997	49.320	59.466	34.547
					374.052	49.305	59.440	34.571
					373.964	49.329	59.449	34.544
					373.944	49.292	59.436	34.544
					373.960 373.944	49.305 49.305	59.430 67.466	34.550 34.543
					386.815	49.303	83.485	34.545
					412.542	35.164	83.459	34.566
							83.487	27.361
							83.460	13.023
							83.468	13.000
							83.460	13.006
							83.460	13.015
							83.467 83.441	13.022 12.999
							87.692	12.999
							96.158	13.001
								13.008
								9.865

454645Curia Rep Date/Time: Result:	eat Calibration Error 1 11/4/2021 PASS	10:50:54	
Operator: Plant: Location: Source ID:	CRB/PS Curia New Mexico Ll Albuquerque NM Cummins Diesel Ger		
Reference Cylind	er IDs		
NOx CO	Zero ID: CC704230 CC704230	Low ID:	Mid ID: CC280768 CC129528
Calibration Error	Results		
Channel:	NOx	СО	
Units:	ppm	ppm	
Span:	1641	811.5	
Range:	2000	1000	
Method:	EPA 7E	EPA 7E	
Zero Ref:	0	0	
Zero Cal:	4.335	0.233	
Zero Error:	0.30%	0.00%	
Low Ref:			
Low Cal:			
Low Error:			
Mid Ref:	806.2	404.4	
Mid Cal:	812.192	406.98	
Mid Error:	0.40%	0.30%	
High Ref:	1641	811.5	
High Cal:	1641.560	808.291	
High Error:	0.00%	-0.40%	
Cal Result:	PASSED	PASSED	

High ID: CC702206 CC280768

454645Curia Repeat System Bias 1					
Date/Time:	11/4/2021	10:57:04			
Result:	PASS				
Operator:	CRB/PS				
Plant:	Curia New Mexico	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel Ge	enerator Engies			
Reference Cylinde	er IDs				
	Low ID	Upscale ID			
NOx	CC704230	CC280768			
СО	CC704230	CC280768			
System Bias Check	< Results				
Analyte:	NOx	CO			
Units:	ppm	ppm			
Span:	1641	811.5			
Range:	2000	1000			
Method:	EPA 7E	EPA 7E			
Low Cal:	4.335	0.233			
Low Sys:	18.349	0.744			
Low Bias:	0.90%	0.10%			
Upscale Cal:	812.192	808.291			
Upscale Sys:	806.913	804.352			
Upscale Bias	-0.30%	-0.50%			
Bias Result:	PASSED	PASSED			

Span ID CC702206 CC280768

Start:	/ . /				
	11/4/2021	11:00:00			
End:	11/4/2021	12:00:00			
Operator:	CRB/PS				
Plant:	Curia New Mexico	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel G	enerator Engies			
		02	CO2	NOx	CO
Time	Entry	ppm	ppm	ppm	ppm
11:00:59	1min avg:	8.360	9.161	1179.477	569.284
11:01:59	1min avg:	8.352	9.175	1182.255	570.541
11:02:59 11:03:59	1min avg: 1min avg:	8.362 8.345	9.173 9.190	1187.711 1189.207	569.385 575.489
11:03:55	1min avg:	8.351	9.187	1189.829	581.103
11:05:59	1min avg:	8.360	9.182	1192.921	573.367
11:06:59	1min avg:	8.380	9.170	1193.317	568.147
11:07:59	1min avg:	8.363	9.182	1192.355	571.384
11:08:59	1min avg:	8.371	9.175	1194.849	570.056
11:09:59	1min avg:	8.376	9.178	1193.349	568.963
11:10:59	1min avg:	8.391	9.171	1193.894	565.164
11:11:59	1min avg:	8.500	9.174	1190.397	568.625
11:12:59	1min avg:	8.555	9.176	1190.193	567.095
11:13:59	1min avg:	8.467	9.179	1190.546	566.538
11:14:59	1min avg:	8.456	9.187	1190.347	571.853
11:15:59 11:16:59	1min avg: 1min avg:	8.543 8.525	9.191 9.200	1190.470 1191.537	569.265 573.179
11:17:59	1min avg:	8.498	9.200	1191.337	578.570
11:18:59	1min avg:	8.521	9.198	1191.452	576.074
11:19:59	1min avg:	8.514	9.195	1191.784	571.647
11:20:59	1min avg:	8.422	9.203	1191.117	571.936
11:21:59	1min avg:	8.364	9.204	1189.457	576.289
11:22:59	1min avg:	8.381	9.198	1191.277	569.823
11:23:59	1min avg:	8.363	9.213	1188.844	577.317
11:24:59	1min avg:	8.494	9.212	1188.951	575.972
11:25:59	1min avg:	8.513	9.210	1189.873	577.640
11:26:59	1min avg:	8.373	9.218	1189.301	579.792
11:27:59 11:28:59	1min avg: 1min avg:	8.329 8.401	9.217 9.216	1190.755 1191.099	580.930 577.992
11:20:55	1min avg:	8.449	9.224	1190.510	580.875
11:30:59	1min avg:	8.327	9.218	1191.363	584.127
11:31:59	1min avg:	8.311	9.218	1190.801	579.656
11:32:59	1min avg:	8.331	9.219	1189.014	579.599
11:33:59	1min avg:	8.395	9.219	1189.792	580.906
11:34:59	1min avg:	8.445	9.223	1188.107	584.975
11:35:59	1min avg:	8.412	9.248	1187.957	590.626
11:36:59	1min avg:	8.285	9.243	1188.662	593.049
11:37:59	1min avg:	8.289	9.230	1188.828	586.846
11:38:59	1min avg:	8.281	9.237	1188.901	590.630
11:39:59 11:40:59	1min avg: 1min avg:	8.292 8.285	9.234 9.237	1189.297 1188.126	588.077 581.885
11:41:59	1min avg:	8.316	9.234	1188.546	587.339
11:42:59	1min avg:	8.305	9.232	1187.230	583.956
11:43:59	1min avg:	8.292	9.227	1187.610	584.404
11:44:59	1min avg:	8.277	9.235	1187.753	585.715
11:45:59	1min avg:	8.186	9.294	1184.441	600.097
11:46:59	1min avg:	8.269	9.291	1187.044	617.662
11:47:59	1min avg:	8.228	9.292	1187.245	613.138
11:48:59	1min avg:	8.202	9.294	1186.424	616.983
11:49:59	1min avg:	8.221	9.273	1188.141	611.282
11:50:59	1min avg:	8.254	9.287	1187.186	610.818
11:51:59	1min avg:	8.359	9.280	1186.275	611.047
11:52:59	1min avg: 1min avg:	8.370	9.272	1188.125	605.539
11:53:59 11:54:59	1min avg:	8.354 8.232	9.266 9.270	1188.352 1187.296	603.623 605.153
11:55:59	1min avg:	8.232	9.262	1187.296	600.551
11:56:59	1min avg:	8.185	9.291	1187.024	609.974
	1min avg:	8.223	9.268	1188.178	605.201
11:57:59					
11:57:59 11:58:59	1min avg:	8.179	9.297	1186.906	611.556
			9.297 9.299	1186.906 1186.923	611.556 617.214

454645Curia Rur	n 1 Final Bias & Drift	Check		
Date/Time:	11/4/2021	12:08:02		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	enerator Engies		
Reference Cylind	er IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
СО	CC704230	CC280768	CC280768	
System Bias Cheo	ck Results			
Analyte:	02	CO2	NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	0.097	0.184	4.335	0.233
Low Sys:	0.086	0.238	35.687	1.294
Low Bias:	0.00%	0.30%	1.90%	0.10%
Upscale Cal:	10.104	9.972	812.192	808.291
Upscale Sys:	9.989	9.899	799.742	795.449
Upscale Bias	-0.50%	-0.30%	-0.80%	-1.60%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift	Results			
Low Drift:	-0.50%	0.20%	1.10%	0.10%
Mid Drift:	-0.30%	0.10%	-0.40%	-1.10%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	ОК	ОК	OK	ОК
Test Run 1 Bias C	Correction Calculation			
	02	CO2	NOx	CO
Low init:	0.188	0.202	18.349	0.744
Low final:	0.086	0.238	35.687	1.294
Mid Init:	10.054	9.868	806.913	804.352
Mid Final:	9.989	9.899	799.742	795.449
Run Avg:	8.353	9.224	1189.138	585.276
Co:	0.137	0.220	27.018	1.019
Cm:	10.022	9.883	803.328	799.900
Coa:	0.000	0.000	0.000	0.000
Cma:	10.020	9.936	806.200	811.500
Corrected:	8.329	9.258	1206.866	593.485

454645Curia Te	st Run 2				
Start:	11/4/2021	12:10:00			
End:	11/4/2021	13:10:00			
Operator:	CRB/PS				
Plant:	Curia New Mexico	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel G	enerator Engies			
		02	CO2	NOx	CO
Time	Entry	ppm	ppm	ppm	ppm
12:11:00	1min avg:	8.201	9.259	1149.461	605.784
12:12:00	1min avg:	8.193	9.269	1165.075	603.791
12:13:00 12:14:00	1min avg: 1min avg:	8.195 8.186	9.269 9.279	1173.044 1175.895	602.191 607.180
12:15:00	1min avg:	8.177	9.283	1180.711	608.763
12:15:00	1min avg:	8.160	9.298	1180.475	614.844
12:17:00	1min avg:	8.167	9.295	1183.695	613.620
12:18:00	1min avg:	8.151	9.310	1186.187	616.060
12:19:00	1min avg:	8.112	9.339	1185.211	627.919
12:20:00	1min avg:	8.101	9.346	1187.341	632.865
12:21:00	1min avg:	8.112	9.337	1186.960	634.144
12:22:00	1min avg:	8.138	9.319	1188.808	621.656
12:23:00	1min avg:	8.169	9.297	1189.286	619.094
12:24:00	1min avg:	8.161	9.306	1190.530	611.810
12:25:00	1min avg:	8.167	9.300	1190.489	612.128
12:26:00	1min avg:	8.152	9.298	1191.192	614.118
12:27:00 12:28:00	1min avg: 1min avg:	8.148 8.160	9.301 9.292	1188.974 1189.705	615.685 614.209
12:29:00	1min avg:	8.157	9.296	1189.727	611.998
12:30:00	1min avg:	8.176	9.287	1189.676	604.087
12:31:00	1min avg:	8.077	9.352	1185.035	627.708
12:32:00	1min avg:	8.078	9.354	1189.369	639.925
12:33:00	1min avg:	8.139	9.322	1191.323	623.737
12:34:00	1min avg:	8.136	9.322	1192.131	613.486
12:35:00	1min avg:	8.155	9.310	1190.192	614.866
12:36:00	1min avg:	8.167	9.300	1188.759	604.690
12:37:00	1min avg:	8.090	9.357	1186.517	623.665
12:38:00	1min avg:	8.076	9.379	1187.874	634.343
12:39:00 12:40:00	1min avg: 1min avg:	8.091 8.064	9.380 9.424	1186.957 1186.961	626.441 631.750
12:40:00	1min avg:	8.082	9.403	1187.622	630.101
12:42:00	1min avg:	8.035	9.403	1188.502	634.605
12:43:00	1min avg:	8.021	9.415	1190.103	650.324
12:44:00	1min avg:	8.028	9.624	1191.248	642.649
12:45:00	1min avg:	8.035	9.423	1190.739	642.762
12:46:00	1min avg:	8.075	9.365	1194.074	631.965
12:47:00	1min avg:	8.087	9.358	1191.867	627.839
12:48:00	1min avg:	8.113	9.342	1194.027	614.909
12:49:00	1min avg:	8.114	9.344	1190.388	614.250
12:50:00	1min avg:	8.076	9.399	1186.850	622.252
12:51:00	1min avg: 1min avg:	8.070 8.005	9.411	1187.369 1184.650	625.522
12:52:00 12:53:00	1min avg:	8.030	9.399 9.386	1188.833	643.266 641.994
12:54:00	1min avg:	8.064	9.363	1190.221	633.778
12:55:00	1min avg:	8.083	9.352	1189.083	621.755
12:56:00	1min avg:	8.079	9.355	1190.985	613.399
12:57:00	1min avg:	8.074	9.363	1189.336	624.076
12:58:00	1min avg:	8.040	9.391	1187.165	626.856
12:59:00	1min avg:	7.965	9.451	1188.019	653.899
13:00:00	1min avg:	7.985	9.446	1189.358	648.691
13:01:00	1min avg:	7.964	9.458	1189.086	655.280
13:02:00	1min avg:	8.069	9.384	1192.956	632.447
13:03:00	1min avg:	8.070	9.386	1189.318	619.734
13:04:00	1min avg:	8.071	9.385	1190.252	618.791
13:05:00	1min avg:	8.050	9.399	1188.402	628.459
13:06:00	1min avg: 1min avg:	8.034 7.976	9.408	1187.661 1184 704	622.852
	1min avg:	7.976	9.447	1184.704	643.697
13:07:00 13:08:00	1min avg	7 979	9 4 1 6	1187 /65	62 8 700
13:08:00	1min avg: 1min avg:	7.979 7.979	9.446 9.443	1187.465 1186.940	648.708 639.937
	1min avg: 1min avg: 1min avg:	7.979 7.979 7.978	9.446 9.443 9.449	1187.465 1186.940 1188.512	648.708 639.937 647.747

454645Curia Rur	n 2 Final Bias & Drift	Check		
Date/Time:	11/4/2021	13:22:05		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	enerator Engies		
Reference Cylind	ler IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
СО	CC704230	CC280768	CC280768	
System Bias Che				
Analyte:	02	CO2	NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Law Cali	0.007	0.184	4 225	0 222
Low Cal:	0.097 0.044	0.184	4.335 34.741	0.233
Low Sys: Low Bias:		0.227		0.985 0.10%
LOW DIdS.	-0.20%	0.20%	1.90%	0.10%
Upscale Cal:	10.104	9.972	812.192	808.291
Upscale Sys:	9.940	9.910	787.700	783.051
Upscale Bias	-0.70%	-0.30%	-1.50%	-3.10%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift	t Results			
Low Drift:	-0.20%	-0.10%	-0.10%	0.00%
Mid Drift:	-0.20%	0.10%	-0.70%	-1.50%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	OK	ОК	OK	ОК
Test Due 2 Dies (	Correction Coloulation			
Test Run 2 Blas C	Correction Calculation O2		NOv	0
Low init:		CO2	NOx	CO 1 204
Low final:	0.086	0.238	35.687	1.294
	0.044	0.227 9.899	34.741 799.742	0.985
Mid Init: Mid Final:	9.989 9.940	9.899 9.910	799.742	795.449 783.051
	9.940 8.091	9.910 9.361	1187.055	625.585
Run Avg: Co:	0.065	0.233	35.214	1.140
CO: Cm:	9.965	0.235 9.904	793.721	789.250
Coa:	0.000	9.904 0.000	0.000	0.000
Coa. Cma:	10.020	9.936	806.200	811.500
Corrected:	8.124	9.936 9.378	1224.266	642.978
conclieu.	0.124	9.370	1224.200	042.370

LIIU.	11/4/2021	14.23.00			
Operator:	CRB/PS				
Plant:	Curia New Mexico I	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel Ge	nerator Engies			
		02	CO2	NOx	со
Time	Entry	ppm	ppm	ppm	ppm
13:30:00	1min avg:	7.916	9.438	1175.063	668.843
13:31:00	1min avg:	7.902	9.441	1181.170	663.987
13:32:00	1min avg:	7.914	9.429	1189.215	664.729
13:33:00	1min avg:	7.987	9.364	1200.899	644.778
13:34:00	1min avg:	7.980	9.369	1196.484	636.519
13:35:00	1min avg:	7.944	9.390	1194.997	643.487
13:36:00	1min avg:	7.939	9.393	1193.446	653.240
13:37:00	1min avg:	7.959	9.376	1195.179	640.451
13:38:00	1min avg:	7.933	9.396	1190.818	649.842
13:39:00	1min avg:	7.971	9.371	1193.157	644.545
13:40:00	1min avg:	7.921	9.401	1190.610	647.660
13:41:00	1min avg:	7.886	9.423	1190.386	666.859
13:42:00	1min avg:	7.957	9.376	1195.553	646.874
13:43:00	1min avg:	7.976	9.358	1194.858	634.034
13:44:00 13:45:00	1min avg:	7.877	9.423 9.423	1190.420 1193.171	657.230 667.336
13:45:00	1min avg: 1min avg:	7.876 7.919	9.394	1193.137	653.851
13:40:00	1min avg:	7.966	9.360	1192.661	641.422
13:48:00	1min avg:	7.988	9.346	1195.174	637.374
13:49:00	1min avg:	7.988	9.341	1198.576	634.623
13:50:00	1min avg:	7.991	9.338	1194.321	633.673
13:51:00	1min avg:	7.942	9.369	1186.415	646.144
13:52:00	1min avg:	7.911	9.387	1187.592	650.047
13:53:00	1min avg:	7.865	9.417	1195.786	666.357
13:54:00	1min avg:	7.854	9.426	1191.784	672.272
13:55:00	1min avg:	7.882	9.406	1197.586	662.096
13:56:00	1min avg:	7.875	9.407	1199.251	658.722
13:57:00	1min avg:	7.913	9.379	1194.842	653.169
13:58:00	1min avg:	7.907	9.383	1196.924	652.852
13:59:00	1min avg:	7.925	9.369	1196.802	645.666
14:00:00	1min avg:	7.917	9.372	1195.772	645.892
14:01:00	1min avg:	7.838	9.425	1192.434	662.156
14:02:00	1min avg:	7.886	9.393	1198.803	656.152
14:03:00	1min avg:	7.891	9.389	1197.913	648.358
14:04:00	1min avg:	7.898	9.382	1199.184	647.479
14:05:00 14:06:00	1min avg:	7.879 7.904	9.393 9.372	1197.768	657.637 649.569
	1min avg: 1min avg:	7.904	9.372	1196.813 1198.407	646.735
14:07:00 14:08:00	1min avg:	7.857	9.307	1198.407	651.023
14:09:00	1min avg:	7.770	9.447	1191.968	681.067
14:10:00	1min avg:	7.790	9.439	1193.282	688.956
14:11:00	1min avg:	7.784	9.435	1192.728	682.209
14:12:00	1min avg:	7.856	9.404	1208.369	664.331
14:13:00	1min avg:	7.889	9.377	1211.799	654.631
14:14:00	1min avg:	7.925	9.352	1204.476	642.317
14:15:00	1min avg:	7.919	9.352	1199.699	640.956
14:16:00	1min avg:	7.861	9.386	1197.019	651.542
14:17:00	1min avg:	7.839	9.401	1198.644	661.731
14:18:00	1min avg:	7.839	9.398	1199.679	660.397
14:19:00	1min avg:	7.846	9.392	1199.784	659.824
14:20:00	1min avg:	7.836	9.398	1198.558	668.694
14:21:00	1min avg:	7.858	9.379	1199.379	654.659
14:22:00	1min avg:	7.774	9.435	1192.889	677.027
14:23:00	1min avg:	7.833	9.399	1198.885	668.619
14:24:00	1min avg:	7.877	9.365	1198.474	652.627
14:25:00	1min avg:	7.877	9.366	1196.007	652.562
14:26:00	1min avg:	7.831	9.394	1194.956	659.803
14:27:00	1min avg:	7.774	9.437	1194.052	683.257
14:28:00	1min avg:	7.822	9.404	1197.114	671.534
14:29:00	1min avg:	7.843	9.390	1199.212	666.352
14:29:00	Test Avgs:	7.891	9.392	1195.439	655.780

 Start:
 11/4/2021
 13:29:00

 End:
 11/4/2021
 14:29:00

454645Curia Rur	n 3 Final Bias & Drift	Check		
Date/Time:	11/4/2021	14:39:36		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	шс		
Location:				
	Albuquerque NM	an arotar Englas		
Source ID:	Cummins Diesel G	enerator Engles		
Reference Cylind	ler IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
СО	CC704230	CC280768	CC280768	
Custom Diss Cha				
System Bias Che		CO2	NOv	0
Analyte:	02		NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	0.097	0.184	4.335	0.233
Low Sys:	-0.009	0.231	25.647	0.726
Low Bias:	-0.50%	0.20%	1.30%	0.10%
Upscale Cal:	10.104	9.972	812.192	808.291
Upscale Sys:	9.832	9.840	783.713	771.265
Upscale Bias	-1.20%	-0.60%	-1.70%	-4.60%
	DACCED	DACCED	DACCED	DACCED
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift	t Results			
Low Drift:	-0.20%	0.00%	-0.60%	0.00%
Mid Drift:	-0.50%	-0.30%	-0.20%	-1.50%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	ОК	ОК	ОК	OK
Test Run 3 Rias (	Correction Calculation	nc.		
	02	CO2	NOx	CO
Low init:	0.044	0.227	34.741	0.985
Low final:	-0.009	0.231	25.647	0.726
Mid Init:	9.940	9.910	787.700	783.051
Mid Final:	9.832	9.840	783.713	771.265
Run Avg:	7.891	9.392	1195.439	655.780
Co:	0.018	0.229	30.194	0.856
CO. Cm:	9.886	9.875	785.707	777.158
Coa:			0.000	
	0.000	0.000		0.000
Cma:	10.020	9.936	806.200	811.500
Corrected:	7.995	9.439	1243.422	684.618

454645Curia Re Date/Time: Result:	peat Calibration Error 11/4/2021 PASS	2 15:47:25		
Operator: Plant:	CRB/PS Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel Ge	enerator Engies		
Reference Cylin				
Reference Cylini	Zero ID:	Low ID:	Mid ID:	High ID:
NOx	CC704230	LOW ID.	CC280768	CC702206
CO	CC704230		CC129528	CC280768
0	CC704230		CC129528	CC280708
Calibration Erro	r Results			
Channel:	NOx	СО		
Units:	ppm	ppm		
Span:	1641	811.5		
Range:	2000	1000		
Method:	EPA 7E	EPA 7E		
Zero Ref:	0	0		
Zero Cal:	1.935	-0.313		
Zero Error:	0.10%	0.00%		
Low Ref:				
Low Cal:				
Low Error:				
Mid Ref:	806.2	101.1		
		404.4		
Mid Cal: Mid Error:	808.197 0.10%	411.106 0.80%		
MIU EITOL.	0.10%	0.80%		
High Ref:	1641	811.5		
High Cal:	1639.952	805.354		
High Error:	-0.10%	-0.80%		
Cal Result:	PASSED	PASSED		

454645Curia Repeat System Bias 2					
Date/Time:	11/4/2021	15:51:53			
Result:	PASS				
Operator:	CRB/PS				
Plant:	Curia New Mexico	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel Ge	enerator Engies			
Reference Cylinde	er IDs				
	Low ID	Upscale ID			
NOx	CC704230	CC280768			
СО	CC704230	CC280768			
System Bias Check	k Results				
Analyte:	NOx	CO			
Units:	ppm	ppm			
Span:	1641	811.5			
Range:	2000	1000			
Method:	EPA 7E	EPA 7E			
Low Cal:	1.935	-0.313			
Low Sys:	3.928	0.209			
Low Bias:	0.10%	0.10%			
Upscale Cal:	808.197	805.354			
Upscale Sys:	797.771	801.940			
Upscale Bias	-0.60%	-0.40%			
Bias Result:	PASSED	PASSED			

Span ID CC702206 CC280768

454645Curia Te	st Run 4				
Start:	11/4/2021	15:55:00			
End:	11/4/2021	16:55:00			
Operator:	CRB/PS				
Plant:	Curia New Mexico	ЦС			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel G	enerator Engies			
		02	CO2	NOx	CO
Time	Entry	ppm	ppm	ppm	ppm
15:56:00	1min avg:	7.796	9.428	1193.513	616.241
15:57:00 15:58:00	1min avg: 1min avg:	7.846 7.920	9.402 9.363	1204.256 1210.637	594.502 576.248
15:59:00	1min avg:	7.943	9.351	1214.899	569.687
16:00:00	1min avg:	7.919	9.371	1217.954	576.132
16:01:00	1min avg:	7.935	9.362	1223.505	571.875
16:02:00	1min avg:	7.882	9.400	1223.737	581.808
16:03:00	1min avg:	7.879	9.403	1231.641	587.143
16:04:00	1min avg:	7.911	9.388	1236.606	573.104
16:05:00	1min avg:	7.898	9.393	1237.249	577.374
16:06:00	1min avg:	7.840	9.434	1234.675	594.087
16:07:00 16:08:00	1min avg: 1min avg:	7.756 7.712	9.488 9.518	1240.378 1245.176	611.555 630.048
16:09:00	1min avg:	7.677	9.543	1249.588	635.102
16:10:00	1min avg:	7.678	9.543	1254.397	632.722
16:11:00	1min avg:	7.673	9.546	1257.639	632.511
16:12:00	1min avg:	7.724	9.520	1260.525	625.208
16:13:00	1min avg:	7.807	9.463	1258.932	600.444
16:14:00	1min avg:	7.777	9.482	1252.698	603.614
16:15:00	1min avg:	7.794	9.475	1249.059	606.753
16:16:00	1min avg:	7.817	9.459	1246.948	598.243 594.505
16:17:00 16:18:00	1min avg: 1min avg:	7.849 7.856	9.437 9.432	1246.359 1243.808	594.505
16:19:00	1min avg:	7.823	9.453	1240.861	597.629
16:20:00	1min avg:	7.787	9.476	1240.773	604.876
16:21:00	1min avg:	7.723	9.522	1248.938	620.972
16:22:00	1min avg:	7.780	9.488	1252.866	609.942
16:23:00	1min avg:	7.808	9.462	1246.253	598.914
16:24:00	1min avg:	7.814	9.464	1244.179	599.474
16:25:00	1min avg:	7.841	9.445	1242.917	597.550
16:26:00 16:27:00	1min avg: 1min avg:	7.820 7.837	9.456 9.449	1241.216 1242.975	592.455 595.012
16:28:00	1min avg:	7.834	9.448	1239.367	596.635
16:29:00	1min avg:	7.810	9.463	1238.295	600.873
16:30:00	1min avg:	7.713	9.526	1243.179	626.134
16:31:00	1min avg:	7.769	9.494	1249.658	612.729
16:32:00	1min avg:	7.750	9.504	1247.403	614.548
16:33:00	1min avg:	7.770	9.490	1246.157	607.387
16:34:00	1min avg:	7.687	9.542	1249.970	627.712
16:35:00 16:36:00	1min avg:	7.700 7.746	9.535 9.506	1252.019 1253.960	626.095 618.390
16:37:00	1min avg: 1min avg:	7.727	9.518	1253.452	618.750
16:38:00	1min avg:	7.748	9.505	1253.890	614.624
16:39:00	1min avg:	7.781	9.486	1257.198	607.084
16:40:00	1min avg:	7.816	9.460	1251.599	598.148
16:41:00	1min avg:	7.821	9.452	1247.719	592.780
16:42:00	1min avg:	7.820	9.454	1242.692	595.159
16:43:00	1min avg:	7.805	9.467	1240.996	594.045
16:44:00	1min avg:	7.827	9.450	1245.808	593.973
16:45:00 16:46:00	1min avg: 1min avg:	7.799	9.468	1242.951 1243.285	600.371
16:46:00	1min avg:	7.806 7.773	9.462 9.485	1243.285	593.501 602.461
16:48:00	1min avg:	7.756	9.498	1244.320	608.685
16:49:00	1min avg:	7.781	9.482	1245.204	601.654
16:50:00	1min avg:	7.797	9.469	1245.503	598.120
16:51:00	1min avg:	7.732	9.512	1243.645	611.089
16:52:00	1min avg:	7.723	9.516	1247.568	611.321
16:53:00	1min avg:	7.681	9.547	1246.656	626.782
16:54:00	1min avg:	7.680	9.546	1252.783	618.804
16:55:00 16:55:00	1min avg: Test Avgs:	7.687 7.791	9.542 9.471	1257.028 1242.669	621.918 603.886
10.55.00	iest Avgs.	1.131	3.471	1242.009	003.000

454645Curia Ru	n 4 Final Bias & Drift	Check		
Date/Time:	11/4/2021	17:01:11		
Result:	PASS			
<b>a</b>	000 /00			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	enerator Engies		
Reference Cyline	der IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
CO	CC704230	CC280768	CC280768	
System Bias Che	ck Results			
, Analyte:	02	CO2	NOx	со
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Wittind.				
Low Cal:	0.097	0.184	1.935	-0.313
Low Sys:	-0.014	0.268	44.785	1.241
Low Bias:	-0.50%	0.40%	2.60%	0.20%
Upscale Cal:	10.104	9.972	808.197	805.354
Upscale Sys:	9.791	9.876	812.354	794.127
Upscale Bias	-1.40%	-0.40%	0.30%	-1.40%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drif	t Results			
Low Drift:	0.00%	0.20%	2.50%	0.10%
Mid Drift:	-0.20%	0.20%	0.90%	-1.00%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	ОК	ОК	ОК	ОК
Test Run 4 Bias (	Correction Calculation	ns:		
	02	CO2	NOx	CO
Low init:	-0.009	0.231	3.928	0.209
Low final:	-0.014	0.268	44.785	1.241
Mid Init:	9.832	9.840	797.771	801.940
Mid Final:	9.791	9.876	812.354	794.127
Run Avg:	7.791	9.471	1242.669	603.886
Co:	-0.011	0.249	24.357	0.725
Cm:	9.812	9.858	805.062	798.034
Coa:	0.000	0.000	0.000	0.000
Cma:	10.020	9.936	806.200	811.500
Corrected:	7.959	9.535	1258.097	613.897
concellu.		5.555	1230.037	010.007

454645Curia Te	st Run 5				
Start:	11/4/2021	17:03:00			
End:	11/4/2021	18:03:00			
Operator:	CRB/PS				
Plant:	Curia New Mexico	LLC			
Location:	Albuquerque NM				
Source ID:	Cummins Diesel G	enerator Engies			
		02	CO2	NOx	CO
Time	Entry	ppm	ppm	ppm	ppm
17:04:00	1min avg:	7.683	9.521	1218.563	616.967
17:05:00 17:06:00	1min avg: 1min avg:	7.745 7.760	9.488 9.476	1231.765 1237.416	607.948 598.924
17:07:00	1min avg:	7.675	9.532	1236.446	623.991
17:08:00	1min avg:	7.635	9.559	1247.212	634.531
17:09:00	1min avg:	7.600	9.583	1252.919	637.302
17:10:00	1min avg:	7.598	9.585	1256.799	642.418
17:11:00	1min avg:	7.598	9.585	1262.119	640.585
17:12:00	1min avg:	7.582	9.597	1263.885	640.778
17:13:00	1min avg:	7.607	9.580	1263.645	640.586
17:14:00 17:15:00	1min avg: 1min avg:	7.611 7.615	9.575 9.574	1262.067 1260.191	638.561 634.450
17:16:00	1min avg:	7.601	9.581	1263.054	630.146
17:17:00	1min avg:	7.645	9.554	1260.790	628.328
17:18:00	1min avg:	7.696	9.521	1255.510	618.740
17:19:00	1min avg:	7.619	9.573	1257.258	628.090
17:20:00	1min avg:	7.720	9.505	1260.342	613.730
17:21:00	1min avg:	7.705	9.514	1250.236	612.801
17:22:00	1min avg:	7.708	9.512	1252.155	611.096
17:23:00	1min avg:	7.684	9.527	1251.590	619.223 603.282
17:24:00 17:25:00	1min avg: 1min avg:	7.752 7.757	9.487 9.480	1252.476 1249.207	595.803
17:26:00	1min avg:	7.726	9.504	1242.803	610.148
17:27:00	1min avg:	7.681	9.533	1245.717	618.563
17:28:00	1min avg:	7.721	9.508	1247.341	612.174
17:29:00	1min avg:	7.768	9.476	1246.866	598.120
17:30:00	1min avg:	7.788	9.466	1245.321	594.272
17:31:00	1min avg:	7.778	9.474	1240.714	596.772
17:32:00	1min avg:	7.769	9.482	1240.815	598.508
17:33:00 17:34:00	1min avg: 1min avg:	7.734 7.709	9.506 9.521	1243.205 1247.959	605.499 615.402
17:35:00	1min avg:	7.720	9.515	1252.226	609.801
17:36:00	1min avg:	7.750	9.495	1248.350	603.341
17:37:00	1min avg:	7.747	9.498	1240.434	603.615
17:38:00	1min avg:	7.747	9.496	1240.665	605.918
17:39:00	1min avg:	7.706	9.519	1243.481	612.101
17:40:00	1min avg:	7.770	9.479	1246.257	600.571
17:41:00	1min avg:	7.745	9.494	1242.833	599.513
17:42:00 17:43:00	1min avg: 1min avg:	7.713 7.726	9.513 9.506	1240.752 1243.447	608.334 610.943
17:44:00	1min avg:	7.700	9.518	1244.223	614.903
17:45:00	1min avg:	7.655	9.547	1243.986	622.442
17:46:00	1min avg:	7.689	9.527	1247.086	620.639
17:47:00	1min avg:	7.710	9.515	1247.594	611.556
17:48:00	1min avg:	7.750	9.488	1244.264	602.833
17:49:00	1min avg:	7.733	9.499	1241.217	608.782
17:50:00	1min avg: 1min avg:	7.720	9.508	1240.535	609.332
17:51:00 17:52:00	1min avg:	7.695 7.720	9.522 9.506	1240.557 1241.393	617.911 608.385
17:53:00	1min avg:	7.708	9.516	1239.620	615.044
17:54:00	1min avg:	7.733	9.497	1244.785	606.399
17:55:00	1min avg:	7.716	9.508	1245.435	609.819
17:56:00	1min avg:	7.738	9.493	1244.468	604.339
17:57:00	1min avg:	7.705	9.514	1243.443	610.998
17:58:00	1min avg:	7.678	9.531	1244.742	621.168
17:59:00	1min avg:	7.715	9.503	1243.613	615.457
18:00:00	1min avg:	7.683	9.515	1242.917	616.999
18:01:00 18:02:00	1min avg: 1min avg:	7.697 7.666	9.509 9.527	1245.436 1243.100	616.173 618.363
18:02:00	1min avg:	7.687	9.527	1245.100	619.590
18:03:00	Test Avgs:	7.700	9.519	1246.974	614.883
	0.				

454645Curia Ru	n 5 Final Bias & Drift	Check		
Date/Time:	11/4/2021	18:09:54		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	enerator Engies		
Reference Cylin				
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
CO	CC704230	CC280768	CC280768	
Sustan Dias Cha				
System Bias Che Analyte:	O2	CO2	NOx	СО
Units:		ppm	ppm	ppm
Span:	ppm 22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Wethou.				
Low Cal:	0.097	0.184	1.935	-0.313
Low Sys:	-0.024	0.270	44.728	0.724
Low Bias:	-0.50%	0.40%	2.60%	0.10%
Upscale Cal:	10.104	9.972	808.197	805.354
Upscale Sys:	9.773	9.880	808.805	793.829
Upscale Bias	-1.50%	-0.40%	0.00%	-1.40%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drif	ft Results			
Low Drift:	0.00%	0.00%	0.00%	-0.10%
Mid Drift:	-0.10%	0.00%	-0.20%	0.00%
Drift Result:	PASSED	PASSED	PASSED	PASSED
Cal Result:	ОК	ОК	ОК	ОК
Test Run 5 Bias	Correction Calculation	ns:		
	02	CO2	NOx	CO
Low init:	-0.014	0.268	44.785	1.241
Low final:	-0.024	0.270	44.728	0.724
Mid Init:	9.791	9.876	812.354	794.127
Mid Final:	9.773	9.880	808.805	793.829
Run Avg:	7.700	9.519	1246.974	614.883
Co:	-0.019	0.269	44.757	0.983
Cm:	9.782	9.878	810.580	793.978
Coa:	0.000	0.000	0.000	0.000
Cma:	10.020	9.936	806.200	811.500
Corrected:	7.891	9.565	1265.603	628.226

454645Curia Te	st Run 6				
Start:	11/4/2021	18:13:00			
End:	11/4/2021	19:13:00			
Operator:	CRB/PS				
Operator: Plant:	Curia New Mexico				
Location:	Albuquerque NM				
Source ID:	Cummins Diesel G	enerator Engles			
		02	CO2	NOx	СО
Time	Entry	ppm	ppm	ppm	ppm
18:13:59	1min avg:	7.777	9.442	1201.051	596.331
18:14:59	1min avg:	7.785	9.449	1211.436	600.697
18:15:59	1min avg:	7.803	9.477	1217.917	614.148
18:16:59	1min avg:	7.793	9.488	1226.868	613.791
18:17:59	1min avg:	7.735	9.497	1231.170	619.515
18:18:59	1min avg:	7.744	9.494	1238.205	616.128
18:19:59	1min avg:	7.799	9.492	1239.123	616.256
18:20:59	1min avg:	7.838	9.456	1241.511	602.589
18:21:59	1min avg:	7.783	9.464	1235.615	601.989
18:22:59	1min avg:	7.730	9.502	1229.015	621.340
18:23:59 18:24:59	1min avg:	7.785 7.720	9.480 9.491	1236.035 1236.044	611.909 614.621
18:25:59	1min avg: 1min avg:	7.724	9.491	1236.464	614.621
18:26:59	1min avg:	7.766	9.490	1233.535	609.262
18:27:59	1min avg:	7.833	9.454	1234.761	598.067
18:28:59	1min avg:	7.782	9.473	1231.448	604.978
18:29:59	1min avg:	7.839	9,462	1231.102	609.050
18:30:59	1min avg:	7.869	9.447	1227.370	605.463
18:31:59	1min avg:	7.832	9.451	1228.434	603.235
18:32:59	1min avg:	7.831	9.463	1229.098	610.045
18:33:59	1min avg:	7.821	9.451	1232.613	604.932
18:34:59	1min avg:	7.789	9.464	1230.623	612.486
18:35:59	1min avg:	7.748	9.476	1229.478	617.901
18:36:59	1min avg:	7.770	9.458	1230.967	613.544
18:37:59	1min avg:	7.782	9.451	1233.329	606.363
18:38:59	1min avg:	7.798	9.441	1231.272	604.628
18:39:59	1min avg:	7.810	9.433	1229.234	603.760
18:40:59	1min avg:	7.820	9.428	1227.188	602.672
18:41:59	1min avg:	7.827	9.423	1228.081	599.485
18:42:59	1min avg:	7.820	9.428	1228.568	602.539
18:43:59	1min avg:	7.817	9.430	1223.748	604.156
18:44:59 18:45:59	1min avg:	7.821	9.429	1221.726	603.609 604.565
18:46:59	1min avg: 1min avg:	7.808 7.823	9.436 9.431	1223.689 1224.588	603.398
18:40:59	1min avg:	7.823	9.431	1223.474	607.232
18:48:59	1min avg:	7.832	9.424	1224.034	601.886
18:49:59	1min avg:	7.842	9.417	1227.245	600.651
18:50:59	1min avg:	7.848	9.415	1226.740	596.644
18:51:59	1min avg:	7.817	9.438	1225.827	603.055
18:52:59	1min avg:	7.851	9.422	1229.336	600.270
18:53:59	1min avg:	7.877	9.424	1224.686	599.896
18:54:59	1min avg:	7.919	9.417	1224.667	602.691
18:55:59	1min avg:	7.911	9.422	1220.951	604.538
18:56:59	1min avg:	7.902	9.414	1223.037	601.540
18:57:59	1min avg:	7.877	9.418	1220.558	602.415
18:58:59	1min avg:	7.891	9.404	1219.692	595.672
18:59:59	1min avg:	7.921	9.381	1218.961	587.251
19:00:59	1min avg:	7.900	9.394	1216.639	590.552
19:01:59	1min avg:	7.857	9.422	1209.002	602.170
19:02:59	1min avg:	7.874	9.411	1212.431	601.559
19:03:59	1min avg:	7.826	9.445	1210.518	612.114
19:04:59	1min avg:	7.806	9.462	1210.362	622.169
19:05:59	1min avg:	7.808	9.457	1210.536	621.453
19:06:59	1min avg:	7.804	9.462	1207.962	623.188
19:07:59	1min avg:	7.799	9.465	1215.757	621.453
19:08:59	1min avg:	7.813	9.457	1218.937	619.443
19:09:59	1min avg:	7.804	9.463	1217.471	620.559
19:10:59	1min avg:	7.774	9.483	1222.650	622.467
19:11:59 19:12:59	1min avg: 1min avg:	7.760 7.772	9.494 9.484	1222.199 1221.232	628.117 624.556
19:12:59 19:13:00	Test Avgs:	7.772	9.484 9.449		
19:13:00	Test Avgs.	7.815	9.449	1224.935	608.029

454645Curia Rui	n 6 Final Bias & Drift	Check		
Date/Time:	11/4/2021	19:23:10		
Result:	PASS			
Operator:	CRB/PS			
Plant:	Curia New Mexico	LLC		
Location:	Albuquerque NM			
Source ID:	Cummins Diesel G	enerator Engies		
Reference Cylind	ler IDs			
	Low ID	Upscale ID	Span ID	
02	CC704230	CC84055	CC210288	
CO2	CC704230	CC84055	CC210288	
NOx	CC704230	CC280768	CC702206	
СО	CC704230	CC280768	CC280768	
System Bias Che				
Analyte:	02	CO2	NOx	CO
Units:	ppm	ppm	ppm	ppm
Span:	22.03	21.69	1641	811.5
Range:	25	25	2000	1000
Method:	EPA 7E	EPA 7E	EPA 7E	EPA 7E
Low Cal:	0.097	0.184	1.935	-0.313
Low Sys:	0.000	0.184	38.399	0.744
Low Bias:	-0.40%	0.40%	2.20%	0.10%
LOW DIAS.	-0.4078	0.4078	2.20%	0.10%
Upscale Cal:	10.104	9.972	808.197	805.354
Upscale Sys:	9.875	9.921	807.614	804.887
Upscale Bias	-1.00%	-0.20%	0.00%	-0.10%
Bias Result:	PASSED	PASSED	PASSED	PASSED
System Bias Drift				
Low Drift:	0.10%	0.00%	-0.40%	0.00%
Mid Drift:	0.50%	0.20%	-0.10%	1.40%
Drift Result:	PASSED	PASSED	PASSED	PASSED
	014	01	014	01/
Cal Result:	OK	ОК	ОК	ОК
Test Rup 6 Bias (	Correction Calculation	<b></b>		
Test Rull 0 blas (	O2	CO2	NOx	СО
Low init:	-0.024	0.270	44.728	0.724
Low final:	0.000	0.270	38.399	0.724
Mid Init:	9.773	9.880	808.805	793.829
Mid Final:	9.875	9.921	807.614	804.887
Run Avg:	7.815	9.449	1224.935	608.029
Co:	-0.012	0.273	41.564	0.734
Cm:	9.824	9.900	808.210	799.358
Coa:	0.000	0.000	0.000	0.000
Cma:	10.020	9.936	806.200	811.500
Corrected:	7.974	9.470	1244.425	617.086
		<b>.</b>		



**IV.D EXAMPLE CALCULATIONS** 

	Drift Corrected Emission Concentrations					
	Formula					
	$C_{GAS} = (\zeta - C_0) x - \frac{C_{MA}}{C_M - C_0} (eq. 7e-5)$					
	All Calculations Refer to Test Run 1					
Çnox =	Raw Concentration of NOx	= 1011.739 ppmv				
Co =	Avg. of Initial and Final Zero Checks	= 4.8 ppmv				
См =	Avg. of Initial and Final Span Checks	= 812.361 ppmv				
Сма =	Certified Concentration of Span Gas	= 818.6 ppmv				
$C_{NOx} =$	(1011.7 - 4.8) x <u>818.6</u> (812.4 - 4.77)	= 1020.7 ppmv				
Çco =	Raw Concentration of CO	= 127.962 ppmv				
Co =	Avg. of Initial and Final Zero Checks	= -0.253 ppmv				
См =	Avg. of Initial and Final Span Checks	= 96.2 ppmv				
Cma =	Certified Concentration of Span Gas	= 100.4 ppmv				
Cco =	(128.0 - 0.3) x <u>100.4</u>	= 133.5 ppmv				
	(96.2 - 0.25)					
Ç02 =	Raw Concentration of O2	= 8.77 %				
Co =	Avg. of initial and final zero bias checks	= 0.05%				
См =	Avg. of initial and final span bias checks	= 9.80%				
Сма =	Actual concentration of span gas	= 10.02%				
Co2 =	$(8.77 - 0.05) \times 10.02$ (9.80 - 0.05)	= 8.96%				
Çco2 =	Raw Concentration of CO2	= 8.99%				
Co =	Avg. of initial and final zero bias checks	= 0.21%				
См =	Avg. of initial and final span bias checks	= 10.16%				
Cma =	Actual concentration of span gas	= 10.10%				
Cco2 =	( 8.993 - 0.21 ) x <u>10.1</u> ( 10.16 - 0.21 )	= 8.92%				

	<u>Moisture Content Determination</u> (EPA Method 4; equations 4-1, 4-2, 4-3, and 4-4	ł)		
V ₁	= initial dry gas meter reading	=	516.07	$ft^3$
$V_2$	= final dry gas meter reading	=	542.53	$ft^3$
V _m	= total cubic feet of stack gas metered	=	$V_2$ - $V_1$	
		=	26.46	ft ³
Y	= dry gas meter correction factor	=	1.0000	(Unitless
T _m	= average temperature of dry gas meter	=	77.33	1011.73
P _m	= Barometric Pressure	=	25.12	in Hg
V _{m(std)}	$= V_m x Y x (T_{std} / T_m) x (P_m / P_{std})  Eq. 4-3 (Corrected dry)$	y gas	volume)	4.772
		=	21.83	812.30
V _i	= initial weight of first three impingers	=	2193.90	grams
$V_{\rm f}$	= final weight of first three impingers	=	2241.90	818
W _i	= initial weight of silica impinger	=	957.00	grams
$W_{f}$	= final weight of silica impinger	=	965.40	grams
K ₁	$= 0.04706  \text{ft}^3 /\text{ml}  x \; 1.0018 \; \text{ml/g} \;(\text{H}_2\text{O})$	=	0.047145	$\mathrm{ft}^3$ / g
	Constant for water vapor condensed in first three impingers.			127.96
K ₃	= 0.04715 ft ³ / g			
	Constant for water vapor condensed in silica gel.			-0.25
V _{wc(std)}	$= \mathbf{K}_{1} \left( \mathbf{V}_{f} - \mathbf{V}_{i} \right) \qquad Eq. \ 4-1 (Volume \ of \ Water \ Vapor \ Cond$	lense		
	= 0.04714  x  (2241.90 - 2193.90)	=	2.26295	96.1
V _{wsg(std)}	$= K_3 (W_f - W_i) \qquad Eq. 4-2 (Volume of Water collected in$	Silic	ea Gel)	100
	= 0.04715  x  (965.40 - 957.00)	=	0.39606	$ft^3$
$\mathbf{B}_{\mathrm{ws}}$	$=$ $V_{wc(std)} + V_{wsg(std)}$	Eq.	4-4 (Moistur	e Content)
	$\mathbf{V}_{wc(std)} + \mathbf{V}_{wsg(std)} + \mathbf{V}_{m(std)}$			
	= 2.262946 + 0.396060	=	0.1086	5
	2.262946 + 0.396060 + 21.83			0.0
		=	10.86%	)

Any differences between example calculations and data tables are due to rounding and/or truncation.

9.796

Exhaust Flow Rate Calculation		
Stack Gas Molecular Weight (Equations 3.1 a	and 2.5)	
<ul> <li>wet molecualr weight of stack gas (lb/lb-mol)</li> <li>dry molecular weight of stack gas (lb/lb-mol)</li> <li>moisture fraction of stack gas by volume</li> <li>molecular weight of water</li> <li>molecular weight of carbon dioxide</li> <li>molecular weight of oxygen</li> <li>molecular weight of nitrogen</li> <li>volume fraction of oxygen (7e-5 corrected)</li> <li>volume fraction of nitrogen</li> <li>= volume fraction of nitrogen</li> <li>= volume fraction of nitrogen</li> </ul>		0.0825 18 lb/lb-mol 44 lb/lb-mol 32 lb/lb-mol 28 lb/lb-mol 0.09 0.083 0.824 0.9175
= wt. of $CO2$ + wt. of $O2$ + wt. of $N2$	010.0	
		29.815 lb/lb-mol 28.840 lb/lb-mol
Velocity and stack flow rate via Pitot tube (Equations 2	100.4 -6, 2-8, 2-9, 2-10)	
<ul> <li>Pitot tube coefficient (dimensionless)</li> <li>pressure difference in stack as measured by Pitot tube</li> <li>average of square root of ΔP's (from Pitot readings)</li> <li>average stack temperature (measured)</li> <li>absolute stack temperature (°R) = (ts + 460)</li> </ul>	= 8.765 = 0.053 = =	0.99 2.3119 893.75 1353.75
= Pitot tube constant = 85.49 ft/sec $\sqrt{\frac{lb / lbmolex}{\circ Rxin \dots}}$	$\frac{9.796}{H_2 \phi^{0.02}}$	
	Stack Gas Molecular Weight (Equations 3.1 a)=wet molecular weight of stack gas (lb/lb-mol)=dry molecular weight of stack gas (lb/lb-mol)=moisture fraction of stack gas by volume1molecular weight of vater2molecular weight of carbon dioxide=molecular weight of oxygen=molecular weight of nitrogen=volume fraction of carbon dioxide (7e-5 corrected)=volume fraction of oxygen (7e-5 corrected)=volume fraction of nitrogen=uter of CO2 + wt. of O2 + wt. of N2=((MW CO2 x CCO2) + (MW O2 x CO2) + (MW N2 x CN2)=((44 x 0.09) + (32 x 0.083) + (28 x)=(18 x Bws) + ((1-Bws) x Md)=(18 x 0.0825) + (0.9175 x 29.815)Velocity and stack flow rate via Pitot tube (Equations 2=Pitot tube coefficient (dimensionless)=pressure difference in stack as measured by Pitot tube=average of square root of $\Delta$ P's (from Pitot readings)=average stack temperature (measured)=absolute stack temperature (°R) = (ts + 460)=Pitot tube constant = 85.49 ft/sec=Pitot tube constant = 85.49 ft/sec=Pitot tube constant = 5128.8 ft/min	Stack Gas Molecular Weight (Equations 3.1 and 2.5)= wet molecular weight of stack gas (lb/lb-mol)= dry molecular weight of stack gas (lb/lb-mol)= moisture fraction of stack gas by volume= molecular weight of water2 molecular weight of carbon dioxide= molecular weight of oxygen1012 == molecular weight of nitrogen= volume fraction of carbon dioxide (7e-5 corrected)4.773 =volume fraction of oxygen (7e-5 corrected)= volume fraction of nitrogen= toy gas fraction= 1-(CCO2 + t \$12.4 == dry gas fraction= 1-(0.0825)= ((MW CO2 x CCO2) + (MW O2 x CO2) + (MW N2 x CN2))= (18 x Bws) + ((1-Bws) x Md)= (18 x 0.0825) + (0.9175 x 29.815)= pressure difference in stack as measured by Pitot tube8.765= average of square root of $\Delta$ P's (from Pitot readings)= average of square root of $\Delta$ P's (from Pitot readings)= average stack temperature (measured)0.053 == absolute stack temperature (°R) = (ts + 460)= Pitot tube constant = 85.49 ft/sec

	Velocity and stack flow rate via Pitot tube (Equations 2-6, 2-8, 2-9, 2-10) (C	Continue	<u>ed)</u>
Ку	= Standard pressure/temperature coefficient		
	10.16		
	$= 528 \circ R \qquad x 60 \min utes \qquad 10.1 =$	_	1058.8
	$= \frac{528 \ ^{\circ}R}{29.92'' Hg} \qquad x \ \frac{60 \ \text{min } utes}{hour} \qquad 10.1 =$	_	1030.0
	29.192 mg nour		
Pb	= atmospheric pressure (inches Hg) =	=	25.12
Pg	= stack static pressure (inches H2O) =	_	4.9
rg Ps	•	_	4.9
PS	= absolute stack pressure (Equation 2.6) = $Pb$ + $Pa$	_	<b>25</b> 490 11 TT-
	$= Pb + \frac{Pg}{13.6 (in H2O/in Hg)} =$	=	25.480 "Hg
	13.6 (in H2O/in Hg)		
	2		
	= area of stack (ft2) = $\frac{\frac{diameter}{4} x \pi}{144 in^2 / ft^2}$		0 5054 540
As	= area of stack (ft2) = $4$	=	0.7854 Ft2
	$\frac{144}{10} \frac{1}{10} \frac{2}{10} \frac{4}{10} \frac{2}{10}$		
	144 <i>IN / JI</i>		
* 7			
Vs	= stack velocity (ft/min)		
	$T_{\rm s}$		
	= Kp x Cp x ( $\sqrt{\Delta P}$ )avg x $\sqrt{\frac{T_s}{P_s x M_s}}$ (eq .2 - 9)		
	$I s \lambda I V s s$		
	$=$ 5129 x 0.99 x 2.312 $\int$ 1353.75 $=$	= 1	15932.95 ft/min
	$= 5129 \text{ x}  0.99 \text{ x}  2.312  \boxed{1353.75}_{25.480 \text{ x}  28.8397} =$		
	Y I I I I I I I I I I I I I I I I I I I		
Qa	= Stack flow rate $= Vs x As$		
<b>~</b>			
	= 15932.954 x 0.7854 $=$	= 1	12513.71 ACFM
		-	
Qd	= Stack flow rate on a dry basis and standard conditions (DSCFH)		
~~			
	= Qa $x Ky x Ps x (1-Bws)$ (Equation 2.10)		
	= Qa x Ky x Ps x (1-Bws) (Equation 2.10) Ts		
	10		
	$= 12513.71 \text{ x}  1058.8 \text{ x}  25.48 \qquad \text{x} (1-0.0825) \qquad =$	- 2	
	$\frac{-12513.71 \times 1058.8 \times 25.48}{1353.8} \times (1-0.0825)$		AZZE VJ DOCTA
	1333.0		

	Mass Emissions rates via EPA Methods 1-4 (l	bs/hi	r, tons/year)
CNOx CCO Qs MW NOx MW CO	<ul> <li>= Concentration of NOx</li> <li>= Concentration of CO</li> <li>= stack flow rate</li> <li>= Molecular Weight of NOx</li> <li>= Molecular Weight of CO</li> </ul>		1206.87 ppmv 593.49 ppmv 2.29E+05 DSCFH 46.01 lb/lb-mol 28.01 lb/lb-mol
Ex (lb/hr)	= Cx x 10 ⁻⁶ x Qs x <u>MWx</u> <u>385.15</u>		1011.739
Ex (TPY)	= Ex (lb/hr)   x 8760 hr/yr 2000 lb/ton		4.7725
E (- /1-1	$ \sum_{n=1}^{\infty} (11/1) = - 454$		812.361
Ex (g/bnp-	$= \underbrace{Ex (lb/hr)}_{hp} x \underbrace{454 g}_{1 lb}$		818.6
ENOx	$= C NOx x 10^{-6} x Qs x 46.01 385.15$	5	107.070
	$= 1206.87 \times 10^{-6} \times 2.29E + 05 \times 46.01$	=	127.962 <b>32.98 lb/hr</b> -0.253
	$= 32.98 \text{ lb/hr}  x \underline{500 \text{ hrs/yr}} \\ 2000 \text{ lbs/ton}$	_=	8.25 96.176
E CO	= C CO x 10 ⁻⁶ x Qs x 28.00 385.15		100.4
	$= 593.49 \times 10^{-6} \times 2.29E + 05 \times 28.00$	=	9.88 8.765
	= 9.88 lb/hr x 500 hrs/yr	=	0.053 <b>2.47 TPY</b>
	2000 lbs/ton		9.796



IV.E DOCUMENTATION OF ANALYSIS AND CERTIFICATION FOR CALIBRATION GASES AND CALIBRATION OF SAMPLING EQUIPMENT



# **CERTIFICATE OF BATCH ANALYSIS** Grade of Product: ULTRA HIGH PURITY-PURE

Part Number:	NI UHP15A	Reference Number:	71-402236409-1				
Cylinder	CC142549	Cylinder Volume:	142.0 CF				
Analyzed:							
Laboratory:	104 - Henderson/Denver Fill Plant (SAP) - CO	Cylinder Pressure:	2000 PSIG				
Analysis Date:	Sep 23, 2021	Valve Outlet:	580				
Lot Number:	71-402236409-1						
ANALYTICAL RESULTS							

Component	Requested Purity		Certified Concentration	
NITROGEN	99.999 %		99.999 %	
CO + CO2	< 1.0 PPM	<ldl< td=""><td>0.088 PPM</td><td></td></ldl<>	0.088 PPM	
Moisture	< 1.0 PPM		0.43 PPM	
Oxygen	< 1.0 PPM		0.59 PPM	
THC	< 0.5 PPM		0.110 PPM	

#### Cylinders in Batch:

ALM-026323, ALM-034739, CC142549, CC192909, CC197414, CC198608, CC220587, CC264952, CC328553, CC425088, CC430714, CC442233, CC443834, CC453429, CC702005, CC704230, CC704239, CC704258, CC704261, CC704286, CC70709, CC75743, CC817953, EB0010209, EB0033659

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.



## **CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol**

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code:

E04NI99E15A0031 CC702206 124 - Tooele (SAP) - UT B72020 CO,NO,NOX,PPN,BALN Reference Number: 153-401902298-1 Cylinder Volume: Cylinder Pressure: Valve Outlet: 660 Certification Date:

144.5 CF 2015 PSIG Sep 16, 2020

Expiration Date: Sep 16, 2028

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	ANALYTICAL RESULTS							
Compor	Component Requested Actual Protocol Total Relative Concentration Concentration Method Uncertainty			Assay Dates				
NOX		1650 PPM	1641 PPM	G1	+/- 0.9% NI	ST Traceable	09/08/2020, 09/16/2020	
CARBON	I MONOXIDE	1650 PPM	1682 PPM	G1	+/- 0.7% NI	ST Traceable	09/08/2020	
NITRIC C	DXIDE	1650 PPM	1639 PPM	G1	+/- 0.8% NI	ST Traceable	09/08/2020, 09/16/2020	
PROPAN	IE	1700 PPM	1753 PPM	G1	+/- 0.7% NI	ST Traceable	09/08/2020	
NITROGE	EN	Balance			-			
			CALIBRATI	ON STAND	ARDS			
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date	
NTRM	14060137	CC436581	990.9 PPM CARE	BON MONOXIDE	/NITROGEN	0.6%	Nov 15, 2025	
PRM	12386	D685025	9.91 PPM NITRO	GEN DIOXIDE/A	IR	2.0%	Feb 20, 2020	
NTRM	08011737	KAL004010	970.9 PPM NITRI	IC OXIDE/NITRO	GEN	0.6%	Feb 16, 2024	
GMIS	401203436105	CC513880	4.732 PPM NITRO	OGEN DIOXIDE/I	NITROGEN	2.1%	May 02, 2022	
NTRM	12062314	CC367519	2503 PPM PROP			0.6%	Mar 12, 2024	
The SRM,	PRM or RGM noted	above is only in reference	e to the GMIS used in the a	assay and not part o	f the analysis.			
	ANALYTICAL EQUIPMENT							
Instrum	Instrument/Make/Model Analytical Principle Last Multipoint Calibration						alibration	
Nicolet 67	700 AMP0900119	COHCO	FTIR		A	ug 12, 2020		
Nicolet 67	700 AMP0900119	NO HNO	FTIR		A	ug 26, 2020		
Nicolet 67	700 AMP0900119	NO2 impurity	FTIR NO2	impurity	A	ug 27, 2020		
Nicolet 67	700 AMP0900119	C3H8 MC3H8	FTIR		S	ep 02, 2020		

Triad Data Available Upon Request





Airgas Specialty Gases Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

# **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E04NI99E15A00U1 CC280768 124 - Tooele (SAP) - UT B72019 CO,NO,NOX,PPN,BALN

Reference Number:1Cylinder Volume:1Cylinder Pressure:2Valve Outlet:6Certification Date:6

153-401628329-1 144.4 CF 2015 PSIG 660 Oct 29, 2019

Expiration Date: Oct 29, 2027

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

	ANALYTICAL RESULTS								
Compor	Component Requested Actual Concentration Concentration			Protocol Method	Total Rel Uncertai		Assay Dates		
NOX		800.0 PPM	806.2 PPM	G1	+/- 0.8% N	IST Traceable	10/22/2019, 10/29/2019		
CARBON	I MONOXIDE	800.0 PPM	811.5 PPM	G1	+/- 0.8% N	IST Traceable	10/22/2019		
NITRIC O	XIDE	800.0 PPM	805.5 PPM	G1	+/- 0.8% N	IST Traceable	10/22/2019, 10/29/2019		
PROPAN	E	850.0 PPM	853.9 PPM	G1	+/- 0.9% N	IST Traceable	10/22/2019		
NITROGE	EN	Balance							
	CALIBRATION STANDARDS								
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date		
NTRM	14060109	CC432562	990.9 PPM CARBO	ON MONOXIDE/N	IITROGEN	0.6%	Nov 18, 2019		
PRM	12376	D562879	10.01 PPM NITRO	GEN DIOXIDE/N	ITROGEN	2.0%	Aug 17, 2018		
NTRM	15010324	KAL004276	980.7 PPM NITRIC	OXIDE/NITROG	EN	0.5%	Aug 21, 2021		
GMIS	7301017103	CC506597	4.451 PPM NITRO	GEN DIOXIDE/N	ITROGEN	2.0%	Dec 18, 2020		
NTRM	15060815	CC462626	992.3 PPM PROPA	ANE/NITROGEN		0.6%	Jul 22, 2021		
The SRM,	PRM or RGM noted	above is only in referenc	e to the GMIS used in the a	assay and not part o	f the analysis.				
			ANALYTICA	AL EOUIPN	IENT				
Instrum	ent/Make/Mode	el		l Principle		ast Multipoint C	alibration		
Nicolet 67	700 AMP0900119	COHCO	FTIR		(	Oct 09, 2019			
Nicolet 67	700 AMP0900119	NO HNO	FTIR	FTIR Oct 03, 20		Oct 03, 2019			
Nicolet 67	700 AMP0900119	NO2 impurity	FTIR NO2 i	impurity	(	Oct 03, 2019			
Nicolet 67	700 AMP0900119	C3H8 MC3H8	FTIR		ç	Sep 25, 2019			

#### **Triad Data Available Upon Request**





Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

# **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

Part Number: Cylinder Number: Laboratory: PGVP Number: Gas Code: E04NI99E15A00W0 CC129528 124 - Tooele (SAP) - UT B72021 CO,NO,NOX,PPN,BALN

Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Certification Date:

153-402113796-1 144.4 CF 2015 PSIG 660 May 24, 2021

Expiration Date: May 24, 2029

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTIC	AL RESUI	LTS		
Compon		Requested Concentration	Actual Concentration	Protocol Method	Total Relat Uncertaint		Assay Dates
NOX		400.0 PPM	408.9 PPM	G1	+/- 0.6% NIS	T Traceable	05/17/2021, 05/24/2021
CARBON	MONOXIDE	400.0 PPM	404.4 PPM	G1	+/- 0.8% NIS	T Traceable	05/17/2021
NITRIC O	XIDE	400.0 PPM	407.9 PPM	G1	+/- 0.6% NIS	T Traceable	05/17/2021, 05/24/2021
PROPANE	Ξ	500.0 PPM	502.8 PPM	G1	+/- 0.7% NIS	T Traceable	05/17/2021
NITROGE	N	Balance					
			CALIBRATIO	N STAND	ARDS		
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	<b>Expiration Date</b>
NTRM	13010136	KAL003851	495.4 PPM CARBC	N MONOXIDE	NITROGEN	0.6%	Jul 03, 2024
PRM	12376	D562879	10.01 PPM NITRO	GEN DIOXIDE/	NITROGEN	2.0%	Aug 17, 2018
NTRM	15010133	KAL004417	494.6 PPM NITRIC	OXIDE/NITRO	GEN	0.5%	Sep 01, 2021
PRM	12386	D685025	9.91 PPM NITROG	EN DIOXIDE/A	IR	2.0%	Feb 20, 2020
GMIS	7302017111	CC511391	4.634 PPM NITRO			2.0%	Aug 15, 2021
GMIS	401648675102	CC500959	5.074 PPM NITRO	GEN DIOXIDE/	NITROGEN	2.1%	Feb 01, 2023
NTRM	01010323	K012489	499.3 PPM PROPA	NE/AIR		0.6%	Jul 02, 2024
		above is only in reference	to the GMIS used in the as	say and not part o	f the analysis.		
Instrume	ent/Make/Mode		ANALYTICA Analytical	*		st Multipoint C	alibration

		and the local division of the local division
FTIR	May 13, 2021	
FTIR	May 05, 2021	
FTIR NO2 impurity	May 05, 2021	
FTIR	May 13, 2021	
	FTIR FTIR NO2 impurity	FTIR         May 05, 2021           FTIR NO2 impurity         May 05, 2021           FTIR         May 13, 2021

Triad Data Available Upon Request



men

TRC Report No: 454 Approved for Release



## **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E02AI99E15W0021 CC507600 124 - Tooele (SAP) - UT B72020 NO2,BALA Reference Number:153-401669673-1Cylinder Volume:146.2 CFCylinder Pressure:2015 PSIGValve Outlet:660Certification Date:Jan 08, 2020

Expiration Date: Jan 08, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.									
	ANALYTICAL RESULTS								
Compo	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Rel Uncertair		Assay Dates		
NITROG AIR	EN DIOXIDE	50.00 PPM Balance	50.12 PPM	G1	+/- 2.0% N -	IST Traceable	12/10/2019, 01/08/2020		
CALIBRATION STANDARDS									
Туре	Lot ID	Cylinder No	Concentration			Uncertainty	Expiration Date		
GMIS	40120680110	05 CC513733	58.35 PPM NITR	OGEN DIOXIDE/I	NITROGEN	1.8%	May 02, 2022		
PRM	12388	D685030	59.5 PPM NITRO	GEN DIOXIDE/N	ITROGEN	1.7%	Feb 20, 2020		
The SRM,	PRM or RGM note	d above is only in reference	e to the GMIS used in the	assay and not part o	of the analysis.				
	ANALYTICAL EQUIPMENT								
Instrum	nent/Make/Mod	lel	Analytical Princi	•		Multipoint Calibr	ation		
MKS FTI	R NO2 01814334	49	FTIR		Jan 0	8, 2020			

Triad Data Available Upon Request





Airgas Specialty Gases Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

# **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

Part Number:
Cylinder Number:
Laboratory:
PGVP Number:
Gas Code:

E03NI56E15A1055 CC210288 124 - Tooele (SAP) - UT B72020 CO2,O2,BALN Reference Number:15Cylinder Volume:16Cylinder Pressure:20Valve Outlet:55Certification Date:56

153-401902218-1 161.7 CF 2015 PSIG 590 Sep 14, 2020

Expiration Date: Sep 14, 2028

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates	
CARBON	DIOXIDE	22.00 %	21.69 %	G1	+/- 0.8% NIST Traceabl	e 09/14/2020	
OXYGEN		22.00 %	22.03 %	G1	+/- 0.3% NIST Traceabl	e 09/14/2020	
NITROGE	N	Balance					
CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date	
NTRM	13060802	CC415397	24.04 % CARBON D	IOXIDE/NITROGEN	0.6%	Dec 11, 2025	
NTRM	12062008	CC367433	22.883 % OXYGEN/	NITROGEN	0.2%	May 14, 2024	
			ANALYTICAL	EQUIPMEN	Γ		
Instrument/Make/Model Analytical Principle Last Multipoint Calibration							
Horiba VIA	-510 SV4MEUT	J CO2	CO2 NDIR (Dixon)		Sep 03, 2020		
Horiba MP	A-510 W603MN	158 O2	O2 Paramagnetic (Ma	ason)	Sep 10, 2020		

**Triad Data Available Upon Request** 





Airgas Specialty Gases Airgas USA, LLC 525 North Industrial Loop Road Tooele, UT 84074 Airgas.com

### **CERTIFICATE OF ANALYSIS** Grade of Product: EPA Protocol

Part Number:	E03NI80E15A0138	Reference Number:	153-401834846-1
Cylinder Number:	CC84055	Cylinder Volume:	150.9 CF
Laboratory:	124 - Tooele (SAP) - UT	Cylinder Pressure:	2015 PSIG
PGVP Number:	B72020	Valve Outlet:	590
Gas Code:	CO2,O2,BALN	Certification Date:	Jun 15, 2020
	Expiration Date:	Jun 15, 2028	

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a

mole/mole basis unless otherwise noted. Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

			ANALYTICA	L RESULTS		
Compor	nent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON	DIOXIDE	10.00 %	9.936 %	G1	+/- 0.7% NIST Traceable	06/15/2020
OXYGEN		10.00 %	10.02 %	G1	+/- 0.7% NIST Traceable	06/15/2020
NITROGE	EN	Balance				
			CALIBRATION	<b>I STANDARDS</b>		
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM	13060405	CC411744	7.489 % CARBON	I DIOXIDE/NITROGEN	0.6%	May 14, 2025
NTRM	98051017	SG9142416BAL	12.05 % OXYGEN	I/NITROGEN	0.7%	Dec 14, 2023
			ANALYTICAL	EQUIPMENT		
Instrum	ent/Make/Mod	lel	Analytical Princip	le	Last Multipoint Calib	ration
Horiba VI	A-510 SV4MEU	TJ CO2	CO2 NDIR (Dixon)		Jun 11, 2020	

**Triad Data Available Upon Request** 



Signature on file

Approved for Release TRC Report No: 454646.0000.0000

Page 1 of 153-401834846-1 Page 68 of 108

Poten	tial Interferent		Model 42iLS	5		Model 42iHL	-
Test Gas	Concentration	NO	NO ₂	NO _x	NO	NO ₂	NO _x
CO ₂	5.20%	0.001	0.004	0.004	0.001	0.003	0.004
CO ₂	15.60%	0	0.003	0.003	0.001	0.004	0.005
H ₂ O	1.00%	0	0	0	0.003	0.001	0.004
NO	15 ppm	14.9	0.1	15	15	-0.06	14.99
NO ₂	15 ppm	1.1	14	15	0.4	14.6	15
N ₂ O	10 ppm	0	0	0	0	0	0
CO	50 ppm	0	0	0	0	0	0
SO ₂	21 ppm	-0.01	0	-0.01	0.007	0	0.007
CH ₄	50 ppm	0	0	0	0	0	0
HCI	10 ppm	0	0.006	0.006	0	0.004	0.004
NH ₃ ¹	10 ppm	0	0	0	0.17	8.9	9.1
Sum o	of Responses	0.011	0.01	0.02	0.011	0.009	0.02
S	pan Value	160	152	160	160	152	160
% of C	alibration Span	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%

### Thermo Scientific Model 42 NO-NO₂-NO_x Analyzer Potential Interference Gas Responses

Acceptance Criteria found in Section 13.4 of Method 7E is the sum of responses must not be greater than 2.5% of the analyzer calibration span value.

¹NH₃ interferent results shown for the Model 42iHL was not used in calculation of interference response check because it is a known interferent with an approximate 1 ppm to 1 ppm positive bias in analyzers using stainless steel NO₂ to NO converters. Thermo recommends that NO_x analyzers with stainless steel NO₂ to NO converters must use a NH₃ scrubber when testing sources with potential NH₃ in the flue gas.

This document is subject to change without notice.

Tests
Response
nterference F
nalyzer Int
$\mathbf{A}$

	3/13/2003
۲ E	lest Date:

Technician: JDM Location: TRC Austin, Texas

Analyzer	Manufacturer	Model	Serial Number	<b>Detection Method/Comments</b>
NO _X Analyzer	Thermo Environmental Instruments	42C	42CHL74320376	Chemiluminescence with Ozone
CO Analyzer	Thermo Environmental Instruments	48	48-27403-228	Infrared Absorption
O ₂ Analyzer	Servomex	1440	01420C1/2534	Paramagnetic
CO ₂ Analyzer	Servomex	1440	1415C/2650	Infrared Absorption
THC Analyzer	JUM	3-300A	03021534-33	Flame ionization
Interferrent Test Gases		Analyzer Respe	Analyzer Response (ppmv or % as applicable)	licable)
		The second surface of the second s	A State of the second s	The second s

Interferrent Test Gases		Analyzer Response (ppmv or % as applicable)	o nase (ppmv o	or % as appli	cable)	
Gas	Concentration	NOX	C0	02	CO ₂	THC
NO _X in N ₂	1768 ppm	Surger Strate	-0.20 ppmv	-0.20 ppmv 0.00 ppmv (	0.03 ppmv	0.03 ppmv 0.50 ppmv
Propane / CO in Air	1755 ppm / 1767 ppm	0.21 ppmv	ANTAL SA	A STATE OF A	0.04 ppmv	
$SO_2$ in $N_2$	254 ppm	0.00 ppmv	-0.20 ppmv	-0.20 ppmv 0.00 ppmv 0.03 ppmv 0.50 ppmv	0.03 ppmv	0.50 ppmv
$O_2/CO_2$ in $N_2$	20.9% / 3.96%	0.00 ppmv	-0.20 ppmv		14. E HS	0.20 ppmv

ests
Response
<b>[erence</b>
Interf
Analyzer
4

. .

Test Date: 3/13/2003

Technician: JDM

	Location: 7	Location: TRC, Austin, Texas		
Analyzer	Manufacturer	Model	Serial Number	Detection Method/Comments
NO _X Analyzer	ermo Environmental Instrume	42C	42CHL74320376	Chemiluminescence with Ozone
CO Analyzer	ermo Environmental Instrume	48C	48C69334363	Infrared Absorption
O ₂ Analyzer	alifornia Analytical Instrumer	Model 200	1N08009	Paramagnetic
CO ₂ Analyzer	alifornia Analytical Instrumer	Model 200	1N08009	Infrared Absorption
THC Analyzer	JUM	3-300A	03021534-33	Flame ionization
NO _x B Analyzer	NO _x B Analyzer prmo Environmental Instrume	42H	42H35784251	Chemiluminescence with Ozone
CO B Analyzer	CO B Analyzer prmo Environmental Instrume	48C		Infrared Absorption

Interferrent Test Gases	ses	Analyzer Response (ppmv or % as applicable)	se (ppmv or %	o as applicab	le)	
Gas	Concentration	NOX	co	02	CO ₂	THC
NO _X in N ₂	1768 ppm		-0.20 ppmv 0.00 ppmv	0.00 ppmv	0.03 ppmv	0.50 ppmv
Propane / CO in Air	1755 ppm / 1767 ppm	0.21 ppmv	South States	CONTRACT AND	0.04 ppmv	日本の日本
SO ₂ in N ₂	254 ppm	0.00 ppmv	-0.20 ppmv	-0.20 ppmv 0.00 ppmv	0.03 ppmv	0.50 ppmv
O ₂ /CO ₂ in N ₂	20.9% / 3.96%	0.00 ppmv	-0.20 ppmv			0.20 ppmv

Technician: JDM

Test Date: 4/1/2003 Location: TRC, Austin, Texas

Analyzer	Manufacturer	Model	Serial Number	<b>Detection Method/Comments</b>
O ₂ B Analyzer	alifornia Analytical Instrumer	Model 200	P02004	Paramagnetic
CO ₂ B Analyzer	alifornia Analytical Instrumer	Model 200	P02004	Infrared Absorption
THC Analyzer	JUM	5-100	51068099	Flame ionization

Interferrent Test Gases	es	Analyzer Response (ppmv or % as applicable)	se (ppmv or %	o as applicable)
Gas	Concentration	THC	02	CO ₂
$NO_X$ in $N_2$	106	0.00 ppmv	0.00 %	0.01 %
Propane/ CO in Air	899/907	N. S. L. W. S.	Contraction of the second	0.00 %
$SO_2$ in $N_2$	254	0.02 ppmv	0.00 %	0.01 %
$O_2/CO_2$ in $N_2$	20.9%/ 3.96%	-0.01 ppmv	and the set of the	「日本」を

### Part 60 Subpart JJJJ Compliance Test Initial Stratification Check and Test Point Selectior

Test Date:	11/4/2020	Diameter	12.00	inches
Project Number:	454646	Port Length:	0.25	inches
Company:	Curia New Mexico LLC	Upstream:	2.0	Dia.
Location:	Curia New Mexico LLC	Downstream:	14.0	Dia.
Source:	Emergency Generator			

### Sample Point Selection using 40 <u>CFR</u> 60, Subpart JJJJ, Table 2 for NO_x, CO, VOC, O₂, and moisture

Ducts > 6 and  $\leq$  12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line').

#### Number of Points Used for Stratification Check: 3

Stratification Check Traverse Data							
Port/Point	NO _x	СО	CO ₂	O ₂			
	(ppmv)	(ppmv)	(%vol)	(%vol)			
1				8.6			
2				8.7			
3				8.6			
Mean:	-	-	-	8.6			

Parameter	Max Concentration	Max % Difference	Stratification	Required Number
	Difference	From Mean	Check Result	of Sampling Points
NO _x	-	-	-	-
CO	-	-	-	-
CO ₂	-	-	-	-
0 ₂	0.0	0.6	Un-Stratified	1

Recommended Sampling Strategy:

Sampling Strategy selected: Single Point

-

# Part 60 Subpart JJJJ Compliance Test Initial Stratification Check and Test Point Selectior

Test Date:	11/4/2020	Diameter	12.00	inches
Project Number:	454646	Port Length:	0.25	inches
Company:	Curia New Mexico LLC	Upstream:	2.0	Dia.
Location:	Curia New Mexico LLC	Downstream:	14.0	Dia.
Source:	Emergency Generator			

## Sample Point Selection using 40 <u>CFR</u> 60, Subpart JJJJ, Table 2 for NO_x, CO, VOC, O₂, and moisture

Ducts > 6 and  $\leq$  12 inches in diameter may be sampled at 3 traverse points located at 16.7, 50.0, and 83.3% of the measurement line ('3-point long line').

## Number of Points Used for Stratification Check: 3

	Stra	tification Check Trave	erse Data	
Port/Point	NO _X	CO	CO ₂	0 ₂
rontyronnt	(ppmv)	(ppmv)	(%vol)	(%vol)
1				7.9
2				7.9
3				7.9
Mean:	-	-	-	7.9

Deremeter	Max Concentration	Max % Difference	Stratification	Required Number
Parameter	Difference	From Mean	Check Result	of Sampling Points
NO _x	-	-	-	-
CO	-	-	-	-
CO ₂	-	-	-	-
0 ₂	0.0	0.5	Un-Stratified	1

Recommended Sampling Strategy:

Sampling Strategy selected: Single Point

-

## METHOD 5 PRETEST CONSOLE CALIBRATION USING CALIBRATED CRITICAL ORIFICES

4-POINT CALIBRATION - ENGLISH UNITS

METER CONSOLE INF	ORMATION		CALIBRATI	ON CONDITIONS	· <u>·····</u> ······························
Console Model Number	XC-522	Date	Time	10-May-21	1330
Console Serial Number	1204011	Barometri	c Pressure	23.96	in. Hg
DGM Model Number	S-110	Theoretica	al Critical Vacuur	m ¹ 11,309	in. Hg
DGM Serial Number	998871	Calibratio	n Technician	SJJ	

¹For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above. ²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3*o}R^{1/2})/(in. Hg*min).

					<b>IBRATION DAT</b>					
Run Time	DGM Orifice	Volume	Metering Co Volume	nsole and and and a second s	Outlet Temp.	Serial	Orifice	Critical Orifice Amb. Temp.	Amb. Temp.	Actual
Elapsed	ΔH	Initial	Final	initial	Final	Number	Coefficient	Initial	Final	Vacuum
(Θ) min.	(P _m ) in. H ₂ O	(V _{mi} ) cubic feet	(V _{mf} ) cubic feet	(t _{mi} ) °F	(t _{mf} ) °F		K' see above ²	(t _{amb} ) °F	(t _{amb} ) °F	in. Hg
15.0	0.56	901.743	908.402	65.0	66.0	CI-48	0.3422	69.0	69.0	16.5
15.0	0.56	908.402	915.058	66.0	67.0	CI-48	0.3422	69.0	69.0	16.5
15.0	0.98	915.058	923.947	67.0	68.0	CI-55	0.4568	69.0	69.0	15.5
15.0	0.98	923.947	932.860	68.0	69.0	CI-55	0.4568	69.0	69.0	15.5
15.0	1.60	932.860	944.297	69.0	70.0	CI-63	0.5862	69.0	69.0	14.0
15.0	1.60	944.297	955.743	70.0	71.0	CI-63	0.5862	69.0	69.0	14.0
15.0	2.90	955.743	971.435	71.0	72.0	Cl-73	0.8125	70.0	70.0	11.5
15,0	2.90	971.435	987.171	72.0	73.0	CI-73	0.8125 ,	70.0	70.0	11.5

	Siemdendlizer	Data				ity Gas Meter		
				Calibratio	on Factor	Flowrate	<u>Δ</u>	1@
Dry Gas M	eter	Critical C	Drifice	Value	Variation	Std. & Corr.	0.75 SCFM	Variation
(V _{m(std)} )	(Q _{m(std)} )	(Vcr _(std) )	(Q _{cr(std)} )	(Y)	(ΔY)	(Q _{m(std)(corr)} )	(AH@)	(ΔΔH@)
cubic feet	cfm	cubic feet	cfm		(from avg.)	cfm	in. H2O	(from avg.)
.5.367	0.358	<b>3章5.347</b> 月前	i#0.356 💒	<b>送4.0.996</b> 日代代		0356	<b>周期2,003</b> 總計	(j)= 0,0643 m
5.355	19 0.357 MA	》 5.847 位 多	0.356 🕼	\$.#PO.999}#3.#		0.356	XIII 1 999 140	2 10 0 0 60 H
7.147	0.476	7.138	0.47616	10.999 Mel		<b>达10.476</b> 。第	3441.965 AM	0.025
7.152	0.477	7,138	<b>0.476</b>	/ KA 0.998 / 411	ia: €0.002	0.476	1961	10.022
9.178 🔛 🖓	AC 0.612	<u>)</u> )9:160 共体	0.611	6 0 998 H S		<b>約</b> 0.611第4	1.11948	13010.009, al
9.168	0.611	9.160	國0.61160	2110,99914.00	测量0.002360	<b>10.611</b>	1.944	· 10.005 (注)
12,595	0.840 M	12.684	0.846	110074名		0.846	1.849	4 2-0.090
12.606	0.840	12,684	0.846	¥1.006	0.006	0.846	1.845	NS-0.094-4

1.00 Y Average

1.939

∆H@ Average

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptance tolerance of individual values from the average is ± 2%. Y must be 0.98 - 1.02 △H@ must be 1.84 ± 0.25

	-		Leak check n	nust be performed before calibration.
Leak Check:	Negative:	0.00	CFM (for 60 secs.)	< Must not exceed 0.02 cfm over 60 seconds.
	Positive:	pass	(Pass/Fail)	< $\Delta H$ between 5 and 7 in. H ₂ O, must hold steady for 60 seconds.
I certify that the abo	ve Dry Gas Meter wa	as calibrated in	accordance with USEPA Metho	ods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3.
Technician Nam		<u> </u>		Date: 10-May-21
Signature:	_Samue	l Jaege	r /	
Reviewed and A	Approved by:	1	lin.r	Date:10-May-21

# **TEMPERATURE DISPLAY CALIBRATION FORM**

Meter Console N	umber:	1204011			-		
Reference Calibr	ator Make:	Piecal	 Model:	520B	Serial No.:	128331	
Operator:	SJJ				Date:	05/10/21	
Pretest:	X	Posttest:					
TC Channel	Reference	Temperature	Criteria	Reference	Temperature		Criteria

TC Channel ID	Reference Temp. 1, °F	Temperature Reading 1, °F	% Diff.	Criteria Met	Reference Temp. 2, ^o F	Temperature Reading 2, °F	% Diff.	Criteria Met
1	0	1	-0.22%	Pass	500	496	0.42%	Pass
2	0	1	-0.22%	Pass	500	496	<b>Ò.42%</b>	Pass
3	0	1	-0.22%	Pass	500	497	0.31%	Pass
4	0	1	-0.22%	Pass	500	497	0.31%	'i Pass
5	0	1	-0.22%	Pass	500	497	0.31%	Pass
6	0	1	-0.22%	Pass	500	497	0.31%	Pass, /
7			0.00%	Pass	ana di Manazarta		0.00%	Pass
8			0.00%	Pass	· · · · · ·		0.00%	Pass
9			0.00%	Pass			0.00%	Pass
10			0.00%	Pass			0.00%	Pass

TC Channel ID	Reference Temp. 3, °F	Temperature Reading 3, °F	% Diff.	Criteria Met	Reference Temp. 4, °F	Temperature Reading 4, °F	% Diff.	Criteria Met
1	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
2	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
3	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
4	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
5	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
6	1000	998	0.14%	Pass	1500	1495	0.26%	Pass
7			0.00%	Pass			0.00%	Pass
8			0.00%	Pass			0.00%	Pass
9			0.00%	Pass			0.00%	Pass
10			0,00%	Pass			0.00%	Pass

Criteria:

Percent difference (% Diff.) between the Reference Temperature and the Average Temperature can be only  $\pm 1.5\%$  R.

% Difference Equation:

[(Ref. Temp. + 460) - (Temp. Reading + 460)] x 100 (Ref. Temp. + 460)

QA/QC Check By:

Date

5/10/2021 Pagg.c5A2f20Rev. 2 Revised 12/28/2016

TRC Report No: 454646.0000.0000 ©2015 TRC Environmental Corp.

**TRC** 

	CALIBRATION CONDITIONS	CONDITIONS	
Date	Time	8-Nov-21	1055
Barometric Pressure	ssure	24.598	in. Hg
Theoretical Critical Vacuum	ical Vacuum ¹	11.610	in. Hg
Calibration Technician	hnician	PSS	

1204011

765

Console Model Number **Console Serial Number** 

METER CONSOLE INFORMATION

998871

522

Std. Temp. 528 Std. Pressure 29.92	
	°R
	2 in. Hg
K ₁ 17.647	7 °R/in Hg

¹For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

²The Critical Orifice Coefficient, K', must be entered in English units, (ft^{3*o}R^{4/2})/(in Hg*min).

				CALIBE	CALIBRATION DATA					
Run Time			Metering Console	le				Critical Orifice	0	
Elanced	DGM Orifice	Volume	Volume	Outlet Temp.	Outlet Temp. Final	Serial Number	Orifice Coefficient	Amb. Temp. Initial	Amb. Temp. Final	Actual Vacuum
(0)	(P_m)	(Nm)	(V _m t)	(t _{mi} )	(t _{mr} )		¥	(t _{amb} )	(t _{amb} )	
min.	in. H ₂ O	cubic feet	cubic feet	Ļ	Ŀ,		see above ²	Ļ	Ч°	in. Hg
10.0	1.40	755.065	763.565	63.0	64.0	CH-63	0.5964	71.0	71.0	17.5
10.0	1.40	763.565	771.195	64.0	66.0	CH-63	0.5964	71.0	71.0	17.5
10.0	1.40	771.195	778.823	66.0	67.0	CH-63	0.5964	71.0	71.0	17.5
				RESULTS						
	Standardized Data	zed Data			D	Dry Gas Meter				
				Calibrati	Calibration Factor	Flowrate	ΔF	ΔH@		
Dry Gas Meter	leter	Critic	Critical Orifice	Value	Variation	Std & Corr	0.75 SCFM	Variation		
(V _{m(std)} ) cubic feet	(Q _{m(std)} )	(V _{cr(std)} ) crihic faat	(Q _{or(std)} )	ε	(\⊽)	(Q _{m(std)(corr)} ) cfm	(ΔH@) in H2O	(@HVV)		
7 078	0 708	6366	0.637	006.0	-0.071	0.637	1.626	0.005		
6.335	0.634	6.366	0.637	1.005	0.034	0.637	1.621	0.000		
6.315	0.632	6.366	0.637	1.008	0.037	0.637	1.617	-0.005		
Pretest Gamma	1.00	% Deviation	2.9	0.971	Y Average		1.621	AH@ Average		
Note: For Calibration Factor Y, the ratio of the reading of Post Calibration Acceptance Criteria is ≤ 5% Deviation	actor Y, the ratio o ance Criteria is ≤		the calibration meter to the dry gas meter, acceptance tolerance of individual values from the average is $\pm$ 0.02.	o the dry gas meter	; acceptance tolera	nce of individual	/alues from the a	werage is ± 0.02.		
				l est check must he performed hefore calibration	Jarformad hafora r	-alihration				
Leak Check:	Negative: Positive:	Pass	CFM (for 60 secs.) (Pass/Fail)	s.)	Must not exceed 0.02 cfm over 60 seconds. $\Delta H$ between 5 and 7 inches, must hold steady for 60 seconds.	ed 0.02 cfm ov and 7 inches,	er 60 seconds must hold stea	s. ady for 60 sect	onds.	
tify that the above D	hy Gas Meter wa	as calibrated in ac	I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR Title 40, Part 60, Appendix A-3, Method 5, 16.2.3.	A Methods, CFR Titl	le 40, Part 60, App∈	endix A-3, Methoc	15, 16.2.3.			
Technician Name: PanteleimonStathopulos	 Panteleimony	Stathopulos	Ø					Date:	8-Nov-21	
Signature:	N.	100								
			110		, C					
Reviewed and Approved by:	oved by:	(AUU)	l I da				Date:	tot/20/11	100	

**DGM Model Number DGM Serial Number**  ©2019 TRC Environmental Corp.



# **TEMPERATURE DISPLAY CALIBRATION FORM**

Meter Console N	lumber:	1204011				_		
Reference Calibr	ator Make:	Piecal		Model:	520B	_Serial No.:	128	331
Operator:	PSS					Date:	11/8	2021
Pretest:		Posttest:	<u>x</u>	-				
TC Channel ID	Reference Temp 1, °F	Temperature Reading 1, °F	% Diff.	Criteria Met	Reference Temp 2, ^o F	Temperature Reading 2, °F	% Diff.	Criteria Met
1	32	31	0.20%	Pass	200	196	0.61%	Pass
								_

1	32	31	0.20%	Pass	200	196	0.61%	Pass
2	32	32	0.00%	Pass	200	196	0.61%	Pass
3	32	31	0.20%	Pass	200	196	0.61%	Pass
4	32	31	0.20%	Pass	200	198	0.30%	Pass
5	32	31	0.20%	Pass	200	199	0.15%	Pass
6	32	31	0.20%	Pass	200	199	0.15%	Pass
7			0.00%	Pass			0.00%	Pass
8			0.00%	Pass			0.00%	Pass
9			0.00%	Pass			0.00%	Pass
10			0.00%	Pass			0.00%	Pass

TC Channel ID	Reference Temp 3, °F	Temperature Reading 3, °F	% Diff.	Criteria Met	Reference Temp 4, ^o F	Temperature Reading 4, °F	% Diff.	Criteria Met
. 1	500	486	1.46%	Pass	1000	980	1.37%	Pass
2	500	486	1.46%	Pass	1000	980	1.37%	Pass
3	500	486	1.46%	Pass	1000	980	1.37%	Pass
4	500	486	1.46%	Pass	1000	980	1.37%	Pass
5	500	486	1.46%	Pass	1000	980	1.37%	Pass
6	500	486	1.46%	Pass	1000	980	1.37%	Pass
7			0.00%	Pass			0.00%	Pass
8			0.00%	Pass			0.00%	Pass
9			0.00%	Pass			0.00%	Pass
10	,		0.00%	Pass			0.00%	Pass

Criteria:

Percent difference (% Diff.) between the Reference Temperature and the Average Temperature can be only  $\pm 1.5\%^{\circ}$ R.

% Difference Equation:

[(Ref. Temp. + 460) - (Temp. Reading + 460)] x 100 (Ref. Temp. + 460)

QA/QC Check By: 4 Date:

PAMOROTATLO21107&v. 1 05/02/2019

ETER 10/8/2021	12/17/2020	GLD	C. Thomas	Shortridge ADM-850	M03823				
MORKING DIGITAL MANOMETER         Date:       10/	a Prev. Calib. Date:	od Location:	Z Technician:	Ranometer Model:	55 <b>Serial #</b> :	646.0	0000	0.000	00

**Digital Manometer Calibration** 

12/17/2020	GLD	C. Thomas	Shortridge ADM-850	M03823	
12/17/2020	GLD	C. Thomas	Shortridge AD	M03823	

. MANOMETER	Dwyer Slack Tube Golden Lab	
REFERENCE OIL MANOMETER	Manufacture: Location:	

ite *( nce <b>P</b>	(%) (pass/fail)	0.1 PASS	1.9 PASS	2.7 PASS	1.8 PASS	1.3 PASS
-	(in. H2O)	0.00	-0.02	-0.08	-0.09	-0.10
Reference Working Oil Manometer Digital Manometer	(in. H2O)	0.5105	1.070	3.131	5.140	7.550
	(in H2O)	0.51	1.05	3.05	5.05	7.45
Target dP	(in. H2O	0.5	1.0	3.0	5.0	7.5
Calibration	Run #	4	7	ю	4	5

Criteria:

* Method 2 Sec 6.2: at each point, the values of dP as read by the digital manometer and reference manometer must agree to within 5%.

QA/QC Signature:

**Digital Manometer Calibration** 

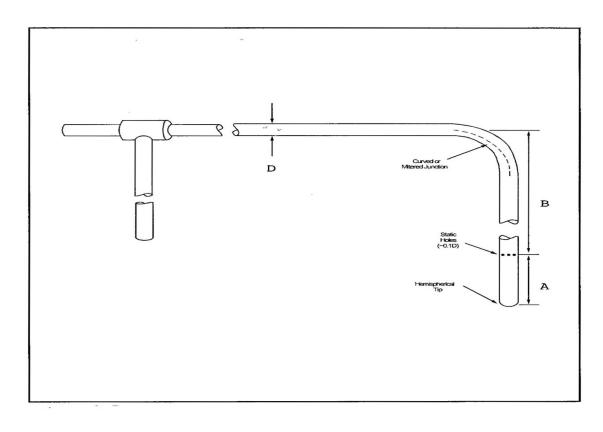
WORKING DIGITAL MANOMETER

11/8/2021		GLD	P.Stathopulos	•	M03823				
었 <b>Date:</b>	Prev. Calib. Date:	ସ୍ଥLocation:	<u>چ</u> Technician:	Manometer Model:	Serial #:	646.0	0000	0.00	00

IL MANOMETER	Dwyer Slack Tube Golden Lab	
REFERENCE OIL MANOMETER	Manufacture: Location:	

	<ul> <li>Point Check</li> <li>(pass/fail)</li> </ul>	PASS	PASS	PASS	PASS	PASS
Absolute	Uitterence (%)	3.9	3.8	0.3	4.1	3.1
	Uitterence (in. H2O)	-0.02	-0.04	0.01	-0.06	-0.23
•	Digital Manometer (in. H2O)	0.5300	1.090	3.040	5.105	7.680
Reference	Oil Manometer (in H2O)	0.51	1.05	3.05	5.05	7.45
	Target dP (in. H2O	0.5	1.0	3.0	5.0	7.5
	Calibration Run #	1	2	З	4	5

Criteria: * Method 2 Sec 6.2: at each point, the values of dP as read by the digital manometer and reference manometer must agree to within 5%.

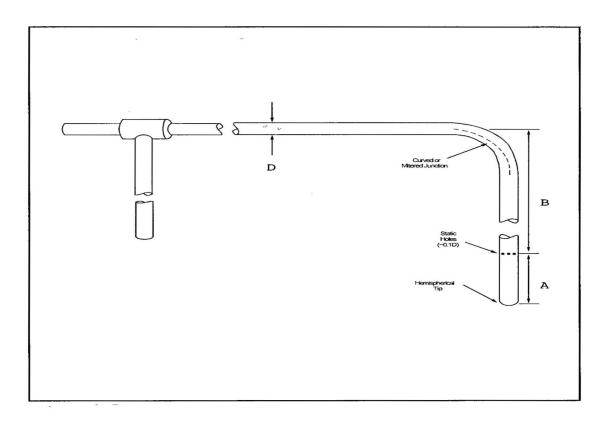

QA/QC Signature.

🎝 TRC

Page 79 of 108

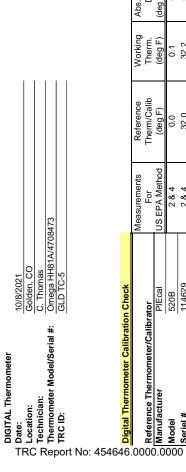
# STANDARD PITOT TUBE INSPECTION

Analyst:	S. Jaeger
Date:	6/20/21
Project Number:	428060
Client:	UNMH OSIS
Test Location:	Albuquerque, NM
Pitot I.D.	160-24
Coefficient	0.99




# **Measurements**

<u>Measurements</u>		<u>Status</u>	<u>Requirement</u>
A =	6.99 см	Pass	Must be a minimum of 6 diameters (D)
B =	12.70 см	Pass	Must be a minimum of 8 diameters (D)
D =	0.79 см		
Are the holes clear o	f obstructions?	Yes	


# STANDARD PITOT TUBE INSPECTION

Analyst:	P. Stathopulos
Date:	11/9/21
Project Number:	454646
Client:	Curia
Test Location:	Albuquerque, NM
Pitot I.D.	160-24
Coefficient	0.99



Me	easure	ments

Measurements		<u>Status</u>	<u>Requirement</u>
A =	6.99 см	Pass	Must be a minimum of 6 diameters (D)
B =	12.70 см	Pass	Must be a minimum of 8 diameters (D)
D =	0.79 см		
Are the holes clear of	obstructions?	Yes	_



00		Measurements	Reference	Working	Abs. Temp.	Abs. Temp. Abs. Temp.	
C Reference Thermometer/Calibrator	orator	For	Therm/Calib	Therm.	Diff.	Diff., deg R	
O Manufacturer	PIEcal	US EPA Method	(deg F)	(deg F)	(deg F, ABS)	(%)	-
00 Model	520B	284	0.0	0.1	0.1	0.02	ö
0 Seriel #	114629	2 & 4	32.0	32.2	0.2	0.04	<b>Wvv</b>
Certificate Date	1/21/2021	2 & 4	70.0	70.2	0.2	0.04	
Thermocouple Type	K Type	2 & 4	100.0	100.2	0.2	0.04	
Tested By	BH	2	500.0	500	0.0	0.00	
(complies with ANSI/Z540-1-1994	94)	2	1000.0	1000	0.0	0.00	∿A^
Criteria:		2	1500.0	1499	1.0	0.05	
^ Method 2 Sec 4.3 (in-stack thermometers). Agreement must be less than 1.5% absolute temperature difference between reference and working thermometer	ometers). Agreement mus	t be less than 1.5% a	bsolute temperature di	fference between	reference and v	vorking thermomet	er.

Pass/Fail PASS PASS ve. Temp. Diff., deg R (%): 0.03 0.2 Calibration Check Results Ave. Temp. Diff. (°F, ABS)

**Digital Thermometer** 

Method 4 Sec 2.1.2 (ast impinger thermometers). Thermometers Capable of measuring termerature within 3 deg C (5.4 deg F).

QA/QC Signature:

08-Oct-21

# **Digital Thermometer Calibration**

	08473					Measurements Reference
11/8/2021 Golden, CO P.Stathopulos	Omega HH81A/4708473	GLD 1C-5			n Check	
DIGITAL Thermometer Date: D-ocation: Technician:	0 Thermometer Model/Serial #:	tuotec ID:	No:	454	90 9Digital Thermometer Calibration Check	.00

0		Measurements	Reference	Working	Abs. Temp.	Abs. Temp.	
OReference Thermometer/Calibrator	librator	For	Therm/Calib	Therm.	Diff.	Diff., deg R	
Manufacturer	PlEcal	US EPA Method	(deg F)	(deg F)	(deg F, ABS)	(%)	
OModel	520B	284	0.0	-0.4	0.4	0.09	Ľ
Gseriel #	114629	2&4	32.0	31.6	0.4	0.08	
Certificate Date	1/21/2021	2&4	70.0	69.8	0.2	0.04	
Thermocouple Type	K Type	2&4	100.0	99.7	0.3	0.05	
Tested By	BH	2	500.0	500	0.0	0.00	
(complies with ANSI/Z540-1-1994)	1994)	7	1000.0	1000	0.0	0.00	
Criteria:		2	1500.0	1499	1.0	0.05	
^ Method 2 Sec 4.3 (in-stack thermometers). Agreement must be less than 1.5% absolute temperature difference between reference and working thermometer	ermometers). Agreement mus	st be less than 1.5% at	osolute temperature di	fference betweer	reference and v	vorking thermomet	<u>.</u>
M Method 4 Sec 2.1.4 & Method 5 Sec. 2.1.6 (gas meter thermometers). Thermometers capable of measuring temperature within 3 deg C (5.4 deg F).	1 5 Sec. 2.1.6 (gas meter thei	rmometers). Thermom	leters capable of meas	uring temperatur	e within 3 deg C	(5.4 deg F).	
$^{ m M}$ Method 4 Sec 2.1.2 (last impinger thermometers). Thermometer capable of measuring within 1 deg C (2 deg F)	nger thermometers). Thermo	ometer capable of mea	asuring within 1 deg C	(2 deg F).			

Cellin Ji	Digital Thermometer	Calibration Check Results Pass/Fail	ve. Temp. Diff. (°F, ABS): 0.3 PASS		
-----------	---------------------	-------------------------------------	-------------------------------------	--	--

QA/QC Signature: 22



# SERVICE & CALIBRATION CERTIFICATE

CustomerName:	TRC		
Department:		Capacity:	2000g x .1g
ContactName:	BRADLEY, CALEB	Serial:	7131470376
Phone:	281-979-5801	Date Serviced:	5/6/2021
Manufacturer:	OHAUS	Frequency:	Annual
Model:	SP-2001	Recert Date:	5/6/2022

# MEASUREMENT STANDARDS & WEIGHTS USED

Weight #	Nominal Value	As Found	After Correction	Tolerance
Weight #1	500g	500.0 g	500,0 g	+/1g
Weight #2	1000g	999.9 2	1000.0 g	+/2g
Weight #3	1500g	1499.8 a	1500.0 g	+/2g
Weight #4	2000g	1999.7 9	2000.00	+/2g

General Condition of Scale:

Comments:

calibrated

Note: Scales are checked using certified test weights. The applied tolerance is derived from handbook 44.

NIST Certificate Number	Certificate Date	Expiration Date	
3075629	6/24/2020	6/24/2021	

Calibrated By: -×

Registration #001K13



# SERVICE & CALIBRATION CERTIFICATE

CustomerName:	TRC		
Department:		Capacity:	500g
ContactName:	BRADLEY, CALEB	Serial:	5NL9
Phone:	281-979-5801	Date Serviced:	5/6/2021
Manufacturer:		Frequency:	Annual
Model:	TEST WEIGHT	Recert Date:	5/6/2022

# **MEASUREMENT STANDARDS & WEIGHTS USED**

Weight #	Nominal Value	As Found	After Correction	Tolerance
Weight #1	500g	500.0a		
Weight #2		J		
Weight #3				
Weight #4				

General Condition of Scale:

Comments:

Accurate

Note: Scales are checked using certified test weights. The applied tolerance is derived from handbook 44.

NIST Certificate Number	Certificate Date	Expiration Date
3075629	6/24/2020	6/24/2021

Calibrated By: Registration #001K13



# SERVICE & CALIBRATION CERTIFICATE

CustomerName:	TRC		
Department:		Capacity:	1kg
ContactName:	BRADLEY, CALEB	Serial:	5RCW
Phone:	281-979-5801	Date Serviced:	5/6/2021
Manufacturer:		Frequency:	Annual
Model:	TEST WEIGHT	Recert Date:	5/6/2022

# MEASUREMENT STANDARDS & WEIGHTS USED

Weight #	Nominal Value	As Found	After Correction	Tolerance
Weight #1	1kg	1000.0 g		
Weight #2				
Weight #3				
Weight #4				

General Condition of Scale:

Comments:

Accurate

Note: Scales are checked using certified test weights. The applied tolerance is derived from handbook 44.

NIST Certificate Number	Certificate Date	Expiration Date	
3075629	6/24/2020	6/24/2021	

Calibrated By: Registration #001K13



### Field Barometer Working Standard Accuracy Verification Check

Procedure 2: Calibration with National Weather Service Barometer at Nearby Station or Local Airport

Instrument Ide	ntification:		Manufacturer:		Kest	el		_	
Model	: 3500	Serial Number:	2647226	ID Number:		2647226	i	Owner:	GLD
Reference Sta	ndard:								
Locati	ion of NWS Station	or Airport Ba	rometer:		Br	oomfield/	Jeffco (KBJC)		
Certificate Info	ormation:								
Analyst Full Name:	Carter Thomas	Procedure:	SOP AM-CAL-008	<u>.</u>	Accuracy Verification Date		10/14/2021	Accuracy Verification Due Date:	4/14/2022
Test C	onditions:	Temp °C	16.7	-	RH%	-	65	_	
	National Weather	Service (NW	S) Barometer						
	Corrected NWS Ba	•				29.96		in. Hg (Pbr)	
	Elevation of NWS I	Barometer (ab	ove Sea Level)			5253		feet (A)	
	Absolute NWS Bar	ometric Press	ure			24.71		in. Hg (Pbr)	
	(Station or Absolute		I barometer reading	at barometer	elevation, uncorre	cted to se	a level)		
	Elevation at Location		a Level)			5080		feet (B)	
	Altitude Correctio Elevation of NWS I		romotor: (A)			5253		feet	
	Elevation of Field E		. ,			5253 5080		feet	
	Difference (A-B)	barometer. (D	)			173		feet	
	, , , , , , , , , , , , , , , , , , ,	ronce Baron	aatria Braaqura (Bh	vr) to Locatio	n and Altituda of		omotor		
		Pbr + [0.00	netric Pressure (Pb 1 x (A-B)]		in and Annuale of	Fielu Dai	ometer		
	Pbr calc Pbr calc =	24.71	+		( 0.001	*	173	)	
	Pbr Calculated (fr	om above):				24.88		_in. Hg	
	Pb Field Baromete	r Reading:				24.83		_in. Hg	
	Is Field Barometer	within 0.1 in.	Hg of Pbr Calculate	d?				Yes	
	lf no, adjust Field E	Barometer to F	Pbr Calculated.						
							El ( a,	H_	
						Edwar	d A. Peterson, S	Senior Technical Manager	

### Maintaining Accuracy:

The accuracy of this instrument has been checked and found to be in tolerance unless otherwise noted. The instrument should provide accurate readings until the next accuracy verification due date. If this instrument is damaged or abused in any way, it should not be used for making measurements until its accuracy is checked and verified to be in tolerance.

# Field Barometer Working Standard Accuracy Verification Check

Procedure 2: Calibration with National Weather Service Barometer at Nearby Station or Local Airport

Instrument Identification:	ntification:		Manufacturer:		Kestre			
Model:	3500	Serial Number:	· ·	ID Number:	2647226	σ	Owner: GLD	
Reference Standard: Location of N	e Standard: Location of NWS Station or Airport Barometer:	n or Airport Barc	meter:		Broomfiek	Broomfield/Jeffco (KBJC)		
Certificate Information: Analyst Full Name: <u>P. Statt</u> Test Conditions:	te Information: FFull e: <u>P. Stathopulos</u> Test Conditions:	Procedure: 5	attion: <u>P. Stathopulos</u> Procedure: <u>SOP AM-CAL-008</u> ditions: Temp °C <u>19</u>		Accuracy Verfilcation Date: RH%	11/23/2021	Accuracy Verification 5/24	5/24/2022
	National Weather Service (NWS) Barometer Corrected NWS Barometric Pressure Elevation of NWS Barometic Pressure Absolute NWS Barometic Pressure (Station or Absolute Pbri is actual barometer reac	National Weather Service (NWS) Barometer National Weather Service (NWS) Barometer Elevation of NWS Barometer (Pressure Absolute NWS Barometric Pressure Station or Absolute Pbr is actual barometer re	Barometer ure ve Sea Level) re	t barometer ele	National Weather Service (NWS) Barometer Corrected NWS Barometic Pressure Elevation of NWS Barometic (Pressure Absolute NWS Barometic (Pressure Station or Absolute Pbr is actual barometer reading at barometer elevation, uncorrected to sea level)	a level)	in. Hg (Pb) (eet (A) 	
	Location of Field Barometer Elevation at Location (above Sea Level)	<b>d Barometer</b> tion (above Sea I	Level)	I	5990		feet (B)	
	Altitude Correction: Elevation of NWS Reference Barometer. (A) Elevation of Field Barometer: (B) Difference (A-B)	<b>ion:</b> 3 Reference Baro 1 Barometer: (B)	meter: (A)	111	5551 5990 -439		feet feet feet	
	Correction of Refe Pbr calc = Pbr calc Pbr calc =	tion of Reference Barometric Press Pbr calc = Pbr + [0.001 × (A-B)] Pbr calc = 24.30 + Pbr calc = 23.86	ttric Pressure (Pbr) × (A-B)] +	) to Location i	Correction of Reference Barometric Pressure (Pbr) to Location and Altitude of Field Barometer Pbr calc = Pbr + [0.001 × (A-B]] Pbr calc = 23.86 Pbr calc = 23.86	ometer -439		
	Pbr Calculated (from above): Pb Field Barometer Reading:	f <b>rom above):</b> er Reading:			23.86 23.93		in. Hg	
	Is Field Baromete	er within 0.1 in. Hç	Is Field Barometer within 0.1 in. Hg of Pbr Calculated?	0			Yes	
	If no, adjust Field Barometer to Pbr Calculated.	Barometer to Pb	r Calculated.			Elle ali	H.	
					Edwi	ard A. Peterson, S	Edward A. Peterson, Senior Technical Manager	
Maintaining Accuracy:	curacy:							

The accuracy of this instrument has been checked and found to be in tolerance unless otherwise noted. The instrument should provide accurate readings until the next accuracy verification due date. If this instrument is damaged or abused in any way, it should not be used for making measurements until its accuracy is checked and verified to be in tolerance.



IV.F AUDIT SAMPLE RESULTS Not Applicable



IV.G VISIBLE EMISSIONS FIELD SHEETS AND METHOD 9 CERTIFICATION

# **VISIBLE EMISSIONS EVALUATOR**

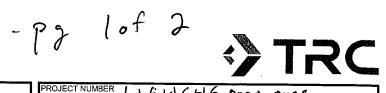
# Panteleimon Stathopulos

This is to certify that the above named observer has met the specifications of Federal Reference Method 9 and is qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates, Inc. of Raleigh, N.C. This certificate is valid for six months from date of issue.

479310 Certificate #

10/12/21 Date of Certification

04/13/22


**Certification Expiration Date** 

STA715889 Student ID Number

Denver, CO

10/5/2021 Last Lecture

Jody Monk General Manager



FACILITY NAME CUCISA NEW MAXICO LLC       PROJECT NUMBER LIGUGIO 646.0000.0000         STREET ADDRESS 1/2010 DA 1100h Park Road NE       OBSERVATION DATE 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 / 1/0 /								
STREET ADDRESS 42410 Ballooh Park Road NE	OBSERVATION DATE START TIME STOP TIME							
CITY Albuquerque STATE NM ZIP 87109	SEC 0 15 30 45 SEC 0 15 30 45							
SOURCE NAME (UM: AS Desil Cyen. 10# 7	1 5 10 10 10 31							
	2 5 5 5 5 32							
CONTROL EQUIPMENT OPERATING MODE	3 10 10 10 10 33							
CONTROL EQUIPMENT OPERATING MODE	4 10 10 10 10 34							
	5 10 10 10 10 35							
DESCRIBE EMISSION POINT								
Outlet of Stack a top (gravator HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER	7 , 37							
HEIGHT ABOVE GROUND LEVEL HEIGHT RELATIVE TO OBSERVER	8 38							
START YB' Y5' START 39' STOP 39'	39 39							
DISTANCE FROM OBSERVER	10 40							
DISTANCE FROM OBSERVER START Q O STOP Q START NW STOP NW								
DESCRIBE EMISSIONS								
START LOFFING STOP LOFFING	13 43							
	14 44							
START Black STOP Black FUGITIVE INTERMITTENT	15 45							
WATER DROPLETS PRESENT IF WATER DROPLET PLUME	16 46							
NO YES ATTACHED DETACHED	17 47							
	18 48							
START 2 &+ Albore Stack STOP 2 &+ a bare Street	19 49							
	20 50							
START BLUE SKY STOP BLUE SKY	21 51							
SKI CONDITIONS	22 52 52							
START Blue STOP Blue START CLEW STOP CLEW	23 53							
WIND SPEED WIND DIRECTION	24 54 54							
start Omph stop Omph start (ulm stop (ulm	25 55							
AMBIENT TEMP START 55°F STOP 55°F 33°F 43°C	26 56 56							
START 55°F STOP 55°F 33°F 43%	27 57 57							
Source Layout Sketch Draw North Arrow TN N MN	28 58							
	29 59							
	30 60 60							
CXObservation Point	AVERAGE OPACITY FOR HIGHEST <b>3.31</b> NUMBER OF READINGS ABOVE <b>7.7</b> % WERE: / 6							
	RANGE OF OPACITY READINGS							
	<u>5</u> MINIMUM /0 _{MAXIMUM}							
Sun $\bigoplus$ Wind $\longrightarrow$ Stack with Plume $\bigcirc$	OBSERVER'S NAME (PRINT) TUNKLEINON Stathopulos							
Sun Lokalign Line	OBSERVER'S STRUCTURE							
COMMENTS R1 AN ILAT 1	ORGANIZATION The							
	1140							
\$ pg 2. has corrected opacities	CERTIFIED BY ETA DATE 10/12/21							

TRC Report No: 454646.0000.0000

AM-FDS-52 Rev 2 04/12/2019 Page 92 of 108

Pg Z of 2 STRC

FACILITY NAME Cu	ria New Mexico LLC		. <u></u>	PROJECT NUMBER 454646.0000.0000									
STREET ADDRESS 424	40 Balloon Park Rd. NE	E		OBSER	ATION D	ATE		START 1		14	STOP TI	ME ///	0
CITY		STATE	ZIP	SEC	0	15	30	45	SEC	0	15	30	45
SOURCE NAME			ID #	1	4.5	9	9	9	31	<b>.</b>			5
PROCESS		OPERATING MODE		2		M.S	4.5		32				
				3	G	9	9	9	33				
CONTROL EQUIPMENT		OPERATING MODE		4	9	9	9	9	34				
	-			5	9	9	9	ণ	35				
DESCRIBE EMISSION POINT				6	9 -			<u> </u>	36				
HEIGHT ABOVE GROUND LE		HEIGHT RELATIVE TO		7				$\overline{}$	37		/		
	STOP	START	STOP	8				/	38		$- \mu$		
DISTANCE FROM OBSERVE	<b>b</b>	DIRECTION FROM OBS		9			/		39		$-\mu$		
START ST	\	START	STOP	10			/		40				
DESCRIBE EMISSIONS				11					41				
START		STOP		12			/		42				
EMISSION COLOR	-	PLUME TYPE: C		13		/	/		43				
START ST				14		-+			44				
WATER DROPLETS PRESEN	<del>лт</del>	IF WATER DROPLET PL		15					45				
				16		/			46				
POINT IN THE PLUME AT WH	HICH OPACITY WAS			17		/			47				
START	١	STOP		18	/				48				
DESCRIBE BACKGROUND				19	$\vdash$				49				
START		STOP		20					50				
BACKGROUND COLOR		SKY CONDITIONS		21	+				51				
START ST	OP	START ST	TOP	22					52				
WIND SPEED		WIND DIRECTION		23					53				
START ST	OP	START ST	OP	24					54				
AMBIENT TEMP		WET BULB TEMP	RH PERCENT	25	I				55				
START ST	OP			26 27					56 57				
Source Layout Sketch		<u> </u>	Draw North Arrow	28					58				
		Ň		29					59	$\top$			
			$\setminus \bigcirc$	30	1-				60	<b>b</b> -			
	X	Observation Point	$\backslash$	AVERAC MINUTE	E OPACI PERIOD:	TY FOR 1	IIGHEST	7.43	NUMBER WERE:		DINGS A	BOVE <b>7.</b>	9 <u>3</u> %_
			$\backslash$		OF OPAC	1 0	DINGS			<u> </u>			
			$\backslash$					AINIMUM					AXIMUM
Sun + Wind> Stack with Plume O			$\backslash$	OBSER	er's na	ME (PRIN	" P	'ant	eleir	~~~	Sta	p.	65
	140° Sun Location	>		OBSER	ER'S SIG	NATURE	n	ム		DATE	11	7151	21
COMMENTS			rd for	ORGAN	ZATION		1.1	<u>)</u> ,	1		/	.•1	
		Correct Le of	0-10	CERTIFI	ED BY		11			DATE	1	1-	, –
a Slan	+ any	<u>ic ot</u>	. 71				15.			/	0/10	12	(
	v	R1 11						A	M-FDS	S-52 F	Rev 2_	_04/12	2/2019

TRC Report No: 454646.0000.0000

Page 93 of 108

Pg lof 2

# ♦ TRC

	FACILITY NAME CULIA NUM STREET ADDRESS 4240 BQ CITY A 1 buguergue SOURCE NAME CUNTAS Desil ( PROCESS EQUIPMENT EMOSPACY (Junator CONTROL EQUIPMENT	Meyico	LLC	PROJEC	T NUMB	er L	150	166	16.	0000	3 - 00	-0-Ò	
	STREET ADDRESS 4240 DQ	lloon Purk	Road NE	OBSER	/ATION [ [ ~ 0 -	DATE 1-21		START	1ME 2 3 7	ś	STOP TI	м <u>е</u> 2. с/	4
	CITY Albuguerque	STATE NM	218 87109	SEC	0	15	30	45	SEC	0	15	30	45
	SOURCE NAME CUMINS Desil	here tor	^{ID #} 7	1	10	10	10	10	31				>
	Fuera a con la la ca loc		. 0			10		10	52				
	CONTROL EQUIPMENT	DERATING MODE	nk Lond			10						/	
						10 5			34			/	
	DESCRIBE EMISSION POINT				10 16		10	10	35		-/		
	Dutlet of Strok al	op Generate	91	6 7				$\hat{\gamma}$	36 37				
	HEIGHT ABOVE GROUND LEVEL START / STOP / 45	START 3 9	STOP 39	8				/	38 39				
				10					40		1		
	START 90 STOP 90	START IV W	STOP	11					41		/		
pss	DISTANCE FROM OBSERVER START 90 STOP 90 DESCRIBE EMISSIONS LOFF MY START 242 A bout 94404 EMISSION COLOR	lof	ting Stuck	12					42	/			
1-15-21	EMISSION COLOR			13			/		43	_/			
	START BILCK STOP BILCH			14			<u> </u>		44				
		WATER DROPLET PLU		15		-			45				
	NO V YES	ATTACHED		16					46				
	POINT IN THE PLUME AT WHICH OPACITY WAS	L DETERMINED	*	 					47 48				
	START Z F+ above Stud	(STOP 24 ab	ind Stock	19					40				
	START BLUE SKY	STOP BLUE	Sky	20 21		$\left  \right $			50 51	+			
	BACKGROUND COLOR START BIJL STOP BIJL	ISKY CONDITIONS		22					52				
				23		/			53				
	WIND SPEED START Juph STOP Juph	START SSW STC	SSW	24		<u> </u>			54	$\square$			
		WET BULB TEMP	RH PERCENT	25		4			55				
	START (a) of STOP (a) of	3104	32%	26	$\left  - \right $				56				
	Source Layout Sketch			27					57				
		- -	Draw North Arrow	28	$\left  \right $				58				
		11	(7')	29 30				_	59 60	<u> </u>		······	
		Observation Point	_	AVEDAC	E OPAC	1 ITY FOR I : <b>1-6</b>	IGHEST	4.76	NUMBER		DINGS A	BOVE 9,	76%
						CITY REAL	DINGS		WERE:	2-0			
							, ک	MINIMUM			-	/ ð N	IAXIMUM
	Sun $\bigoplus$ Wind $\longrightarrow$ Stack with Plume			1 Pa	ntell	ME (PRIN	っつ	te pl	rep.la	F			
	Dun Locatio	n Line		OBSER	/ER/6.94	ATPR					1-4	/-2	)
	COMMENTS R2 ON UNIT 1			ORGAN	ZATION	Т	RC						
Ć	Pg2 has corr	ubd opa	citres	CERTIFI	ED BY	T.	ETA	•			0/12	121	

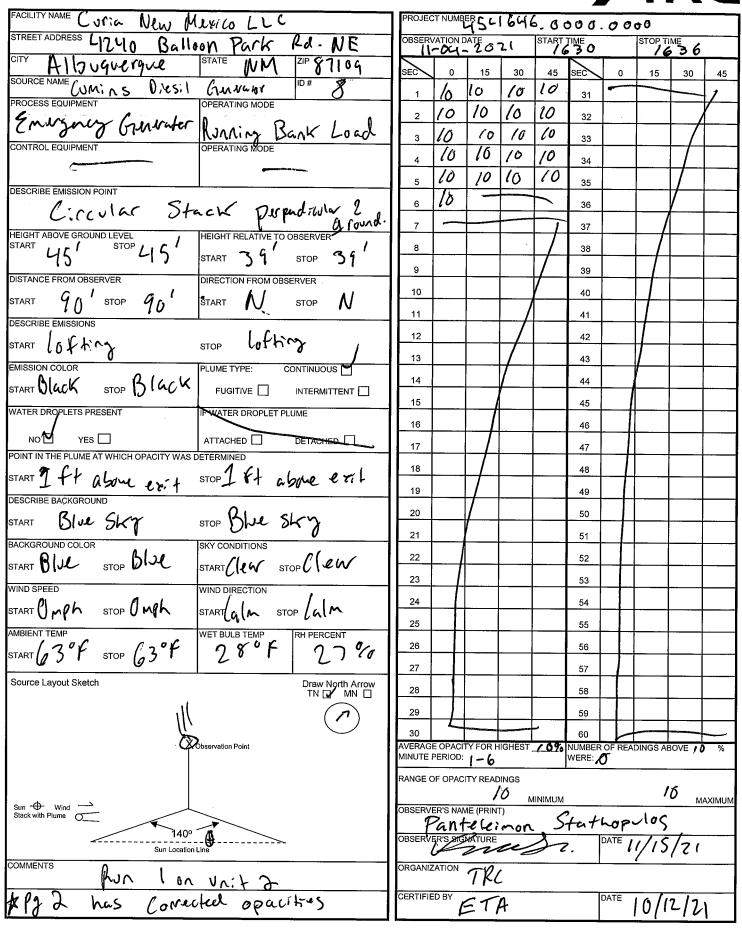
AM-FDS-52 Rev 2_04/12/2019 Page 94 of 108



FACILITY NAME Cur	ia New Mexico LLC			PROJEC	TNUMB	ER	454646.0	0000.0000	)					
STREET ADDRESS 424	0 Balloon Park Rd. N	E		OBSERV	ATION D	ATE		START	Z3	8	STOP TIME 1244			
CITY		STATE	ZIP	SEC	0	15	30	45	SEC	0	15	30	45	
SOURCE NAME			ID #		9	3	9	9	31					
PROCESS EQUIPMENT		OPERATING MODE		2	9	9	9	9	32				7	
				3	q	9	9	9	33			7		
CONTROL EQUIPMENT		OPERATING MODE		4	9	9	9	9				-+		
				5	9	4.5	9	9	34		L	-+		
DESCRIBE EMISSION POINT					9	~			35					
	\			6					36					
HEIGHT ABOVE GROUND LE		HEIGHT RELATIVE TO	OBSERVER	7					37			+		
START S	TOP	START	STOP	8				/	38					
DISTANCE FROM OBSERVER	2	DIRECTION FROM OB	SERVER	9				/	39			<b> </b>		
START STO		START	STOP	10					40					
DESCRIBE EMISSIONS				11			/		41		<i> </i>			
START		STOP		12 ·			/		42					
EMISSION COLOR	<u> </u>	PLUME TYPE:		13					43					
START STO				14			_/		44					
WATER DROPLETS PRESEN	<u>_</u>	IF WATER DROPLET F		15			/		45					
_				16			/		46					
NO YES POINT IN THE PLUME AT WH				17		L (			47					
START	ICH OFACITT WAST	STOP		18		/			48					
		510P		19					49					
				20					50					
START		STOP		21					51					
BACKGROUND COLOR		SKY CONDITIONS		22					52					
START STC	)P		STOP	23					53					
WIND SPEED		WIND DIRECTION		24					54					
START STC	P	START S	ТОР	25					55					
AMBIENT TEMP		WET BULB TEMP	RH PERCENT	26					56					
START STC	)P			27					57					
Source Layout Sketch		·		28					58			Э.,		
				29					59					
				30		-	Commences		60	T			_	
	X	Observation Point	$\backslash$		E OPACI	TY FOR H	IGHEST	5.79			DINGS A	BOVE	79 %	
			$\backslash$						WERE:	20		•		
			$\backslash$	RANGE (	JF OPAC		1 E	IINIMUM				9	AVILAL IL	
Sun + Wind			$\setminus$	OBSERV	ER'S NA	ME (PRIN	T) _				<u> </u>			
	140°	-		OBSERV	ER'S SIG	NATURE	1ª	3+1	le;n	DATE	)tzt	nepi	ω) 	
	Sun Location	1 Line	<b>-</b>				1 <u>ķ</u>	25	$\sum$		<u>  </u> /	15/2	21	
COMMENTS Value	s are	. Colrect	-d for	ORGANI	ZATION	T	RC							
a slart	angle	. Correct	27.	CERTIFI	ED BY	Ë	TA	,			0/17	1/2	١	
	0	11 11		d <b>L</b>					M-FDS	S-52 F	rev 2	04/12	/2019	
TRC Report N	lo: 454646.0000										- 95 of 10	-		

Pg lof 2




FACILITY NAME CUTTO NEW MEXITO LLC				PROJECT NUMBER 4154646,0000.0000										
STREET ADDRESS 4240 Ba	lloon Park	F Road NE	OBSER\				START T			STOP TI	ME ንና			
CITY PIbuguerque	STATE NM	ZIP 87109	SEC	0	15	30	45	SEC	0	15	30	45		
SOURCE NAME S DESIL (MAN	y who r	D# 7	1	15	15	15	15	31	-			,		
PROCESS EQUIPMENT			2	15	15	15	15	32				7		
Envryency (mratos CONTROL EQUIPMENT	KUNNING	Bunk Loud	3	15		15	15	33						
CONTROL EQUIPMENT	OPERATING MODE	· · · · · · · · · · · · · · · · · · ·	4	15	15	15	15	34						
		-	5	15	/5	15	15	35			/			
	1	1 -	6	15	-			36						
outlet of Stack at	op Mun	for	7					37						
HEIGHT ABOVE GROUND LEVEL START NJ 5' STOP Y 5'	HEIGHT RELATIVE TO C	DBSERVER	8				Y	38						
		•	9				ſ	39						
	DIRECTION FROM OBS		10					40		1				
start 90' stop 90'	START NW	STOP N ~	11			/		41						
	1.61	$\hat{\mathbf{x}}$	12					42						
START LOFFING	STOP LOI		13					43						
EMISSION COLOR	PLUME ITPE: C		14					44						
START BLACK STOP BLACK			15		1			45						
WATER DROPLETS PRESENT	IF WATER DROPLET PL	UME	16					46						
NO 🔽 YES 🗆			17		$\square$			47						
POINT IN THE PLUME AT WHICH OPACITY WAS			18					48						
start 2 ft a bare Stuck	STOP [ Ff a	Some Stack	19		$\square$			49						
DESCRIBE BACKGROUND			20					50						
START Olve 5Ky	STOP Block	SKD	21		17			51						
	SKY CONDITIONS	()	22		1			52						
START BLIE STOP BLIE	START (I W ST	гор ( 1.1 см ч	23		1			53						
WIND SPEED	WIND DIRECTION	11	24		1			54						
start () migh stop () mph	START (GIM ST	oplaim	25		1			55						
AMBIENT TEMP			26					56						
START 63°F STOP 63°F	31°F	30%	27	$\Box$				57						
Source Layout Sketch		Draw North Arrow TN 🗗 MN 📋	28	$\Box$				58						
· ·	1,	77	29					59						
	//		30					60		<u> </u>		<u> </u>		
l (Å	Observation Point			GE OPAC E PERIOD	>: <b> ~6</b>	HIGHEST	15 %	NUMBEI WERE:	R OF RE/	DINGS A	BOVE	19 %		
			RANGE	OF OPA	CITY REA	DINGS			<u> </u>					
							MINIMUM				15	MAXIMUM		
Sun - Wind - Stack with Plume			P	ver's N/ UNTC	ME (PRI	<b>1</b> )	うたも	hop	1 Las					
140 Sun Locatio		-	OBSER	VER'S SI	GNATUR	W	15	- ,	DATE	11-0	4.2	1		
COMMENTS			OBSERVER'S SIGNATUR AND A DATE 11-04.21											
43 on Unit	1	() - 0	CERTIF	IED BY	<u> </u>				DATE	1.7.		<u> </u>		
10 Pg 2. has com	\$3 on unit 1 \$Pg 2. has corrected opacities			$ETA \qquad DATE 10/12/21$								۱		

AM-FDS-52 Rev 2_04/12/2019

Pg 2 of 2 STRC

FACULITY NAME Curia New Mexico LLC	PROJECT NUMBER 454646.0000.0000											
STREET ADDRESS 4240 Balloon Park Rd. N	E	<u> </u>	OBSERVATION DATE START TIME 33 STOP						STOP TI	IME 1339		
СІТҮ	STATE	ZIP	SEC	0	15	30		SEC	0	15	30	45
SOURCE NAME		ID #			13.5			31				43
PROCESS EQUIPMENT	OPERATING MODE	I		13.5		(3.5		32				1
			3		13.5			33			······································	
CONTROL EQUIPMENT	OPERATING MODE	•			13.5			34				/-
					13.5			35				/
DESCRIBE EMISSION POINT	_L			13.5			17.0	36			-	
			7									
HEIGHT ABOVE GROUND LEVEL START STOP	HEIGHT RELATIVE TO	OBSERVER	8				/	37				
	START	STOP				-/		38				
DISTANCE FROM OBSERVER	DIRECTION FROM OB	SERVER	9			-(		39				
START STOP	START	STOP				-+		40			-	
DESCRIBE EMISSIONS	-l		11			+		41			+	
START	STOP		12			+		42			+-	
EMISSION COLOR	PLUME TYPE:		13			$\vdash$		43				
START STOP			14		- /			44				
WATER DROPLETS PRESENT	IF WATER DROPLET F	PLUME	15		/-			45		/		
			16					46		/-		
POINT IN THE PLUME AT WHICH OPACITY WAS			17					47		-+		
START	STOP		18		+			48		-/-		
DESCRIBE BACKGROUND	<del>\</del>		19		+			49				
START	sтор		20					50		+		
BACKGROUND COLOR	SKY DONDITIONS		21					51				
START STOP	START S	TOP	22	—-/I				52				
WIND SPEED	WIND DIRECTION		23	- /				53	/			
START STOP		ТОР	24	-				54	/			
AMBIENT TEMP	WET BULB TAMP	RH PERCENT	25					55	-+			
START STOP			26					56				
Source Layout Sketch	└──── <del>\</del> ──	Draw North Arrow	27					57				
Course Eujour Oroton	$\backslash$		28					58				
	$\backslash$		29					59				
X	Observation Point	$\backslash$	30 AVERAG	E OPACIT	YFORH	IGHÉST	3.5	60 NUMBER	OF REAL		OVE 13	5 %
		$\backslash$	MINUTE	PERIOD:	1-6			WERE: $\int$	8			<b>.</b>
		$\mathbf{X}$	RANGE C	OF OPACI	TY READ					-	<b>۲</b>	
Sun $\oplus$ Wind $\longrightarrow$ Stack with Plume			OBSERV	ER'S NAM	IE (PRINT	<u>,,,,</u> )	IINIMUM			<u> </u>	<u>א כיל</u>	AXIMUM
		$\searrow$	OBSERV			-YG	144	mon	<u> </u>	by the	polo	S
Sun Location	UBSERV		NATURE	n	5			[/[]	5/2	1		
comments Values are	Correcte	il for	ORGANIZ	ATION	T	RC						
a slant angi-	e of 2	יר,	CERTIFIE	D BY		TA	-	ľ		6/12	12	
TRC Report No: 454646.0000	R	3 VI	<u> </u>			-						/2019

pgl of 2



AM-FDS-52 Rev 2_04/12/2019 Page 98 of 108

Pg 2 of 2



ACILITY NAME Curia New Mexico LLC	PROJECT NUMBER 454646.0000.0000											
STREET ADDRESS 4240 Balloon Park Rd. N	Ξ		OBSER	ATION D	ATE		START 1	IME/6	30	STOP TI	ME 1 2	36
СІТҮ	STATE	ZIP	SEC	0	15	30	45	SEC	0			
SOURCENAME	1	ID #	1	9	9	9	43 9		•	15	30	45
PROCESS EQUIPMENT	OPERATING MODE		1	9	9	4	9	31				<u>}</u>
			2	9	9	9	9	32			-	
CONTROL EQUIPMENT	OPERATING MODE			9	9	9	9	33			+	
			4	9	9	9	٩	34			/	
DESCRIBE EMISSION POINT			5	9			/	35	-	- /		
			6					36				
HEIGHT ABOVE GROUND LEVEL START STOP	HEIGHT RELATIVE TO	OBSERVER	7				7	37		-+		
STOP	START	STOP	8				/	38				
DISTANCE FROM OBSERVER	DIRECTION FROM OBS	ERVER	9				/	39		/		
START STOP	START	STOP	10					40		/		
	I		11			-/-		41				
START	STOP		12			-		42				
EMISSION COLOR	PLUME TYPE: C		13					43	-+			
START STOP			14			1		44	-+			
WATER DROPLETS PRESENT	IF WATER DROPLET PL	UME	15			-		45				
			16			$\vdash$		46				
POINT IN THE PLUME AT WHICH OPACITY WAS I			17					47				
START	STOP		18		/			48		n	·	
DESCRIBE BACKGROUND			19		-+			49				
START	STOP		20					50	-+			
BACKGROUND COLOR	SKY CONDITIONS		21					51				
START STOP	START ST	'OP	22					52				
WIND SPEED	WIND DIRECTION		23		+			53				
START STOP	START STO	OP	24		$\left  \right $			54				
AMBIENT TEMP		RH PERCENT	25					55				
START STOP			26	/				56				
Source Layout Sketch	I	Draw North Arrow	27	/				57				
			28					58				
		$\langle ( ) \rangle$	29 30	H				59				_
X	Observation Point		AVERAG	E OPACI	TY FOR H	GHEST	9	60 NUMBER	OF REAL	DINGS AE	BOVE 9	%
					<u> </u>			WERE: (	8			
		$\setminus$	RANGE	JF OPACI	ITY READ	G	IINIMUM				9	AXIMUM
Sun $\oplus$ Wind $\longrightarrow$ Stack with Plume $\bigcirc$		$\setminus$	OBSERV	ER'S NAM	IE (PRIN				11	Har	ple	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
140°		. \	OBSERV	ER'S SIG	NATURE	<u> </u>	tele	iron I				
Sun Location	Line					p	n	<u>ک</u>			-15-	11
COMMENTS VALUES are	Corrected	X	ORGANI	ZATION	0	TP	RC				,	
for a Slant any	( 0	7 degrous	CERTIFI	ED BY		E	TA			)/12	121	
TRC Report No: 454646.0000.	.0000 RI	V2					A	N-FDS	S-52 F Page 9	ev 2 9 of 10	04/12 8	/2019



FACILITY NAME CURICA NICH	U Merora	LLC	PROJEC	CT NUMBI	R L	54	60	16.	000	30,0	000	Ð
FACILITY NAME CURICA NEW STREET ADDRESS 4240 Ball CITY A164946 GUL SOURCE NAME (UMINS) Desil PROCESS EQUIPMENT CONTROL EQUIPMENT	oon Park	Rd.NE	OBSER		ATE 2.0	121	START 1	IME <b>(7</b>	30	STOP TI	ME 17 3	36
CITY AIbuque rque	STATE NM	ZIP 87109	SEC	0	15	30	45	SEC	0	15	30	45
SOURCE NAME (UM: - S Desil	Creater a tor	10# <del>77</del> 8	1	10	10	10	10	31	(			7
PROCESS EQUIPMENT	OPERATING MODE		2	10	10	10	18	32				V
Emergency Converse	RUMMY B	ank Load	3	10	10	10	10	33			/	
CONTROL EQUIPMENT	OPERATING MODE		4	10	10	10	10	34				-
		No. of Concession, Name	5	10	10	10	10	35			/	
DESCRIBE EMISSION POINT		0	6	10	1		-	36				
Circular Stack production HEIGHT ABOVE GROUND LEVEL START UB STOP 45'	lar to grou	1~8	7				7	37				
HEIGHT ABOVE GROUND LEVEL START	HEIGHT RELATIVE TO C	DBSERVER /	8				/	38				
			9					39				
DISTÂNCE FROM OBSERVER START 90' STOP 90'	DIRECTION FROM OBS		10			/		40				
	start N	STOP N	11			/		41				
	1 11		12					42				
START 64 Hing	STOP OTH	NA 1	13					43				
			14					44				
START BLACK STOP BLACK			15		/			45				
	E WATER DROPLET PL		16					46	1			
		DETACHED	17		17			47				
POINT IN THE PLUME AT WHICH OPACITY WAS	DETERMINED		18		1			48				
start I ft above exit	STOP 1 FF	above leif	19		/			49				
DESCRIBE BACKGROUND	0)		20					50				
START BLUE SKY	STOP BUL SI	кy	21					51				1
	SKY CONDITIONS	Class	22					52				
START BLUE STOP BLUE			23					53				
WIND SPEED		556	24					54				
START 3 APA STOP 3 APA	START	OP JOW	25					55				
AMBIENT TEMP OF 100F			26					56				
	1210	28%	27					57				
Source Layout Sketch		Draw North Arrow TN 🗹 MN 🗖	28	$\Box$				58				
	1/		29					59	$\square$			
			30					60				-
	Observation Point			GE OPAC E PERIOD	ITY FOR	HIGHEST	_/0_`	NUMBER		DINGS A	BOVE	10 %
	4	ア	RANGE	OF OPAG								
		N.				-	MINIMUN				10	MAXIMUI
Sun $\oplus$ Wind $\longrightarrow$ Stack with Plume $\bigcirc$	×	<b>`</b>		VER'S NA UHL	ME (PRIN		no	pro	5			
140 Sup Longit	· •{• <b>{†</b>			VER'S SH	And the second s		Sh.			1/-0	ju/-	·21
	<u> </u>		ORGAN		~	- 0				/ 0	(	~/
Kun 2 on Vn	:+ 2				TR	٢						
\$Pg2. has G	prected c	spacifies	ĊĔŔŦĬŀ	IED RA	Eτ	A			DATE	0/11	1/21	
TRC Report No: 454646.0000	R	2 12					A	M-FD		Rev 2		2/201

# pg 2 of y STRC

FACILITY NAME Curia New Mexico LLC	PROJECT NUMBER 454646.0000.0000											
STREET ADDRESS 4240 Balloon Park Rd. I	NE		OBSERVATION DATE START TIME 1736 STOP TIME 1736									36
CITY	STATE	ZIP	SEC	0	15	30	45	SEC	0	15	30	45
SOURCENAME		ID #	1	9	9	9	9	31				,
PROCESS EQUIPMENT	OPERATING MODE	•	2	9	9	9	9	32				
			3	9	9	9	9	33			/	
CONTROL EQUIPMENT	OPERATING MODE		4	9	9	9	9	34			/	
			5	9	q	9	4			- /		
DESCRIBE EMISSION POINT	- <b>I</b>			9				35		-/		
			6					36				
HEIGHT ABOVE GROUND EVEL	HEIGHT RELATIVE TO	OBSERVER	7	d			1	37				
START STOP	START	STOP	8			, 	/	38		-		
DISTANCE FROM OBSERVER	DIRECTION FROM OBS	ERVER	9				/	39		<u> </u>		
	START	STOP	10					40		1		
DESCRIBE EMISSIONS			11			-+		41	-+			
START	STOP		12					42				
EMISSION COLOR	PLUME TYPE: 0		13			/		43				
START STOP			14			/		44	$ \rightarrow $			
WATER DROPLETS PRESENT	IF WATER DROPLET P		15		/			45	$\rightarrow$			
			16		-+			46				
			17					47				
START	STOP		18					48	$\square$			
DESCRIBE BACKGROUND			19					49				
			20					50				
START	STOR		21					51				
BACKGROUND COLOR	SKY CONDITIONS		22					52				
START STOP		fop	23					53				
WIND SPEED	WIND DIRECTION		24					54				
START STOP	START ST	OP	25					55				
AMBIENT TEMP	WET BULB TEMP	RH PERCENT	26	1				56				
START STOP			27					57				
Source Layout Sketch		Draw North Arrow	28					58				
			29					59				
		$\setminus \bigcirc$	30					60				-
>	Cobservation Point	$\backslash$	AVERAG MINUTE	E OPACI PERIOD:	TY FOR H	IIGHEST	9	NUMBER WERE:		DINGS A	BOVE 9	%
		$\backslash$	RANGE (			INGS			<i>y</i>			
		$\backslash$				e.	IINIMUM				<b>9</b> M	AXIMUM
Sun $\bigoplus$ Wind $\longrightarrow$ Stack with Plume O		$\backslash$	OBSERV	ER'S NAM	ME (PRIN			einov	<u> </u>	Stell		
140			OBSERV	ER'S SIG	NATURE	10			DATE			
Sun Locatio		<u>\</u>	000011	747101	(	1/2	~	オー		11 - 1	5-2	(
COMMENTS / Glues are	Corrected	L I	ORGANIZ	LATION	7	RC						
for a slant	Corrected angue of	270	CERTIFIE	ED BY	•	TA			DATE	0/12	121	
	<u> </u>	<u>v</u> 2									1	/00.40
	R L						AI	VI-FDS	5-52 F	kev 2_	04/12	/2019

TRC Report No: 454646.0000.0000

Page 101 of 108



FACILITY NAME CUTTO NEW MULL	ico LLG	 }•	PROJECT NUMBER 454646.0000.0000										
STREET ADDRESS 4240 Balloon CITY AIDU GUErque STA SOURCE NAME CUMINS DIES. 1 CA.	Park 1	Road NE	OBSERVATION DATE START TIME STOP TIME 06										
CITY Albuguerque STA	ATE NM	^{ZIP} 87109	SEC	o	15	30		SEC	0	15	30	45	
SOURCE NAME CUMINS Dies. 1 CA.	nicator	ID# - 7-48 8	1	15	15	(5	15	31					
PROCESS EQUIPMENT Environment	ERATING MODE		2	15	15	15	15	32	•			7	
PROCESS EQUIPMENT Environ OPE	Unning Ba	ank Load	3	IS	15	15	15	33					
CONTROL EQUIPMENT	ERATING MODE		4	15	15	15	15	34					
DESCRIBE EMISSION POINT			5	15	15	<i>ç</i> 5	15.	35					
		0	6	15	-			36			/		
Cirwiw Stack Perpudre		J. COMA	7	<u> </u>			7	37		/			
START V15' STOP 415' STA		STOP 34	8				/	38					
		•	9			_/		39		-			
START GU STOP GU STA			10					40					
DESCRIBE EMISSIONS		•	11			/		41		-/			
START Plack Offing STO	» lofting	\$ /	12					42		/			
			13		$-\mathcal{H}$			.43					
START BLUCK STOP BLUCK			14					44	-+				
	ATER DROPLET PLU		15					45	-+				
		DETACHED	16		+			46					
POINT IN THE PLUME AT WHICH OPACITY WAS DETEN	RMINED		17 18		+			47					
START ] A above lyit sto	»14+ 0	ibore exit	19		1			48 49					
DESCRIBE BACKGROUND	0 /		20					50	-{-				
START BLE SKY STO BACKGROUND COLOR SKY	Blue Blue	Sky	21					51					
BACKGROUND COLOR		()	22					52	-11				
START BILL STOPPILL STAL		of Lew.	23					53					
WIND SPEED WIN		CSE	24					54					
START 3 ph stop 3 ph stat		P > 0 1-	25					55					
	7,7°F	RH PERCENT	26					56					
START OU STOP OU	V' ·	20	27					57					
Source Layout Sketch		Draw North Arrow TN 🔽 MN 🔲	28					58					
l vit		$(\mathcal{A})$	29					59					
(X)	vation Point	$\smile$	30		X FOD U			60	<u> </u>				
	Valion Point		MINUTE	E OPACIT PERIOD:	<u>1-6</u>	GREST_	1-3%		OF REAL <b>X</b>	JINGS AE		) %	
		1	RANGE (	OF OPACI							, <b>P</b>		
Sun $\bigoplus$ Wind $\longrightarrow$ Stack with Plume $\bigcirc$		`	OBSERV	ER'S NAM		$\overline{)}$	INIMUM		1.		13 M	ХІМОМ	
Stack with Plume 0					<b>_</b>	YUN	fllii	non		afho	pulos		
Sun Location Line	<b>U</b> >		UBSERV	ER'S SIGN		n	よ			'/15 <u>/</u>	21		
LUN 3 ON	v nila		ORGANIZ	ATION	TRC					<b>.</b>			
\$ pg 2 has corrected	l and	1-65	CERTIFIE	ED BY	ETF	ł		[		5/11	121		
L'INC INS CHIEVER	r opac.	n ~ )				1				<u>,,,,,</u>	121		

-

AM-FDS-52 Rev 2_04/12/2019 Page 102 of 108

Py 2 of J STRC

PACILITY NAME Curia New	LITY NAME Curia New Mexico LLC						PROJECT NUMBER 454646.0000.0000										
STREET ADDRESS 4240 Ballo	oon Park Rd. NE	· · · · · · · · · · · · · · · · · · ·	OBSERVATION DATE START TIME (800 STOP TIME )								me <b>l%</b> (	6					
	STATE	ZIP	SEC	0	15	30		SEC	0	15	30	45					
SOURCENAME		ID #	1	13.5	13.5	13.5	13.5	31	·		$\uparrow$						
PROCESS EQUIPMENT	OPERATING MODE		2	13.5	13.5	13.5	13.5	32									
			3	13.5	13.5	13.5	13.5	33									
CONTROL EQUIPMENT	OPERATING MODE		4				13.5	34			7						
			5	13.5	13.5	13.5	13.5	35			7						
DESCRIBE EMISSION POINT	I	······	6	13.5				36			/						
			7	-			?	37									
HEIGHT ABOVE GROUND LEVEL START STOP	HEIGHT RELATIVE TO	OOBSERVER	8				17	38		1							
START STOP	START	STOP	9			1		39		$\square$							
DISTANCE FROM OBSERVER	DIRECTION FROM OF	BSERVER								/							
START STOP	START	STOP	10			$\vdash$		40		/							
DESCRIBE EMISSIONS	<del>\</del>		11			$\vdash$		41									
START	STOP		12		· · · ·			42									
EMISSION COLOR			13		· · · ·	/		43	-								
START STOP			14			/		44	$\rightarrow$								
WATER DROPLETS PRESENT	IF WATER DROPLET	PLUME	15			<u> </u>		45									
			16					46									
NO YES POINT IN THE PLUME AT WHICH C			17					47	-+								
START	STOP		18					48									
DESCRIBE BACKGROUND			19				ļ	49									
	STOP		20		$\square$			50									
START	<u>\</u>		21		<u>   </u>		ļ	51									
BACKGROUND COLOR	SKY CONDITIONS		22		Ц			52									
START STOP		STOP	23					53									
WIND SPEED	WIND DIRECTION		24					54									
START STOP		STOP	25		I			55									
AMBIENT TEMP	WET BULB TEMP	RH PERCENT	26					56									
START STOP		N	27					57									
Source Layout Sketch		Draw North Arrow	28	$\square$				58	$\left  \right $								
			29	1				59									
		$\setminus \bigcirc$	30					60				-					
	X Observation Point	$\backslash$	AVERA			HIGHEST	13.5	NUMBE		DINGS A	BOVE (	3-5 %					
		$\backslash$			CITY REA				0								
		X	TANGE	UP OPAL		~	MINIMUN	I		1	3.5	IAXIMUM					
Sun $\oplus$ Wind $\longrightarrow$ Stack with Plume O		$\backslash$	OBSER	VER'S NA	ME (PRIN	IT)	-	-eleir	~ <i>0</i>	<u>CL</u>	thep.	Lac					
	140°		OBSER	VER'S SIG	GNATURE		ant	~ee.r >	DATE	) TC		~ )					
<i></i>	Sun Location Line	~ \				n	$\leq$	<u>у</u> .	/	1/1	15/2	21					
COMMENTS Values	are correctly	d for	ORGAN	IZATION	0	TR	C										
a slant a	angle of	270	CERTIF	IED BY		<u>, , ,</u>	Ā		DATE	[0/1	2/2	/					
		3 42	_1 [				•	M-FD	L S-52 I	<u>· / ·</u> Rev 2	04/12	2/2019					
TRC Report No ⁻ 4	54646 0000 0000									3  of  10							

TRC Report No: 454646.0000.0000

Page 103 of 108



**IV.H SAMPLE CHAIN OF CUSTODY** Not Applicable.



# V. APPENDIX

## **V.A COMPLICATIONS DURING TESTING**

No complications were encountered during this test program and all tests were performed in accordance with EPA reference test methods and the test protocol.

**V.B SPECIAL INFORMATION** Not Applicable.

**V.C TEST CONTRACTORS' RESUMES & QUALIFIED INDIVIDUAL CERTIFICATIONS** Presented on following pages.

# This is to Certify that:

# **Caleb Bradley**

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Methods 1, 1A, 2, 2A, 2C, 2D, 2F, 2G, 2H, 3, 3B, 4, 5, 5A, 5B, 5D, 5E, 5F, 5i, 17, 19, 201A, and 202.

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed a comprehensive examination for the test methods designated above.

This certification is effective until:

02-24-2022

Clical A Mortina

Edward J MacKinnon

Air Measurements Practice Quality Manager



01130

Certificate Number:

02-28-2017

Date of Issue:

This certificate is the exclusive property of TRC and is non-transferable.

# This is to Certify that:

# **Caleb Bradley**

Is a Qualified Individual as defined in Section 8.3 of ASTM D7036-04 for the following test methods:

EPA Methods 3A, 6C, 7E, 10, 10B, 19, 20, 25A.

CEM Performance Specifications PS2, PS3, PS4, PS4A, PS5, PS6, PS7, PS8, and PS15

The individual has met the minimum experience requirements defined in Section 8.3.4.2 of ASTM D7036-04 and has successfully passed a comprehensive examination for the test methods designated above.

This certification is effective until:

04-07-2022

Clical A March

Edward J MacKinnon

Air Measurements Practice Quality Manager

Date of Issue: 04-10-2017

Certificate Number: 01138



This certificate is the exclusive property of TRC and is non-transferable.

# **Caleb R Bradley**

# Education

BS in Environmental Geography and Natural Resources, May 2015, Texas State University, San Marcos, TX

# Experience

2015-Present *Air Specialist*, TRC Golden, Colorado Air emission testing team lead experienced with the procedures set forth in the U.S. EPA Code of Federal Regulations, Title 40, Part 60 governing air emissions. Responsibilities include particulate matter and wet chemical sample collection, flow measurements, instrumental analysis, job preparation, process analysis, data collection and reduction, equipment maintenance and upgrading, laboratory analysis, and report writing. Testing experience with a variety of emission generating sources.

# **SAFETY DATA SHEET**

Diesel



# Section 1. Identification

	incation
Product name	: Diesel
Synonyms	: Ultra Low Sulfur Diesel, ULSD, Biodiesel, No 1 Diesel, No 2 Diesel, B2, B5, B15, B20
Relevant identified uses	of the substance or mixture and uses advised against
Product use	: Fuel.
Manufacturer	: HollyFrontier Refining & Marketing LLC 2828 North Harwood Suite 1300 Dallas, Texas 75201 USA Customer Service: (888) 286-8836
Emergency telephone number	: CHEMTREC® (800) 424-9300 CCN 201319
Section 2. Haza	rds identification
OSHA/HCS status	: This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200).
Classification of the substance or mixture	<ul> <li>FLAMMABLE LIQUIDS - Category 3 SKIN CORROSION/IRRITATION - Category 2 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) [Narcotic effects] - Category 3 ASPIRATION HAZARD - Category 1</li> </ul>
	Percentage of the mixture consisting of ingredient(s) of unknown toxicity: 10%
<u>GHS label elements</u> Hazard pictograms	



Response	<ul> <li>thoroughly after handling.</li> <li>IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. Call a POISON CENTER or physician if you feel unwell. IF SWALLOWED:</li> </ul>
	Immediately call a POISON CENTER or physician. Do NOT induce vomiting. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water or shower. IF ON SKIN: Wash with plenty of soap and water. Take off contaminated clothing. If skin irritation occurs: Get medical attention.
Storage	: Store in a well-ventilated place. Keep cool.
Disposal	<ul> <li>Dispose of contents and container in accordance with all local, regional, national and international regulations.</li> </ul>

# Section 3. Composition/information on ingredients

Substance/mixture

: Mixture

#### **CAS number/other identifiers**

CAS number	: Not applicable.
------------	-------------------

Product code : Not available.

Ingredient name	%	CAS number
Distillates (petroleum), hydrotreated light	0 - 100	64742-47-8
Kerosine (petroleum), hydrodesulfurized	0 - 100	64742-81-0
Fatty acids, C16-18 and C18-unsatd., Me esters	0 - 20	67762-38-3
naphthalene	1 - 3	91-20-3

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

There are no additional ingredients present which, within the current knowledge of the supplier and in the concentrations applicable, are classified as hazardous to health or the environment and hence require reporting in this section.

Occupational exposure limits, if available, are listed in Section 8.

# Section 4. First aid measures

#### **Description of necessary first aid measures**

Eye contact	: Immediately flush eyes with plenty of water, occasionally lifting the upper and lower eyelids. Check for and remove any contact lenses. Get medical attention. Continue to rinse for at least 15 minutes.
Inhalation	: Remove victim to fresh air and keep at rest in a position comfortable for breathing. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. If not breathing, if breathing is irregular or if respiratory arrest occurs, provide artificial respiration or oxygen by trained personnel. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Get medical attention. If necessary, call a poison center or physician. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.
Skin contact	: Wash skin thoroughly with soap and water or use recognized skin cleanser. Remove contaminated clothing and shoes. Continue to rinse for at least 15 minutes. Get medical attention. Wash clothing before reuse. Clean shoes thoroughly before reuse.
Ingestion	: Aspiration hazard if swallowed. Can enter lungs and cause damage. Do not induce vomiting. If vomiting occurs, the head should be kept low so that vomit does not enter the lungs. Get medical attention immediately. Call a poison center or physician. Wash out mouth with water. Remove victim to fresh air and keep at rest in a position comfortable for breathing. If material has been swallowed and the exposed person is conscious, give small quantities of water to drink. Stop if the exposed person feels sick as vomiting may be dangerous. Never give anything by mouth to an unconscious person. If unconscious, place in recovery position and get medical attention immediately. Maintain an open airway. Loosen tight clothing such as a collar, tie, belt or waistband.

Potential acute health	<u>ı effects</u>
Eye contact	: Causes serious eye irritation.
Inhalation	<ul> <li>Can cause central nervous system (CNS) depression. May cause drowsiness and dizziness. Mist/high concentrations: Inhalation may cause irritation to the nose, throat, upper respiratory tract and lungs.</li> </ul>
Skin contact	: Causes skin irritation. Defatting to the skin.

Diesel	HollyFrontier Refining & Marketing LLC
Ingestion	: Can cause central nervous system (CNS) depression. May be fatal if swallowed and enters airways. Irritating to mouth, throat and stomach.
<u>Over-exposure signs/syr</u>	nptoms
Eye contact	: pain or irritation; watering; redness
Inhalation	<ul> <li>nausea or vomiting; headache; drowsiness/fatigue; dizziness/vertigo; unconsciousness; respiratory tract irritation; coughing</li> </ul>
Skin contact	: irritation; redness; dryness; cracking
Ingestion	: nausea or vomiting
Indication of immediate m Notes to physician	<ul> <li>edical attention and special treatment needed, if necessary</li> <li>Treat symptomatically. Contact poison treatment specialist immediately if large quantities have been ingested or inhaled. Epinephrine and other sympathomimetic drugs may initiate cardiac arrhythmias in persons exposed to high concentrations of</li> </ul>
	hydrocarbon solvents.
Specific treatments	: No specific treatment.
Protection of medical responders	: No action shall be taken involving any personal risk or without suitable training. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

See toxicological information (Section 11)

# Section 5. Fire-fighting measures

Extinguishing media	
Suitable extinguishing media	: Use dry chemical, CO ₂ , water spray (fog) or foam.
Unsuitable extinguishing media	: Do not use water jet.
Specific hazards arising from the chemical	: Flammable liquid and vapor. In a fire or if heated, a pressure increase will occur and the container may burst, with the risk of a subsequent explosion. The vapor/gas is heavier than air and will spread along the ground. Vapors may accumulate in low or confined areas or travel a considerable distance to a source of ignition and flash back. Runoff to sewer may create fire or explosion hazard. Fire water contaminated with this material must be contained and prevented from being discharged to any waterway, sewer or drain.
Hazardous thermal decomposition products	: Decomposition products may include the following materials: carbon dioxide carbon monoxide
Special protective actions for fire-fighters	: Promptly isolate the scene by removing all persons from the vicinity of the incident if there is a fire. No action shall be taken involving any personal risk or without suitable training. Move containers from fire area if this can be done without risk. Use water spray to keep fire-exposed containers cool.
Special protective equipment for fire-fighters	: Fire-fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full face-piece operated in positive pressure mode.

# Section 6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

For non-emergency personnel	Evacuate su entering. D No flares, su adequate ve	tion shall be taken involving any personal risk or without suitable training. ate surrounding areas. Keep unnecessary and unprotected personnel from ng. Do not touch or walk through spilled material. Shut off all ignition sources. res, smoking or flames in hazard area. Avoid breathing vapor or mist. Provide ate ventilation. Wear appropriate respirator when ventilation is inadequate. Put propriate personal protective equipment.		ces. vide		
For emergency responders		ed clothing is required to on suitable and unsuita personnel".				
Date of issue/Date of revision	: 3/18/2014.	Date of previous issue	: 11/4/2013.	Version	: 1.01	3/11

	: Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers. Inform the relevant authorities if the product has caused environmental pollution (sewers, waterways, soil or air). Water polluting material. May be harmful to the environment if released in large quantities.
Methods and materials for con	ntainment and cleaning up
Small spill	: Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Absorb with an inert material and place in an appropriate waste disposal container. Dispose of via a licensed waste disposal contractor.
Large spill	: Stop leak if without risk. Move containers from spill area. Use spark-proof tools and explosion-proof equipment. Approach release from upwind. Prevent entry into sewers, waterways, basements or confined areas. Wash spillages into an effluent treatment plant or proceed as follows. Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations (see Section 13). Dispose of via a licensed waste disposal contractor. Contaminated absorbent material may pose the same hazard as the spilled product. Note: see Section 1 for emergency contact information and Section 13 for waste disposal.

# Section 7. Handling and storage

# Precautions for safe handling

Protective measures	:	Put on appropriate personal protective equipment (see Section 8). Do not swallow. Avoid contact with eyes, skin and clothing. Avoid breathing vapor or mist. Avoid release to the environment. Use only with adequate ventilation. Wear appropriate respirator when ventilation is inadequate. Do not enter storage areas and confined spaces unless adequately ventilated. Keep in the original container or an approved alternative made from a compatible material, kept tightly closed when not in use. Store and use away from heat, sparks, open flame or any other ignition source. Use explosion-proof electrical (ventilating, lighting and material handling) equipment. Use only non-sparking tools. Take precautionary measures against electrostatic discharges. Empty containers retain product residue and can be hazardous. Do not reuse container. High pressure skin injections are serious medical emergencies. Injury will not appear serious at first. Within a few hours, tissue will become swollen, discolored and extremely painful.
Advice on general occupational hygiene	:	Eating, drinking and smoking should be prohibited in areas where this material is handled, stored and processed. Workers should wash hands and face before eating, drinking and smoking. Remove contaminated clothing and protective equipment before entering eating areas. See also Section 8 for additional information on hygiene measures.
Conditions for safe storage, including any incompatibilities	:	Store in accordance with local regulations. Store in a segregated and approved area. Store in original container protected from direct sunlight in a dry, cool and well- ventilated area, away from incompatible materials (see Section 10) and food and drink. Eliminate all ignition sources. Separate from oxidizing materials. Keep container tightly closed and sealed until ready for use. Containers that have been opened must be carefully resealed and kept upright to prevent leakage. Do not store in unlabeled containers. Use appropriate containment to avoid environmental contamination.

# Section 8. Exposure controls/personal protection

<u>Control parameters</u> <u>Occupational exposure limits</u> Diesel

HollyFrontier Refining & Marketing LLC

Ingredient name	Exposure limits		
Distillates (petroleum), hydrotreated light	-	ACGIH TLV (United States, 3/2012). Absorbed through skin. TWA: 200 mg/m³, (as total hydrocarbon vapor) 8 hours.	
Kerosine (petroleum), hydrodesulfurized	-	ACGIH TLV (United States, 3/2012). Absorbed through skin. TWA: 200 mg/m³, (as total hydrocarbon vapor) 8 hours.	
naphthalene	OSHA PEL 1989 (United States, 3/1989). STEL: 15 ppm 15 minutes. STEL: 75 mg/m ³ 15 minutes. TWA: 10 ppm 8 hours. TWA: 50 mg/m ³ 8 hours. OSHA PEL (United States, 6/2010). TWA: 10 ppm 8 hours. TWA: 50 mg/m ³ 8 hours.	ACGIH TLV (United States, 3/2012). Absorbed through skin. TWA: 10 ppm 8 hours. TWA: 52 mg/m ³ 8 hours. STEL: 15 ppm 15 minutes. STEL: 79 mg/m ³ 15 minutes.	NIOSH REL (United States, 1/2013). TWA: 10 ppm 10 hours. TWA: 50 mg/m ³ 10 hours. STEL: 15 ppm 15 minutes. STEL: 75 mg/m ³ 15 minutes.
ontrols	Use only with adequate ventilati or other engineering controls to any recommended or statutory l vapor or dust concentrations be	keep worker exposure to ai imits. The engineering cont	rborne contaminants below rols also need to keep gas

		ventilation equipment.
Environmental exposure controls	-	Emissions from ventilation or work process equipment should be checked to ensure they comply with the requirements of environmental protection legislation. In some cases, fume scrubbers, filters or engineering modifications to the process equipment will be necessary to reduce emissions to acceptable levels.

Individual	protection	measures

Hygiene measures	: Wash hands, forearms and face thoroughly after handling chemical products, before eating, smoking and using the lavatory and at the end of the working period. Appropriate techniques should be used to remove potentially contaminated clothing. Wash contaminated clothing before reusing. Ensure that eyewash stations and safety showers are close to the workstation location.
Eye/face protection	: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists, gases or dusts. If contact is possible, the following protection should be worn, unless the assessment indicates a higher degree of protection: chemical splash goggles.
Skin protection	
Hand protection	: Chemical-resistant, impervious gloves complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary. Considering the parameters specified by the glove manufacturer, check during use that the gloves are still retaining their protective properties. It should be noted that the time to breakthrough for any glove material may be different for different glove manufacturers. In the case of mixtures, consisting of several substances, the protection time of the gloves cannot be accurately estimated.
Body protection	: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product. When there is a risk of ignition from static electricity, wear anti-static protective clothing. For the greatest protection from static discharges, clothing should include anti-static overalls, boots and gloves.
Other skin protection	: Appropriate footwear and any additional skin protection measures should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.
Respiratory protection	: Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

# Section 9. Physical and chemical properties

-	
Appearance	
Physical state	: Liquid.
Color	: Clear to Straw.
Odor	: Kerosene.
Odor threshold	: Not available.
рН	: Not available.
Melting point	: Not available.
Boiling point	: 162.78 to 371.11°C (325 to 700°F)
Flash point	: >37.8 °C (100 °F)
Evaporation rate	: Not available.
Flammability (solid, gas)	: Not available.
Lower and upper explosive (flammable) limits	: Lower: 0.5% Upper: 8%
Vapor pressure	: < 1 mm Hg at 37.8°C (100 F)
Vapor density	: 3 to 4 [Air = 1]
Specific gravity	: 0.75 to 0.85 [15.5°C (60°F)]
Solubility	: Negligible
Partition coefficient: n- octanol/water	: Not available.
Auto-ignition temperature	: 232.22 to 260°C (450 to 500°F)
Decomposition temperature	: Not available.
Viscosity	: Kinematic (40°C (104°F)): 0.01 to 0.025 cm ² /s (1 to 2.5 cSt)

# Section 10. Stability and reactivity

	, , , , , , , , , , , , , , , , , , ,
Reactivity	: No specific test data related to reactivity available for this product or its ingredients.
Chemical stability	: The product is stable.
Possibility of hazardous reactions	: Under normal conditions of storage and use, hazardous reactions will not occur.
Conditions to avoid	: Avoid all possible sources of ignition (spark or flame). Do not pressurize, cut, weld, braze, solder, drill, grind or expose containers to heat or sources of ignition. Do not allow vapor to accumulate in low or confined areas.
Incompatible materials	: Reactive or incompatible with the following materials: oxidizing materials
Hazardous decomposition products	: Under normal conditions of storage and use, hazardous decomposition products should not be produced.

# Section 11. Toxicological information

Information on toxicological effects Acute toxicity

Product/ingredient name	Result	Species	Dose	Exposure
Distillates (petroleum), hydrotreated light	LC50 Inhalation Dusts and mists	Rat	>5.28 mg/l	4 hours
	LD50 Dermal	Rabbit	>2000 mg/kg	-
	LD50 Oral	Rat	>5000 mg/kg	-
Kerosine (petroleum), hydrodesulfurized	LC50 Inhalation Dusts and mists	Rat	>5.28 mg/l	4 hours
	LD50 Dermal LD50 Oral	Rabbit Rat	>2000 mg/kg >5000 mg/kg	-

#### Irritation/Corrosion

Product/ingredient name	Result	Species	Score	Exposure	Observation
Kerosine (petroleum), hydrodesulfurized	Skin - Moderate irritant	Rabbit	-	24 hours 500 milligrams	-

#### **Carcinogenicity**

Product/ingredient name	OSHA	IARC	NTP
naphthalene	-	2B	Reasonably anticipated to be a human carcinogen.

#### **Teratogenicity**

#### Specific target organ toxicity (single exposure)

Name		Route of exposure	Target organs
	Category 3 Category 3		Narcotic effects Narcotic effects

#### Specific target organ toxicity (repeated exposure)

Not available.

#### **Aspiration hazard**

Name	Result
	ASPIRATION HAZARD - Category 1 ASPIRATION HAZARD - Category 1

# Information on the likely

: Routes of entry anticipated: Oral, Dermal, Inhalation.

#### routes of exposure

Delayed and immediate effect	ts and also chronic effects from short and long term exposure
Short term exposure	
Potential immediate effects	: Not available.
Potential delayed effects	: Not available.
<u>Long term exposure</u>	
Potential immediate effects	: Not available.
Potential delayed effects	: Not available.
Potential chronic health effe	ects
General	: Prolonged or repeated contact can defat the skin and lead to irritation, cracking and/or dermatitis.
Carcinogenicity	: No known significant effects or critical hazards.
Mutagenicity	: No known significant effects or critical hazards.
Teratogenicity	: No known significant effects or critical hazards.
<b>Developmental effects</b>	: No known significant effects or critical hazards.
Fertility effects	: No known significant effects or critical hazards.

#### Numerical measures of toxicity

Date of issue/Date of revision

Diesel	HollyFrontier Refining & Marketing LLC
Acute toxicity estimates	
Route	ATE value
Oral	29400 mg/kg

# Section 12. Ecological information

#### **Toxicity**

Result	Species	Exposure
Acute LC50 2200 µg/l Fresh water	Fish - Lepomis macrochirus	4 days
Acute EC50 1600 μg/l Fresh water	Daphnia - Daphnia magna - Neonate	48 hours
Acute LC50 2350 µg/l Marine water	Crustaceans - Palaemonetes pugio	48 hours
Acute LC50 213 µg/l Fresh water	Fish - Melanotaenia fluviatilis - Larvae	96 hours
	Acute LC50 2200 μg/l Fresh water Acute EC50 1600 μg/l Fresh water Acute LC50 2350 μg/l Marine water	Acute LC50 2200 µg/l Fresh waterFish - Lepomis macrochirusAcute EC50 1600 µg/l Fresh waterDaphnia - Daphnia magna - NeonateAcute LC50 2350 µg/l Marine waterCrustaceans - Palaemonetes pugioAcute LC50 213 µg/l Fresh waterFish - Melanotaenia fluviatilis -

#### Persistence and degradability

Product/ingredient name	Aquatic half-life	Photolysis	Biodegradability
Kerosine (petroleum), hydrodesulfurized	-	-	Inherent

#### **Bioaccumulative potential**

Product/ingredient name	LogPow	BCF	Potential
Kerosine (petroleum), hydrodesulfurized	3.3 to 6	-	high
naphthalene	3.4	36.5 to 168	low

#### **Mobility in soil**

Soil/water partition	: Not available.
coefficient (Koc)	

Other adverse effects : No known significant effects or critical hazards.

## Section 13. Disposal considerations

**Disposal methods** : The generation of waste should be avoided or minimized wherever possible. Disposal of this product, solutions and any by-products should at all times comply with the requirements of environmental protection and waste disposal legislation and any regional local authority requirements. Dispose of surplus and non-recyclable products via a licensed waste disposal contractor. Waste should not be disposed of untreated to the sewer unless fully compliant with the requirements of all authorities with jurisdiction. Waste packaging should be recycled. Incineration or landfill should only be considered when recycling is not feasible. This material and its container must be disposed of in a safe way. Care should be taken when handling emptied containers that have not been cleaned or rinsed out. Empty containers or liners may retain some product residues. Vapor from product residues may create a highly flammable or explosive atmosphere inside the container. Do not cut, weld or grind used containers unless they have been cleaned thoroughly internally. Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

United States - RCRA Toxic hazardous waste "U" List

Diesel	Н	ollyFrontier Refinin	g & Marketing LLC
Ingredient	CAS #		Reference number
Naphthalene	91-20-3	Listed	U165

# Section 14. Transport information

	DOT Classification	TDG Classification	Mexico Classification	ADR/RID	IMDG	ΙΑΤΑ
UN number	NA1993	UN1202	UN1202	UN1202	UN1202	UN1202
UN proper shipping name	Diesel fuel. Marine pollutant (Distillates (petroleum), hydrotreated light, Kerosine (petroleum), hydrodesulfurized) RQ (Naphthalene)	DIESEL FUEL	COMBUSTIBLE PARA MOTORES DIESEL. Marine pollutant (Distillates (petroleum), hydrotreated light, Kerosine (petroleum), hydrodesulfurized)	DIESEL FUEL	DIESEL FUEL. Marine pollutant (Distillates (petroleum), hydrotreated light, Kerosine (petroleum), hydrodesulfurized)	Diesel fuel
Transport hazard class(es)	3	3				3
Packing group	111	111		111	ш	111
Environmental hazards	Yes.	Yes.	Yes.	Yes.	Yes.	No.
Additional information	Reportable guantity 6666.7 lbs / 3026.7 kg [999. 45 gal / 3783.3 L] Package sizes shipped in quantities less than the product reportable quantity are not subject to the RQ (reportable quantity) transportation requirements. Limited guantity Yes.	Explosive Limit and Limited Quantity Index 30 Passenger Carrying Road or Rail Index 60 Special provisions 82, 88		Hazard identification number 30 Limited quantity 5 L Special provisions 640L, 363 Tunnel code (D/E)	Emergency schedules (EmS) F-E, S-E	Passenger and Cargo Aircraft Quantity limitation: 60 L Packaging instructions: 355 Cargo Aircraf OnlyQuantity limitation: 220 Packaging instructions: 366 Limited Quantities - Passenger Aircraft Quantity limitation: 10 L Packaging instructions: Y344

ſ	Diesel	н	lollyFrontier Refini	ng & Marketing LLC
	Passenger aircraft Quantity limitation: 60 L			
	<b>Cargo aircraft</b> Quantity limitation: 220 L			
	Special provisions 144, B1, IB3, T4, TP1, TP29			

Special precautions for user : Transport within user's premises: always transport in closed containers that are upright and secure. Ensure that persons transporting the product know what to do in the event of an accident or spillage.

# Section 15. Regulatory information

: TSCA 8(a) PAIR: naphthalene **U.S. Federal regulations** United States inventory (TSCA 8b): All components are listed or exempted. Clean Water Act (CWA) 307: naphthalene Clean Water Act (CWA) 311: naphthalene

Clean Air Act Section 112 : Listed

(b) Hazardous Air

**Pollutants (HAPs)** 

SARA 302/304

**Composition/information on ingredients** 

No products were found.

**SARA 304 RQ** : Not applicable.

SARA 311/312 Classification : Fire hazard Immediate (acute) health hazard

**Composition/information on ingredients** 

Name	%	Fire hazard	Sudden release of pressure	Reactive	Immediate (acute) health hazard	Delayed (chronic) health hazard
Distillates (petroleum), hydrotreated light	0 - 100	Yes.	No.	No.	Yes.	No.
Kerosine (petroleum), hydrodesulfurized	0 - 100	Yes.	No.	No.	Yes.	No.
naphthalene	1 - 3	Yes.	No.	No.	Yes.	Yes.

#### **SARA 313**

	Product name	CAS number	%
Form R - Reporting requirements	naphthalene	91-20-3	1 - 3
Supplier notification	naphthalene	91-20-3	1 - 3

SARA 313 notifications must not be detached from the SDS and any copying and redistribution of the SDS shall include copying and redistribution of the notice attached to copies of the SDS subsequently redistributed.

#### **State regulations**

**Massachusetts** 

: The following components are listed: NAPHTHALENE

Date of issue/Date of revision Version : 1.01 : 3/18/2014. Date of previous issue : 11/4/2013 10/11

Diesel	HollyFrontier Refining & Marketing L
New York	: The following components are listed: Naphthalene
New Jersey	: The following components are listed: NAPHTHALENE; MOTH FLAKES
Pennsylvania	: The following components are listed: NAPHTHALENE

: The following components are listed: NAPHTHALENE

#### California Prop. 65

WARNING: This product contains a chemical known to the State of California to cause cancer.

	Ingredient name	Cancer	Reproductive		Maximum acceptable dosage level
	naphthalene	Yes.	No.	Yes.	No.
Ca	nada inventory : All compo	nents are liste	d or exempted.		

International regulations	
International lists	: Australia inventory (AICS): All components are listed or exempted.
	China inventory (IECSC): All components are listed or exempted.
	Japan inventory: Not determined.
	Korea inventory: All components are listed or exempted.
	Malaysia Inventory (EHS Register): Not determined.
	New Zealand Inventory of Chemicals (NZIoC): All components are listed or
	Philippines inventory (PICCS): All components are listed or exempted.

Taiwan inventory (CSNN): Not determined.

# Section 16. Other information

National Fire Protection Association (U.S.A.)



Reprinted with permission from NFPA 704-2001, Identification of the Hazards of Materials for Emergency Response Copyright ©1997, National Fire Protection Association, Quincy, MA 02269. This reprinted material is not the complete and official position of the National Fire Protection Association, on the referenced subject which is represented only by the standard in its entirety.

Copyright ©2001, National Fire Protection Association, Quincy, MA 02269. This warning system is intended to be interpreted and applied only by properly trained individuals to identify fire, health and reactivity hazards of chemicals. The user is referred to certain limited number of chemicals with recommended classifications in NFPA 49 and NFPA 325, which would be used as a guideline only. Whether the chemicals are classified by NFPA or not, anyone using the 704 systems to classify chemicals does so at their own risk.

Date of issue/Date of revision	: 3/18/2014.
Date of previous issue	: 11/4/2013.
Version	: 1.01
Key to abbreviations	: ATE = Acute Toxicity Estimate BCF = Bioconcentration Factor GHS = Globally Harmonized System of Classification and Labelling of Chemicals IATA = International Air Transport Association IMDG = International Maritime Dangerous Goods LogPow = logarithm of the octanol/water partition coefficient UN = United Nations

Indicates information that has changed from previously issued version.

#### Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named manufacturer, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

LLC

exempted.



# **SAFETY DATA SHEET**

Version 6.3 Revision Date 02/03/2020 Print Date 11/20/2020

#### SECTION 1: Identification of the substance/mixture and of the company/undertaking

#### **1.1 Product identifiers**

Product name	:	1,2-Dichloroethane
Product Number	:	319929
Brand	:	SIGALD
Index-No.	:	602-012-00-7
CAS-No.	:	107-06-2

#### **1.2** Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

#### 1.3 Details of the supplier of the safety data sheet

Company	: Sigma-Aldrich Inc. 3050 Spruce Street ST. LOUIS MO 63103 UNITED STATES
Telephone	: +1 314 771-5765
Fax	: +1 800 325-5052

#### **1.4 Emergency telephone number**

Emergency Phone # : 800-424-9300 CHEMTREC (USA) +1-703-527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week

#### **SECTION 2: Hazards identification**

#### 2.1 Classification of the substance or mixture

#### GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 2), H225 Acute toxicity, Oral (Category 4), H302 Acute toxicity, Inhalation (Category 3), H331 Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Carcinogenicity (Category 1B), H350 Specific target organ toxicity - single exposure (Category 3), Respiratory system, H335

For the full text of the H-Statements mentioned in this Section, see Section 16.

#### 2.2 GHS Label elements, including precautionary statements

SIGALD - 319929

Page 1 of 12



Pictogram	
Signal word	Danger
Hazard statement(s) H225 H302 H315 H319 H331 H335 H350	Highly flammable liquid and vapour. Harmful if swallowed. Causes skin irritation. Causes serious eye irritation. Toxic if inhaled. May cause respiratory irritation. May cause cancer.
Precautionary statement(s)	
P201 P202	Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.
P210	Keep away from heat/sparks/open flames/hot surfaces. No smoking.
P233	Keep container tightly closed.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ ventilating/ lighting equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.
P264 P270	Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product.
P270	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P301 + P312 + P330	IF SWALLOWED: Call a POISON CENTER/doctor if you feel unwell. Rinse mouth.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
P304 + P340 + P311	IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER/doctor.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308 + P313	IF exposed or concerned: Get medical advice/ attention.
P332 + P313	If skin irritation occurs: Get medical advice/ attention.
P337 + P313	If eye irritation persists: Get medical advice/ attention.
P362 P370 + P378	Take off contaminated clothing and wash before reuse. In case of fire: Use dry sand, dry chemical or alcohol-resistant foam to extinguish.
P403 + P233	Store in a well-ventilated place. Keep container tightly closed.
P403 + P235	Store in a well-ventilated place. Keep container tightly closed.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

#### 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

SIGALD - 319929

Page 2 of 12





#### **SECTION 3: Composition/information on ingredients**

Substances Synonyms	: Ethylene dichloride Ethylene chloride		
Formula Molecular weight CAS-No. EC-No. Index-No.	: C ₂ H ₄ Cl ₂ : 98.96 g/mol : 107-06-2 : 203-458-1 : 602-012-00-7		
Component		Classification	Concentration
Ethylene dichlori	de	Flam. Liq. 2; Acute Tox. 4; Acute Tox. 3; Skin Irrit. 2; Eye Irrit. 2A; Carc. 1B; STOT SE 3; H225, H302, H331, H315, H319, H350, H335	<= 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

#### **SECTION 4: First aid measures**

#### 4.1 Description of first aid measures

#### **General advice**

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

#### If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

#### In case of skin contact

Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

#### In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

#### If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

#### 4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

**4.3 Indication of any immediate medical attention and special treatment needed** No data available

SIGALD - 319929

Page 3 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



#### **SECTION 5: Firefighting measures**

#### 5.1 Extinguishing media

Suitable extinguishing media Dry powder Dry sand

**Unsuitable extinguishing media** Do NOT use water jet.

- **5.2** Special hazards arising from the substance or mixture Carbon oxides, Hydrogen chloride gas
- **5.3** Advice for firefighters Wear self-contained breathing apparatus for firefighting if necessary.
- **5.4 Further information** Use water spray to cool unopened containers.

#### **SECTION 6: Accidental release measures**

**6.1 Personal precautions, protective equipment and emergency procedures** Wear respiratory protection. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

- **6.3 Methods and materials for containment and cleaning up** Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13).
- **6.4** Reference to other sections For disposal see section 13.

#### **SECTION 7: Handling and storage**

# 7.1 Precautions for safe handling Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. Use explosion-proof equipment.Keep away from sources of ignition - No smoking.Take measures to prevent the build up of electrostatic charge. For precautions see section 2.2.

#### **7.2** Conditions for safe storage, including any incompatibilities Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage. Storage class (TRGS 510): 3: Flammable liquids

#### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

SIGALD - 319929

Page 4 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



#### SECTION 8: Exposure controls/personal protection

#### 8.1 Control parameters

#### Components with workplace control parameters

Components wi		1		
Component	CAS-No.	Value	Control	Basis
			parameters	
Ethylene	107-06-2	TWA	10 ppm	USA. ACGIH Threshold Limit
dichloride				Values (TLV)
	Remarks	Liver dama	ae	
		Nausea	5-	
			able as a humar	n carcinogen
		TWA	1 ppm	USA. NIOSH Recommended
			4 mg/m3	Exposure Limits
		Potential O	ccupational Car	
		See Appen	•	enrogen
		See Appen		
		ST	2 ppm	USA. NIOSH Recommended
			8 mg/m3	Exposure Limits
		Detential O		
			ccupational Car	chogen
		See Appen		
		See Appen		
		See Table		
		TWA	50 ppm	USA. Occupational Exposure
				Limits (OSHA) - Table Z-2
		Z37.21-19	69	1
		CEIL	100 ppm	USA. Occupational Exposure
				Limits (OSHA) - Table Z-2
		Z37.21-19	69	
		Peak	200 ppm	USA. Occupational Exposure
				Limits (OSHA) - Table Z-2
		Z37.21-19	69	
		PEL	1 ppm	California permissible exposure
			4 mg/m3	limits for chemical
			,	contaminants (Title 8, Article
				107)
				- /
		С	200 ppm	California permissible exposure
				limits for chemical
				contaminants (Title 8, Article
				107)
				10/)
		STEL	2 nnm	California permissible exposure
		SILL	2 ppm	limits for chemical
			8 mg/m3	
				contaminants (Title 8, Article
				107)

#### 8.2 Exposure controls

#### Appropriate engineering controls

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

SIGALD - 319929

Page 5 of 12





#### Personal protective equipment

#### Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

#### **Skin protection**

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact Material: butyl-rubber Minimum layer thickness: 0.3 mm Break through time: 62 min Material tested:Butoject® (KCL 897 / Aldrich Z677647, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method: EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

#### **Body Protection**

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

#### **Respiratory protection**

Where risk assessment shows air-purifying respirators are appropriate use a fullface respirator with multi-purpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

#### **Control of environmental exposure**

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

#### **SECTION 9: Physical and chemical properties**

#### 9.1 Information on basic physical and chemical properties

- a) Appearance Form: viscous liquid Colour: colourless
- b) Odour of solvents
- c) Odour Threshold No data available

SIGALD - 319929

Page 6 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



d)	рН	No data available
e)	Melting point/freezing point	Melting point/range: -35 °C (-31 °F) - lit.
f)	Initial boiling point and boiling range	83 °C 181 °F - lit.
g)	Flash point	ca.13 °C (55 °F) - closed cup - DIN 51755 Part 1
h)	Evaporation rate	4.1
i)	Flammability (solid, gas)	No data available
j)	Upper/lower flammability or explosive limits	Upper explosion limit: 15.9 %(V) Lower explosion limit: 6 %(V)
k)	Vapour pressure	102 hPa at 25 °C (77 °F) 87 hPa at 20 °C(68 °F)
I)	Vapour density	4.1 at 20 °C(68 °F)
m)	Relative density	1.256 g/mL at 25 °C (77 °F)
n)	Water solubility	7.9 g/l at 25 °C (77 °F) - OECD Test Guideline 105 - soluble
o)	Partition coefficient: n-octanol/water	log Pow: 1.45 at 20 °C (68 °F) - Bioaccumulation is not expected.
p)	Auto-ignition temperature	440 °C (824 °F) at 1,013 hPa - DIN 51794
q)	Decomposition temperature	300 °C (572 °F) -
r)	Viscosity	No data available
s)	Explosive properties	No data available
t)	Oxidizing properties	No data available
Otł	ner safety informatio	n
	Surface tension	32.45 mN/m at 20 °C (68 °F)

# 9.2

Surface tension	32.45 mN/m at 20 °C (68 °F)
Relative vapour density	4.1 at 20 °C (68 °F)

#### **SECTION 10: Stability and reactivity**

**10.1** Reactivity

No data available

- **10.2** Chemical stability Stable under recommended storage conditions.
- **10.3** Possibility of hazardous reactions Vapours may form explosive mixture with air.

#### **10.4** Conditions to avoid

Heat, flames and sparks.

SIGALD - 319929

Page 7 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



#### **10.5** Incompatible materials

Strong oxidizing agents

#### **10.6 Hazardous decomposition products**

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas Other decomposition products - No data available In the event of fire: see section 5

#### **SECTION 11: Toxicological information**

#### 11.1 Information on toxicological effects

#### Acute toxicity

LD50 Oral - Rat - male - 770 mg/kg (OECD Test Guideline 401) LC50 Inhalation - Rat - male and female - 4 h - 7.8 mg/l (OECD Test Guideline 403) LD50 Dermal - Rabbit - male - 4,890 mg/kg (OECD Test Guideline 402) No data available

#### Skin corrosion/irritation

Skin - Rabbit Result: irritating (OECD Test Guideline 404)

#### Serious eye damage/eye irritation

Eyes - Rabbit Result: Eye irritation (OECD Test Guideline 405)

#### Respiratory or skin sensitisation

Local lymph node assay (LLNA) - Mouse Result: negative (OECD Test Guideline 429)

#### Germ cell mutagenicity

Ames test S. typhimurium Result: positive (ECHA) Ames test Escherichia coli Result: positive In vitro mammalian cell gene mutation test human lymphoblastoid cells Result: positive In vitro mammalian cell gene mutation test human lymphoblastoid cells Result: positive (ECHA) Mutagenicity (mammal cell test): chromosome aberration. Chinese hamster lung cells Result: positive (ECHA)

SIGALD - 319929

Page 8 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



unscheduled DNA synthesis assay rat hepatocytes Result: positive OECD Test Guideline 474 Mouse - male and female Result: negative OECD Test Guideline 474 Mouse - male and female - Red blood cells (erythrocytes) Result: negative

Rat - female - mammary gland Result: negative (ECHA) OECD Test Guideline 477 Drosophila melanogaster - male - sperm Result: positive

Mouse - male Result: negative (ECHA)

#### Carcinogenicity

Presumed to have carcinogenic potential for humans

- IARC: 2B Group 2B: Possibly carcinogenic to humans (Ethylene dichloride)
- NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is on OSHA's list of regulated carcinogens.

#### **Reproductive toxicity**

No data available

#### Specific target organ toxicity - single exposure

May cause respiratory irritation.

Specific target organ toxicity - repeated exposure

No data available

Aspiration hazard

No data available

#### Additional Information

Repeated dose toxicity - Rat - male and female - Oral - 90 d - No observed adverse effect level - 37.5 mg/kg Subchronic toxicity

Repeated dose toxicity - Mouse - male and female - Inhalation - 104 Weeks RTECS: KI0525000

Acts as a simple asphyxiant by displacing air., anesthetic effects, Difficulty in breathing, Headache, Dizziness, Prolonged or repeated contact with skin may cause:, defatting, Dermatitis, Contact with eyes can cause:, Redness, Blurred vision, Provokes tears., Effects due to ingestion may include:, Gastrointestinal discomfort, Central nervous system depression, Paresthesia., Drowsiness, Convulsions, Conjunctivitis., Pulmonary edema. Effects may be delayed., Irregular breathing., Stomach/intestinal disorders, Nausea,

SIGALD - 319929

Page 9 of 12



Vomiting, Increased liver enzymes., Weakness, Heavy or prolonged skin exposure may result in the absorption of harmful amounts of material. To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Pancreas. -

#### **SECTION 12: Ecological information**

#### 12.1 Toxicity

Toxicity to fish	flow-through test LC50 - Pimephales promelas (fathead minnow) - 136 mg/l - 96 h (OECD Test Guideline 203)
Toxicity to daphnia and other aquatic invertebrates	static test EC50 - Daphnia magna (Water flea) - 160 mg/l - 48 h Remarks: (in soft water)(IUCLID)
Toxicity to algae	static test EC50 - Desmodesmus subspicatus (green algae) - 166 mg/l - 72 h (OECD Test Guideline 201)
Toxicity to bacteria	static test EC50 - activated sludge - 35,500 mg/l  - 3 h (OECD Test Guideline 209)

#### 12.2 Persistence and degradability

Biodegradability aerobic - Exposure time 20 d Result: > 90 % - Inherently biodegradable. Remarks: (ECHA)

#### 12.3 Bioaccumulative potential

Bioaccumulation

at 16 °C - 0.957 mg/l(Ethylene dichloride)

Bioconcentration factor (BCF): 2

Lepomis macrochirus - 14 d

#### **12.4 Mobility in soil**

No data available

#### 12.5 Results of PBT and vPvB assessment

 $\mathsf{PBT}/\mathsf{vPvB}$  assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

No data available

#### SECTION 13: Disposal considerations

#### **13.1 Waste treatment methods**

#### Product

Contact a licensed professional waste disposal service to dispose of this material. Offer surplus and non-recyclable solutions to a licensed disposal company. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable.

SIGALD - 319929

Page 10 of 12



Dispose of as unused product.

#### **SECTION 14: Transport information**

#### DOT (US)

UN number: 1184 Class: 3 (6.1) Packing group: II Proper shipping name: Ethylene dichloride Reportable Quantity (RQ): 100 lbs Reportable Quantity (RQ): 100 lbs Poison Inhalation Hazard: No

#### IMDG

UN number: 1184 Class: 3 (6.1) Packing group: II EMS-No: F-E, S-D Proper shipping name: ETHYLENE DICHLORIDE

#### ΙΑΤΑ

UN number: 1184 Class: 3 (6.1) Packing group: II Proper shipping name: Ethylene dichloride

#### SECTION 15: Regulatory information

#### SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

#### SARA 313 Components

The following components are subject to reporting levels established by SARA Title III, Section 313:

	CAS-No.	Revision Date
Ethylene dichloride	107-06-2	2007-07-01

#### SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard, Chronic Health Hazard

Reportable Quantity D028 lbs

#### **Massachusetts Right To Know Components**

No components are subject to the Massachusetts Right to Know Act.

#### Pennsylvania Right To Know Components

Ethylene dichloride	CAS-No.	Revision Date
	107-06-2	2007-07-01

Page 11 of 12



The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

#### **SECTION 16: Other information**

#### Further information

Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.

Version: 6.3

Revision Date: 02/03/2020

Print Date: 11/20/2020

SIGALD - 319929

Page 12 of 12

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



# Material Safety Data Sheet Acetaldehyde, 99.5%

ACC# 91732

## Section 1 - Chemical Product and Company Identification

MSDS Name: Acetaldehyde, 99.5%

**Catalog Numbers:** AC149510000, AC149510010, AC149510100, AC149512500, O1004-250, S79878

Synonyms: Acetic aldehyde; Acetylaldehyde; Ethylaldehyde; Ethanal.

**Company Identification:** 

Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410

For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

## Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
75-07-0	Acetaldehyde	> 99.5	200-836-8

Section 3 - Hazards Identification

## EMERGENCY OVERVIEW

Appearance: clear, colorless liquid. Flash Point: -27 deg C.

**Danger!** Air sensitive. Oxidizes readily in air to form unstable peroxides that may explode spontaneously. Extremely flammable liquid and vapor. Vapor may cause flash fire. Causes severe eye irritation. Lachrymator (substance which increases the flow of tears). Causes respiratory tract irritation. May be harmful if swallowed. May cause skin irritation. May cause cancer based on animal studies. May cause lung damage. May cause central nervous system depression. May cause liver and kidney damage. Marine pollutant. Store in explosion-proof refrigerator. Hazardous polymerization may occur.

Target Organs: Blood, kidneys, central nervous system, liver, lungs, eyes, skin.

#### **Potential Health Effects**

**Eye:** Causes severe eye irritation. Vapors may cause eye irritation. May cause transient corneal injury. Lachrymator (substance which increases the flow of tears).

**Skin:** May cause skin irritation. May cause skin sensitization, an allergic reaction, which becomes evident upon re-exposure to this material.

**Ingestion:** May cause gastrointestinal irritation with nausea, vomiting and diarrhea. May be harmful if swallowed. May cause central nervous system depression.

**Inhalation:** Causes respiratory tract irritation. May cause narcotic effects in high concentration. Exposure produces central nervous system depression. Vapors may cause dizziness or suffocation. Can produce delayed pulmonary edema. Inhalation of large amounts may cause respiratory stimulation, followed by respiratory depression, convulsions and possible death due to respiratory paralysis.

**Chronic:** Prolonged or repeated skin contact may cause dermatitis. Prolonged or repeated eye contact may cause conjunctivitis. Prolonged skin contact may cause erythema (redness) and burns. Long-term inhalation studies of acetaldehyde produced laryngeal cancers in hamsters and nasal cancers in rats.

## Section 4 - First Aid Measures

**Eyes:** In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid immediately.

**Skin:** In case of contact, immediately flush skin with soap and plenty of water. Remove contaminated clothing and shoes. Get medical aid if symptoms occur. Wash clothing before reuse. **Ingestion:** If swallowed, do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical aid.

**Inhalation:** If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid.

**Notes to Physician:** Persons with kidney disease, chronic respiratory disease, liver disease, or skin disease may be at increased risk from exposure to this substance. Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

**General Information:** As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. Water runoff can cause environmental damage. Dike and collect water used to fight fire. Vapors may form an explosive mixture with air. Use water spray to keep fire-exposed containers cool. Wear appropriate protective clothing to prevent contact with skin and eyes. Wear a self-contained breathing apparatus (SCBA) to prevent contact with thermal decomposition products. Extremely flammable liquid and vapor. Vapor may cause flash fire. Forms peroxides of unknown stability. Containers may explode in the heat of a fire. Will be easily ignited by heat, sparks or flame. Vapors are heavier than air and may travel to a source of ignition and flash back. Vapors can spread along the ground and collect in low or confined areas. Sensitivity to mechanical impact: Yes, if peroxides are formed. Closed containers exposed to heat may explode. Sensitive to static discharge.

**Extinguishing Media:** For small fires, use dry chemical, carbon dioxide, water spray or alcohol-resistant foam. For large fires, use water spray, fog, or alcohol-resistant foam. Water may be ineffective. Do NOT use straight streams of water.

Flash Point: -27 deg C (-16.60 deg F)

Autoignition Temperature: 175 deg C (347.00 deg F)

Explosion Limits, Lower: 4.0%

**Upper:** 60.0%

NFPA Rating: (estimated) Health: 2; Flammability: 4; Instability: 2

## Section 6 - Accidental Release Measures

**General Information:** Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Use water spray to dilute spill to a non-flammable mixture. Avoid runoff into

storm sewers and ditches which lead to waterways. Use water spray to disperse the gas/vapor. Remove all sources of ignition. Use a spark-proof tool. Provide ventilation. Place under an inert atmosphere. U.S. regulations require reporting spills and releases to soil, water and air in excess of reportable quantities.

## Section 7 - Handling and Storage

**Handling:** Ground and bond containers when transferring material. Do not breathe dust, mist, or vapor. Do not get in eyes, on skin, or on clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Take precautionary measures against static discharges. Keep container tightly closed. Keep away from heat, sparks and flame. Do not ingest or inhale. Handle under an inert atmosphere. Store protected from air. This product may be under pressure; cool before opening. If peroxide formation is suspected, do not open or move container. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. Use only with adequate ventilation.

**Storage:** Keep away from heat, sparks, and flame. Keep away from sources of ignition. Keep from freezing. Store in a tightly closed container. Keep from contact with oxidizing materials. Keep away from strong acids. Refrigerator/flammables. Keep away from reducing agents. Do not expose to air. Store in explosion-proof refrigerator. After opening, purge container with nitrogen before reclosing. Periodically test for peroxide formation on long-term storage. Addition of water or appropriate reducing materials will lessen peroxide formation. Store under an inert atmosphere.

## Section 8 - Exposure Controls, Personal Protection

**Engineering Controls:** Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

#### **Exposure Limits**

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Acetaldehyde	25 ppm Ceiling	2000 ppm IDLH	200 ppm TWA; 360 mg/m3 TWA

**OSHA Vacated PELs:** Acetaldehyde: 100 ppm TWA; 180 mg/m3 TWA **Personal Protective Equipment** 

Eyes: Wear chemical splash goggles.

Skin: Wear appropriate protective gloves to prevent skin exposure.

**Clothing:** Wear appropriate protective clothing to prevent skin exposure.

**Respirators:** Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

## Section 9 - Physical and Chemical Properties

**Physical State:** Liquid **Appearance:** clear, colorless **Odor:** pungent odor - fruity odor pH: Not available.
Vapor Pressure: 750 mm Hg @ 20 deg C
Vapor Density: 1.52
Evaporation Rate:49.1
Viscosity: Not available.
Boiling Point: 21 deg C
Freezing/Melting Point:-123 deg C
Decomposition Temperature:> 400 deg C
Solubility: Soluble.
Specific Gravity/Density:0.7800
Molecular Formula:C2H40
Molecular Weight:44.04

# Section 10 - Stability and Reactivity

**Chemical Stability:** Unstable in air. May undergo autopolymerization. Forms explosive peroxides on prolonged storage and exposure to air. Polymerizes violently in the presence of traces of metals or acids.

Conditions to Avoid: Ignition sources, exposure to air, heat.

**Incompatibilities with Other Materials:** Strong oxidizing agents, strong reducing agents, acids, strong bases, alcohols, amines, ammonia, halogens, phenols, phosphorus, isocyanates, acid anhydrides, hydrogen sulfide, air, ketones, hydrogen cyanide, cobalt chloride, mercury (II) chlorate, mercury (II) perchlorate, trace metals.

Hazardous Decomposition Products: Carbon monoxide, carbon dioxide, methane. Hazardous Polymerization: May occur.

Section 11 - Toxicological Information

RTECS#: CAS# 75-07-0: AB1925000 LD50/LC50: CAS# 75-07-0: Draize test, rabbit, eye: 40 mg Severe; Inhalation, mouse: LC50 = 23 gm/m3/4H; Inhalation, mouse: LC50 = 20300 mg/m3/2H; Inhalation, rat: LC50 = 13300 ppm/4H; Inhalation, rat: LC50 = 25000 mg/m3; Oral, mouse: LD50 = 900 mg/kg; Oral, rat: LD50 = 661 mg/kg; Oral, rat: LD50 = 1930 mg/kg; Skin, rabbit: LD50 = 3540 mg/kg;

#### Carcinogenicity:

CAS# 75-07-0:

- ACGIH: A3 Confirmed animal carcinogen with unknown relevance to humans
- California: carcinogen, initial date 4/1/88
- NTP: Suspect carcinogen
- IARC: Group 2B carcinogen

Epidemiology: Inhalation, rat: TCLo = 735 ppm/6H/2Y-I (Tumorigenic - Carcinogenic by RTECS criteria - Sense Organs and Special Senses (Olfaction) - tumors).; Inhalation, hamster: TCLo = 2040 ppm/7H/52W-I (Tumorigenic - equivocal tumorigenic agent by RTECS criteria - Sense Organs and Special Senses (Olfaction) - tumors and Lungs, Thorax, or Respiration - tumors). Teratogenicity: Oral, rat: TDLo = 4800 mg/kg (female 1-20 day(s) after conception) Effects on Embryo or Fetus - fetotoxicity (except death, e.g., stunted fetus) and Specific Developmental Abnormalities - respiratory system and hepatobiliary system.; Oral, rat: TDLo = 5040 mg/kg (female 1-21 day(s) after conception) Specific Developmental Abnormalities - Central Nervous Systemand Endocrine System and Urogenital System.; Oral, rat: TDLo = 5040 mg/kg (female 1-21 day(s) after conception) Effects on Newborn - growth statistics (e.g.%, reduced weight gain). **Reproductive Effects:** Intraperitoneal, rat: TDLo = 50 mg/kg (female 12 day(s) after conception) Fertility - post-implantation mortality (e.g. dead and/or resorbed implants per total number of implants).; Intravenous, mouse: TDLo = 4 gm/kg (female 6 day(s) after conception) Fertility post-implantation mortality (e.g. dead and/or resorbed implants per total number of implants). Mutagenicity: DNA Damage: Human, Lymphocyte = 1560 umol/L.; DNA Inhibition: Human Cells not otherwise specified = 30 mmol/L.; Mutation test systems - not otherwise specified: = Human Cells - not otherwise specified = 30 mmol/L.; DNA Inhibition: Human, HeLa cell = 10 mmol/L.; Cytogenetic Analysis: Human, Leukocyte = 1000 ppm/72H (Continuous).; Sister Chromatid Exchange: Human, Lymphocyte = 1200 umol/L.; Mutation in Mammalian Somatic Cells: Human, Fibroblast = 5 mmol/L.

**Neurotoxicity:** No information found **Other Studies:** 

Section 12 - Ecological Information

**Ecotoxicity:** Fish: Fathead Minnow: EC50 = 30.8-37.2 mg/L; 96 Hr; Flow-through at 21.6-23.9°C (pH 7.1-7.63)Fish: Bluegill/Sunfish: LC50 = 53 mg/L; 96 Hr; UnspecifiedWater flea Daphnia: EC50 = 9000-14000 mg/L; 48 Hr; UnspecifiedBacteria: Phytobacterium phosphoreum: EC50 = 280.6-403.5 mg/L; 5,15,25 min; Unspecified No data available.

**Environmental:** In the atmosphere it will degrade in a matter of hours by reaction with hydroxyl radicals and photolysis. If released into water it will rapidly biodegrade and volatilize (half-life 3 hrs for a typical river). If spilled on land it will also rapidly evaporate and leach into the ground where it will biodegrade.

**Physical:** Log P(oct) = 0.5 **Other:** No information available.

## Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

#### **RCRA U-Series:**

CAS# 75-07-0: waste number U001 (Ignitable waste).

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	ACETALDEHYDE	ACETALDEHYDE
Hazard Class:	3	3
UN Number:	UN1089	UN1089
Packing Group:	I	I
Additional Info:		FLASHPOINT -39 C

# Section 15 - Regulatory Information

#### **US FEDERAL**

#### TSCA

CAS# 75-07-0 is listed on the TSCA inventory.

#### Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

#### **Chemical Test Rules**

None of the chemicals in this product are under a Chemical Test Rule.

#### Section 12b

None of the chemicals are listed under TSCA Section 12b.

#### TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

#### **CERCLA Hazardous Substances and corresponding RQs** CAS# 75-07-0: 1000 lb final RQ; 454 kg final RQ

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

#### SARA Codes

CAS # 75-07-0: immediate, delayed, fire, reactive.

#### Section 313

This material contains Acetaldehyde (CAS# 75-07-0, > 99.5%),which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

#### **Clean Air Act:**

CAS# 75-07-0 is listed as a hazardous air pollutant (HAP).

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

#### **Clean Water Act:**

CAS# 75-07-0 is listed as a Hazardous Substance under the CWA.

None of the chemicals in this product are listed as Priority Pollutants under the CWA.

None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

#### OSHA:

CAS# 75-07-0 is considered highly hazardous by OSHA.

#### STATE

CAS# 75-07-0 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

#### California Prop 65

# The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act:

WARNING: This product contains Acetaldehyde, a chemical known to the state of California to cause cancer.

California No Significant Risk Level: CAS# 75-07-0: 90 æg/day NSRL (inhalation)

## **European/International Regulations**

# European Labeling in Accordance with EC Directives Hazard Symbols:

#### XN F+

#### **Risk Phrases:**

R 12 Extremely flammable.

R 36/37 Irritating to eyes and respiratory system.

R 40 Limited evidence of a carcinogenic effect.

#### Safety Phrases:

S 16 Keep away from sources of ignition - No smoking.

S 33 Take precautionary measures against static discharges.

S 36/37 Wear suitable protective clothing and gloves.

#### WGK (Water Danger/Protection)

CAS# 75-07-0: 1

#### Canada - DSL/NDSL

CAS# 75-07-0 is listed on Canada's DSL List.

## Canada - WHMIS

not available.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

#### **Canadian Ingredient Disclosure List**

CAS# 75-07-0 is listed on the Canadian Ingredient Disclosure List.

# Section 16 - Additional Information

#### MSDS Creation Date: 1/11/2001 Revision #4 Date: 2/18/2008

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

#### MATERIAL SAFETY DATA SHEET

Date Printed: 03/12/2007 Date Updated: 01/31/2006 Version 1.22

Section 1 - Pro	duct and Company Information		
Product Name Product Number Brand	BENZENE, ANHYDROUS, 99.8% 401765 ALDRICH		
Company Address	Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 US		
Technical Phone Fax: Emergency Phone	: 800-325-5832 800-325-5052		
Section 2 - Com	position/Information on Ingredient		
Substance Name BENZENE	CAS # SARA 313 71-43-2 Yes		
Formula Synonyms RTECS Number:	C6H6 (6)Annulene * Benzeen (Dutch) * Benzen (Polish) * Benzene (ACGIH:OSHA) * Benzin (Obs.) * Benzine (Obs.) * Benzol (OSHA) * Benzole * Benzolene * Benzolo (Italian) * Bicarburet of hydrogen * Carbon oil * Coal naphtha * Cyclohexatriene * Fenzen (Czech) * Mineral naphtha * NCI-C55276 * Phene * Phenyl hydride * Pyrobenzol * Pyrobenzole * RCRA waste number U019 CY1400000		
Section 3 - Haz	ards Identification		
May cause ca to respirato Also toxic: exposure thr swallowed. H Danger: cont	(SA) Highly Flammable (EU). Toxic. Incer. May cause heritable genetic damage. Irritating bry system and skin. Risk of serious damage to eyes. danger of serious damage to health by prolonged bough inhalation, in contact with skin and if farmful: may cause lung damage if swallowed. ains benzene, cancer hazard. Target organ(s): Blood. Confirmed Carcinogen (US). Calif. Prop. 65 carcinogen		
HMIS RATING HEALTH: 2* FLAMMABILITY REACTIVITY:			
NFPA RATING HEALTH: 2 FLAMMABILITY REACTIVITY:			
*additional	chronic hazards present.		

Section 4 - First Aid Measures

ORAL EXPOSURE If swallowed, wash out mouth with water provided person is conscious. Call a physician. Do not induce vomiting. INHALATION EXPOSURE If inhaled, remove to fresh air. If not breathing give artificial respiration. If breathing is difficult, give oxygen. DERMAL EXPOSURE In case of contact, immediately wash skin with soap and copious amounts of water. EYE EXPOSURE Assure adequate flushing of the eyes by separating the eyelids with fingers. Section 5 - Fire Fighting Measures FLAMMABLE HAZARDS Flammable Hazards: Yes EXPLOSION HAZARDS Vapor may travel considerable distance to source of ignition and flash back. Container explosion may occur under fire conditions. FLASH POINT 12 °F - 11.0 °C Method: closed cup EXPLOSION LIMITS Lower: 1.3 % Upper: 8 % AUTOIGNITION TEMP 562 °C FLAMMABILITY N/A EXTINGUISHING MEDIA Suitable: For small (incipient) fires, use media such as "alcohol" foam, dry chemical, or carbon dioxide. For large fires, apply water from as far as possible. Use very large quantities (flooding) of water applied as a mist or spray; solid streams of water may be ineffective. Cool all affected containers with flooding quantities of water. FIREFIGHTING Protective Equipment: Wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes. Specific Hazard(s): Flammable liquid. Vapor may travel considerable distance to source of ignition and flash back. Emits toxic fumes under fire conditions. Section 6 - Accidental Release Measures PROCEDURE TO BE FOLLOWED IN CASE OF LEAK OR SPILL

PROCEDURE(S) OF PERSONAL PRECAUTION(S) Wear self-contained breathing apparatus, rubber boots, and heavy rubber gloves.							
Cover wi containe Ventila	METHODS FOR CLEANING UP Cover with dry-lime, sand, or soda ash. Place in covered containers using non-sparking tools and transport outdoors. Ventilate area and wash spill site after material pickup is complete.						
Section 7	- Handling and Stor	rage					
			. Do not get in eyes, on or repeated exposure.				
	STORAGE Suitable: Keep tightly closed. Keep away from heat, sparks, and open flame.						
Section 8	- Exposure Controls	s / PPE					
ENGINEERING CONTROLS Safety shower and eye bath. Use only in a chemical fume hood. Use nonsparking tools.							
Respirat under aj (EU). Wi appropris combinat a backuj means of Other: M chemicat clothing	ppropriate governme here risk assessmen iate use a full-fac tion (US) or type A to engineering co f protection, use a Wear appropriate go l-resistant gloves g.	ors and con- ent standa nt shows a ce respira ABEK (EN 1 ontrols. I a full-fac- overnment	mponents tested and approved rds such as NIOSH (US) or CEN ir-purifying respirators are tor with multi-purpose 4387) respirator cartridges as f the respirator is the sole e supplied air respirator. approved respirator, oggles, other protective				
Wash the	GIENE MEASURES proughly after hand g promptly.	dling. Rem	ove and wash contaminated				
EXPOSURE L	IMITS, RTECS						
Country	Source	Туре	Value				
USA	ACGIH	TWA STEL	0.5 PPM3 2.5 PPM				
USA New Zealand	MSHA Standard		co25 PPM (80 MG/M3) (SKIN)				
	neck ACGIH TLV						
USA	NIOSH	TWA Ceiling	0.1 PPM col PPM/15M				
EXPOSURE L	IMITS						
Country	Source	Туре	Value				
Poland	Poland NDS 1.6						
Poland Poland		NDSCh NDSP	-				
Section 9	- Physical/Chemical	l Properti	es				
Appearance		ical State					

Physical State: Liquid Color: Colorless

Property	Value	At Temperature or Pressure
Molecular Weight pH	78.11 AMU N/A	
BP/BP Range	80.0 - 80.2 °C	760 mmHg
MP/MP Range	5.5 °C	
Freezing Point	N/A	20 °C
Vapor Pressure Vapor Density	74.6 mmHg	20 °C
Saturated Vapor Conc.	2.77 g/l N/A	
SG/Density	0.879 g/cm3	
Bulk Density	N/A	
Odor Threshold	N/A	
Volatile%	N/A	
VOC Content	N/A	
Water Content	N/A	
Solvent Content	N/A	
Evaporation Rate	N/A	
Viscosity	N/A	
Surface Tension	N/A	
Partition Coefficient	N/A	
Decomposition Temp. Flash Point	N/A 12 °F - 11.0 °C	Method: closed cup
Explosion Limits	Lower: 1.3 %	Meeniou: crosed cup
	Upper: 8 %	
Flammability	N/A	
Autoignition Temp	562 °C	
Refractive Index	1.501	
Optical Rotation	N/A	
Miscellaneous Data	N/A	
Solubility	N/A	

N/A = not available

Section 10 - Stability and Reactivity

STABILITY

Stable: Stable. Materials to Avoid: Acids, Bases, Halogens, Strong oxidizing agents, Avoid contact with metal salts.

HAZARDOUS DECOMPOSITION PRODUCTS Hazardous Decomposition Products: Carbon monoxide, Carbon dioxide.

HAZARDOUS POLYMERIZATION Hazardous Polymerization: Will not occur

Section 11 - Toxicological Information

cancer hazard

ROUTE OF EXPOSURE Skin Contact: Causes skin irritation. Skin Absorption: May be harmful if absorbed through the skin. Eye Contact: Causes eye irritation. Inhalation: May be harmful if inhaled. Material may be irritating to mucous membranes and upper respiratory tract. Ingestion: May be harmful if swallowed.

TARGET ORGAN(S) OR SYSTEM(S)
Blood. Female reproductive system. Eyes. Bone marrow.

Nausea, dizziness, and headache. Blood effects. Inhalation of high concentrations of benzene may have an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous excitation and/or giddiness, depression, drowsiness, or fatigue. The victim may experience tightness in the chest, breathlessness, and loss of consciousness. Tremors, convulsions, and death due to respiratory paralysis or circulatory collapse can occur in a few minutes to several hours following severe exposures. Aspiration of small amounts of liquid immediately causes pulmonary edema and hemorrhage of pulmonary tissue. Direct skin contact may cause erythema. Repeated or prolonged skin contact may result in drying, scaling dermatitis, or development of secondary skin infections. The chief target organ is the hematopoietic system. Bleeding from the nose, gums, or mucous membranes and the development of purpuric spots, pancytopenia, leukopenia, thrombocytopenia, aplastic anemia, and leukemia may occur as the condition progresses. The bone marrow may appear normal, aplastic or hyperplastic, and may not correlate with peripheral blood-forming tissues. The onset of effects of prolonged benzene exposure may be delayed for many months or years after the actual exposure has ceased. Narcotic effect. Exposure can cause: TOXICITY DATA Oral Rat 5,600 mg/kg LD50 Oral Rat * LD50 Oral Rat 10,020 mg/kg LD50 Oral Rat 2,990 mg/kg T.D50 4 н Inhalation rat, female 44,700 mg/m3LC50 Inhalation Human 2 PPH/5M LCLO Oral Man 50 mg/kgLDLO Inhalation Human 65 mg/m3LCLO

SIGNS AND SYMPTOMS OF EXPOSURE

```
Remarks: Blood:Other changes.
  Oral
  Rat
   930 mg/kg
  LD50
  Remarks: Behavioral:Tremor. Behavioral:Convulsions or effect on
   seizure threshold.
  Inhalation
  Rat
  10,000 ppm
  LC50
  Intraperitoneal
  Rat
  1100 UG/KG
  LD50
  Oral
  Mouse
   4700 mg/kg
  LD50
  Inhalation
  Mouse
   9,980 ppm
  LC50
  Remarks: Lungs, Thorax, or Respiration: Dyspnea.
  Behavioral:Muscle weakness. Behavioral:General anesthetic.
  Skin
  Mouse
  48 mg/kg
  LD50
  Intraperitoneal
  Mouse
   340 MG/KG
  LD50
  Skin
  Rabbit
  >9400 UL/KG
  LD50
  Skin
  Guinea pig
  >9400 UL/KG
  LD50
  Oral
  Mammal
   5700 mg/kg
  LD50
IRRITATION DATA
  Eyes
  Rabbit
  Remarks: Moderate irritation effect
  Skin
  Rabbit
```

Remarks: Moderate irritation effect Skin Rabbit 15 mg 24H Remarks: Open irritation test Skin Rabbit 20 mg 24H Remarks: Moderate irritation effect Eyes Rabbit 88 mg Remarks: Moderate irritation effect Eyes Rabbit 2 mg 24H Remarks: Severe irritation effect CHRONIC EXPOSURE - CARCINOGEN Result: This is or contains a component that has been reported to be carcinogenic based on its IARC, OSHA, ACGIH, NTP, or EPA classification. Species: Man Route of Application: Inhalation Dose: 200 MG/M3 Exposure Time: 78W-Frequency: I Result: Blood: Thrombocytopenia. Blood: Leukemia Tumorigenic: Carcinogenic by RTECS criteria. Species: Human Route of Application: Inhalation Dose: 10 PPM Exposure Time: 8H/10Y Frequency: I Result: Blood:Leukemia Tumorigenic:Carcinogenic by RTECS criteria. Species: Rat Route of Application: Oral Dose: 52 GM/KG Exposure Time: 52W Frequency: I Result: Tumorigenic: Carcinogenic by RTECS criteria. Endocrine:Tumors. Blood:Leukemia Species: Rat Route of Application: Inhalation Dose: 1200 PPM Exposure Time: 6H/10W Frequency: I Result: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Ear:Tumors. Tumorigenic:Equivocal tumorigenic agent by RTECS criteria.

Species: Mouse Route of Application: Oral Dose: 18250 MG/KG Exposure Time: 2Y Frequency: C Result: Tumorigenic:Carcinogenic by RTECS criteria. Endocrine: Tumors. Blood: Lymphomas including Hodgkin's disease. Species: Mouse Route of Application: Inhalation Dose: 300 PPM Exposure Time: 6H/16W Frequency: I Result: Blood:Lymphomas including Hodgkin's disease. Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Species: Mouse Route of Application: Skin Dose: 1200 GM/KG Exposure Time: 49W Frequency: I Result: Skin and Appendages: Other: Tumors. Tumorigenic: Neoplastic by RTECS criteria. Species: Mouse Route of Application: Intraperitoneal Dose: 1200 MG/KG Exposure Time: 8W Frequency: I Result: Tumorigenic: Neoplastic by RTECS criteria. Lungs, Thorax, or Respiration: Tumors. Species: Mouse Route of Application: Subcutaneous Dose: 600 MG/KG Exposure Time: 17W Frequency: I Result: Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Blood:Leukemia Blood:Lymphomas including Hodgkin's disease. Species: Mouse Route of Application: Parenteral Dose: 670 MG/KG Exposure Time: 19W Frequency: I Result: Blood:Lymphomas including Hodgkin's disease. Blood:Leukemia Tumorigenic:Equivocal tumorigenic agent by RTECS criteria. Species: Human Route of Application: Inhalation Dose: 150 PPM Exposure Time: 15M/8Y Frequency: I Result: Blood:Leukemia Tumorigenic:Carcinogenic by RTECS criteria. Species: Rat Route of Application: Oral Dose: 52 GM/KG

Exposure Time: 1Y Frequency: I Result: Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Ear:Tumors. Tumorigenic:Carcinogenic by RTECS criteria. Blood:Leukemia Species: Rat Route of Application: Oral Dose: 10 GM/KG Exposure Time: 52W Frequency: I Result: Endocrine: Tumors. Blood: Leukemia Tumorigenic: Carcinogenic by RTECS criteria. Species: Man Route of Application: Inhalation Dose: 600 MG/M3 Exposure Time: 4Y-Frequency: I Result: Blood:Leukemia Tumorigenic:Carcinogenic by RTECS criteria. Species: Man Route of Application: Inhalation Dose: 150 PPM Exposure Time: 11Y Frequency: I Result: Tumorigenic:Carcinogenic by RTECS criteria. Blood:Lymphomas including Hodgkin's disease. Species: Mouse Route of Application: Inhalation Dose: 1200 PPM Exposure Time: 6H/10W Frequency: I Result: Tumorigenic: Equivocal tumorigenic agent by RTECS criteria. Sense Organs and Special Senses (Nose, Eye, Ear, and Taste):Ear:Tumors. Lungs, Thorax, or Respiration:Tumors. Species: Mouse Route of Application: Oral Dose: 2400 MG/KG Exposure Time: 8W Frequency: I Result: Tumorigenic: Neoplastic by RTECS criteria. Lungs, Thorax, or Respiration: Tumors. Species: Human Route of Application: Inhalation Dose: 8 PPB Exposure Time: 4W Frequency: I Result: Tumorigenic: Carcinogenic by RTECS criteria. Blood:Leukemia Species: Human Route of Application: Inhalation Dose: 10 MG/M3 Exposure Time: 11Y-Frequency: I Result: Blood:Leukemia Tumorigenic:Carcinogenic by RTECS criteria.

Species: Mouse Route of Application: Inhalation Dose: 300 PPM Exposure Time: 6H/16W Frequency: I Result: Blood:Leukemia Tumorigenic:Carcinogenic by RTECS criteria. OSHA CARCINOGEN LIST cancer hazard IARC CARCINOGEN LIST Rating: Group 1 NTP CARCINOGEN LIST Rating: Clear evidence. Species: Mouse/rat Route: Gavage ACGIH CARCINOGEN LIST Rating: Al CHRONIC EXPOSURE - TERATOGEN Species: Rat Dose: 50 PPM/24H Route of Application: Inhalation Exposure Time: (7-14D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Effects on Embryo or Fetus: Extra embryonic structures (e.g., placenta, umbilical cord). Species: Mouse Dose: 9 GM/KG Route of Application: Oral Exposure Time: (6-15D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Species: Mouse Dose: 500 PPM/7H Route of Application: Inhalation Exposure Time: (6-15D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Specific Developmental Abnormalities: Musculoskeletal system. Species: Mouse Dose: 500 MG/M3/12H Route of Application: Inhalation Exposure Time: (6-15D PREG) Result: Specific Developmental Abnormalities: Musculoskeletal system. Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Species: Mouse Dose: 5 PPM

Route of Application: Inhalation Exposure Time: (6-15D PREG) Result: Effects on Embryo or Fetus: Cytological changes (including somatic cell genetic material). Specific Developmental Abnormalities: Blood and lymphatic system (including spleen and marrow). Species: Mouse Dose: 20 PPM/6H Route of Application: Inhalation Exposure Time: (6-15D PREG) Result: Specific Developmental Abnormalities: Blood and lymphatic system (including spleen and marrow). Species: Mouse Dose: 219 MG/KG Route of Application: Intraperitoneal Exposure Time: (14D PREG) Result: Specific Developmental Abnormalities: Blood and lymphatic system (including spleen and marrow). Specific Developmental Abnormalities: Hepatobiliary system. Species: Mouse Dose: 1100 MG/KG Route of Application: Subcutaneous Exposure Time: (12D PREG) Result: Effects on Embryo or Fetus: Other effects to embryo. Species: Mouse Dose: 7030 MG/KG Route of Application: Subcutaneous Exposure Time: (12-13D PREG) Result: Effects on Embryo or Fetus: Extra embryonic structures (e.g., placenta, umbilical cord). Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Specific Developmental Abnormalities: Musculoskeletal system. Species: Mouse Dose: 13200 UG/KG Route of Application: Intravenous Exposure Time: (13-16D PREG) Result: Effects on Embryo or Fetus: Cytological changes (including somatic cell genetic material). Species: Rabbit Dose: 1 GM/M3/24H Route of Application: Inhalation Exposure Time: (7-20D PREG) Result: Effects on Embryo or Fetus: Fetotoxicity (except death, e.g., stunted fetus). Specific Developmental Abnormalities: Other developmental abnormalities. CHRONIC EXPOSURE - MUTAGEN Result: Laboratory experiments have shown mutagenic effects. Species: Human Dose: 2200 UMOL/L Cell Type: leukocyte Mutation test: DNA inhibition Species: Human Dose: 2200 UMOL/L

Cell Type: HeLa cell Mutation test: DNA inhibition Species: Human Dose: 5 UMOL/L Cell Type: lymphocyte Mutation test: Other mutation test systems Species: Human Route: Inhalation Dose: 125 PPM Exposure Time: 1Y Mutation test: Cytogenetic analysis Species: Human Dose: 1 MMOL/L Exposure Time: 72H Cell Type: leukocyte Mutation test: Cytogenetic analysis Species: Human Dose: 1 MG/L Cell Type: lymphocyte Mutation test: Cytogenetic analysis Species: Human Route: Unreported Dose: 10 PPM Exposure Time: 4W Mutation test: Cytogenetic analysis Species: Human Dose: 200 UMOL/L Cell Type: lymphocyte Mutation test: Sister chromatid exchange Species: Human Dose: 1 GM/L Cell Type: lymphocyte Mutation test: Mutation in mammalian somatic cells. Species: Rat Route: Inhalation Dose: 1 PPM Exposure Time: 6H Mutation test: Micronucleus test Species: Rat Dose: 1 MMOL/L Cell Type: liver Mutation test: Unscheduled DNA synthesis Species: Rat Route: Inhalation Dose: 400 PPM Mutation test: DNA inhibition Species: Rat Dose: 1 MMOL/L Cell Type: liver Mutation test: Other mutation test systems

Species: Rat Dose: 1 MMOL/L Cell Type: Bone marrow Mutation test: Other mutation test systems Species: Rat Route: Subcutaneous Dose: 1 GM/L Mutation test: Other mutation test systems Species: Rat Route: Subcutaneous Dose: 2200 MG/KG Mutation test: Other mutation test systems Species: Rat Route: Inhalation Dose: 300 MG/M3/16W-I Mutation test: Cytogenetic analysis Species: Rat Route: Subcutaneous Dose: 2400 MG/KG Exposure Time: 12D Mutation test: Cytogenetic analysis Species: Rat Route: Intraperitoneal Dose: 234 MG/KG Mutation test: Cytogenetic analysis Species: Rat Route: Oral Dose: 39060 UG/KG Mutation test: Cytogenetic analysis Species: Rat Route: Inhalation Dose: 3 PPM Exposure Time: 6H Mutation test: Sister chromatid exchange Species: Rat Dose: 1 MMOL/L Cell Type: leukocyte Mutation test: Sister chromatid exchange Species: Mouse Dose: 12500 NMOL/L Cell Type: Embryo Mutation test: Micronucleus test Species: Mouse Route: Subcutaneous Dose: 440 MG/KG Mutation test: Micronucleus test Species: Mouse Route: Oral Dose: 40 MG/KG Mutation test: Micronucleus test

Species: Mouse Route: Intraperitoneal Dose: 264 MG/KG Exposure Time: 24H Mutation test: Micronucleus test Species: Mouse Route: Inhalation Dose: 10 PPM Exposure Time: 6H Mutation test: Micronucleus test Species: Mouse Dose: 62500 UG/L (+S9) Cell Type: lymphocyte Mutation test: Mutation in microorganisms Species: Mouse Dose: 2500 MG/L (+S9) Cell Type: Embryo Mutation test: Mutation in microorganisms Species: Mouse Dose: 1 GM/L Cell Type: Embryo Mutation test: Morphological transformation. Species: Mouse Dose: 150 GM/L Cell Type: fibroblast Mutation test: Morphological transformation. Species: Mouse Dose: 3840 UMOL/L Cell Type: lymphocyte Mutation test: DNA damage Species: Mouse Route: Intraperitoneal Dose: 2640 MG/KG Exposure Time: 3D Mutation test: DNA Species: Mouse Route: Oral Dose: 2 GM/KG Mutation test: Other mutation test systems Species: Mouse Dose: 5 MMOL/L Cell Type: Other cell types Mutation test: Other mutation test systems Species: Mouse Route: Oral Dose: 20 GM/KG Mutation test: DNA inhibition Species: Mouse Dose: 10 MMOL/L Cell Type: lymphocyte Mutation test: Other mutation test systems

Species: Mouse Route: Intraperitoneal Dose: 880 MG/KG Mutation test: DNA inhibition Species: Mouse Route: Inhalation Dose: 3000 PPM Exposure Time: 4H Mutation test: DNA inhibition Species: Mouse Dose: 3 MMOL/L Cell Type: Bone marrow Mutation test: DNA inhibition Species: Mouse Route: Inhalation Dose: 10 PPM Exposure Time: 6H Mutation test: Sister chromatid exchange Species: Mouse Route: Intraperitoneal Dose: 5 GM/KG Mutation test: Sister chromatid exchange Species: Mouse Route: Oral Dose: 20 MG/KG Mutation test: Cytogenetic analysis Species: Mouse Route: Intraperitoneal Dose: 264 MG/KG Exposure Time: 3D Mutation test: Cytogenetic analysis Species: Mouse Route: Inhalation Dose: 3000 PPM Mutation test: Cytogenetic analysis Species: Mouse Route: Oral Dose: 1 MG/KG Mutation test: Dominant lethal test Species: Mouse Route: Intraperitoneal Dose: 5 MG/KG Mutation test: Dominant lethal test Species: Mouse Dose: 12500 UG/L Cell Type: lymphocyte Mutation test: Mutation in mammalian somatic cells. Species: Mouse Route: Inhalation Dose: 40 PPB/6W-C

Mutation test: Mutation in mammalian somatic cells. Species: Mouse Route: Oral Dose: 2 GM/KG Exposure Time: 5D Mutation test: Mutation in mammalian somatic cells. Species: Hamster Dose: 100 UG/L Cell Type: Embryo Mutation test: Morphological transformation. Species: Hamster Dose: 17 MMOL/L Cell Type: ovary Mutation test: DNA damage Species: Hamster Dose: 550 MG/L Cell Type: lung Mutation test: Cytogenetic analysis Species: Hamster Dose: 600 MG/L Cell Type: ovary Mutation test: Cytogenetic analysis Species: Hamster Dose: 750 MG/L Cell Type: ovary Mutation test: Sister chromatid exchange Species: Hamster Dose: 62500 UG/L Cell Type: liver Mutation test: SLN Species: Hamster Dose: 30 UMOL/L Cell Type: Embryo Mutation test: SLN Species: Hamster Dose: 10 UMOL/L Cell Type: Embryo Mutation test: Mutation in mammalian somatic cells. Species: Rabbit Route: Subcutaneous Dose: 2344 MG/KG Mutation test: DNA damage Species: Rabbit Route: Subcutaneous Dose: 2 GM/KG Mutation test: DNA inhibition Species: Rabbit Dose: 1 MMOL/L Cell Type: Bone marrow Mutation test: Other mutation test systems

Species: Cat Dose: 1 MMOL/L Cell Type: Bone marrow Mutation test: Other mutation test systems Species: Rabbit Route: Subcutaneous Dose: 8400 MG/KG Mutation test: Cytogenetic analysis CHRONIC EXPOSURE - REPRODUCTIVE HAZARD Species: Rat Dose: 670 MG/M3/24H Route of Application: Inhalation Exposure Time: (15D PRE/1-22D PREG) Result: Effects on Fertility: Female fertility index (e.g., # females pregnant per # sperm positive females; # females pregnant per # females mated ). Species: Rat Dose: 56600 UG/M3/24H Route of Application: Inhalation Exposure Time: (1-22D PREG) Result: Effects on Newborn: Biochemical and metabolic. Species: Rat Dose: 150 PPM/24H Route of Application: Inhalation Exposure Time: (7-14D PREG) Result: Specific Developmental Abnormalities: Musculoskeletal system. Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants). Species: Mouse Dose: 12 GM/KG Route of Application: Oral Exposure Time: (6-15D PREG) Result: Effects on Fertility: Post-implantation mortality (e.g., dead and/or resorbed implants per total number of implants). Species: Mouse Dose: 6500 MG/KG Route of Application: Oral Exposure Time: (8-12D PREG) Result: Effects on Newborn: Growth statistics (e.g., reduced weight gain). Species: Mouse Dose: 5 MG/KG Route of Application: Intraperitoneal Exposure Time: (1D MALE) Result: Effects on Fertility: Pre-implantation mortality (e.g., reduction in number of implants per female; total number of implants per corpora lutea). Effects on Embryo or Fetus: Fetal death. Species: Mouse Dose: 4 GM/KG Route of Application: Parenteral Exposure Time: (12D PREG)

```
Result: Effects on Newborn: Weaning or lactation index (e.g., #
   alive at weaning per # alive at day 4).
   Species: Rabbit
   Dose: 1 GM/M3/24H
   Route of Application: Inhalation
   Exposure Time: (7-20D PREG)
   Result: Effects on Embryo or Fetus: Fetal death. Effects on
   Fertility: Post-implantation mortality (e.g., dead and/or
   resorbed implants per total number of implants). Effects on
   Fertility: Abortion.
   Species: Rabbit
   Dose: 500 PPM/7H
   Route of Application: Inhalation
   Exposure Time: (6-18D PREG)
   Result: Maternal Effects: Other effects.
Section 12 - Ecological Information
ACUTE ECOTOXICITY TESTS
   Test Type: EC50 Algae
   Species: Selenastrum capricornutum resp.
   Time: 72 h
   Value: 29 mg/l
   Test Type: EC50 Daphnia
   Species: Daphnia magna
   Time: 48 h
   Value: 22 mg/l
   Test Type: EC50 Daphnia
   Species: Daphnia magna
   Time: 48 h
   Value: 9.2 mg/l
   Test Type: LC50 Fish
   Species: Onchorhynchus mykiss (Rainbow trout)
   Time: 96 h
   Value: 5.9 mg/l
   Test Type: LC50 Fish
   Species: Pimephales promelas (Fathead minnow)
   Time: 96 h
   Value: 15.0 - 32.0 mg/l
   Test Type: LC50 Fish
   Species: Lepomis macrochirus (Bluegill)
   Time: 96 h
   Value: 230 mg/l
ELIMINATION
   Classification: Substantially biodegradable.
Section 13 - Disposal Considerations
```

APPROPRIATE METHOD OF DISPOSAL OF SUBSTANCE OR PREPARATION Contact a licensed professional waste disposal service to dispose of this material. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Observe all federal, state, and local environmental regulations.

Section 14 - Transport Information

DOT Proper Shipping Name: Benzene UN#: 1114 Class: 3 Packing Group: Packing Group II Hazard Label: Flammable liquid PIH: Not PIH

### IATA

```
Proper Shipping Name: Benzene
IATA UN Number: 1114
Hazard Class: 3
Packing Group: II
```

Section 15 - Regulatory Information

EU DIRECTIVES CLASSIFICATION Symbol of Danger: F-T Indication of Danger: Highly Flammable. Toxic. R: 45-46-11-36/38-48/23/24/25-65 Risk Statements: May cause cancer. May cause heritable genetic damage. Highly flammable. Irritating to eyes and skin. Also toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Harmful: may cause lung damage if swallowed. S: 53-45 Safety Statements: Restricted to professional users. Attention -Avoid exposure - obtain special instructions before use. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). US CLASSIFICATION AND LABEL TEXT Indication of Danger: Flammable (USA) Highly Flammable (EU). Toxic. Risk Statements: May cause cancer. May cause heritable genetic damage. Irritating to respiratory system and skin. Risk of serious damage to eyes. Also toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Harmful: may cause lung damage if swallowed. Safety Statements: Restricted to professional users. Attention -Avoid exposure - obtain special instructions before use. In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). US Statements: Danger: contains benzene, cancer hazard. Target organ(s): Blood. Bone marrow. Confirmed Carcinogen (US). Calif. Prop. 65 carcinogen & developmental hazard. UNITED STATES REGULATORY INFORMATION SARA LISTED: Yes DEMINIMIS: 0.1 % NOTES: This product is subject to SARA section 313 reporting requirements. TSCA INVENTORY ITEM: Yes UNITED STATES - STATE REGULATORY INFORMATION OSHA Remarks: OSHA-regulated carcinogen. See CFR title 29 part

### CALIFORNIA PROP - 65 California Prop - 65: This product is or contains chemical(s) known to the state of California to cause cancer. This product is or contains chemical(s) known to the state of California to cause male developmental toxicity. CANADA REGULATORY INFORMATION WHMIS Classification: This product has been classified in accordance with the hazard criteria of the CPR, and the MSDS contains all the information required by the CPR. DSL: Yes NDSL: No

Section 16 - Other Information

### DISCLAIMER

For R&D use only. Not for drug, household or other uses.

### WARRANTY

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Inc., shall not be held liable for any damage resulting from handling or from contact with the above product. See reverse side of invoice or packing slip for additional terms and conditions of sale. Copyright 2007 Sigma-Aldrich Co. License granted to make unlimited paper copies for internal use only.



# **SAFETY DATA SHEET**

Version 6.4 Revision Date 07/28/2021 Print Date 02/05/2022

### SECTION 1: Identification of the substance/mixture and of the company/undertaking

### **1.1 Product identifiers**

Product name	[:] Chlorobenzene
Product Number Brand	: 284513 : Sigma-Aldrich
Index-No.	: 602-033-00-1
CAS-No.	: 108-90-7

### **1.2** Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

### 1.3 Details of the supplier of the safety data sheet

Company	: Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES
Telephone	: +1 314 771-5765
Fax	: +1 800 325-5052

### **1.4 Emergency telephone**

Emergency Phone #	: 800-424-9300 CHEMTREC (USA) +1-703-
	527-3887 CHEMTREC (International) 24
	Hours/day; 7 Days/week

### **SECTION 2: Hazards identification**

### 2.1 Classification of the substance or mixture

### GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 3), H226 Acute toxicity, Inhalation (Category 4), H332 Skin irritation (Category 2), H315 Short-term (acute) aquatic hazard (Category 2), H401 Long-term (chronic) aquatic hazard (Category 2), H411

For the full text of the H-Statements mentioned in this Section, see Section 16.

### 2.2 GHS Label elements, including precautionary statements

Pictogram



Signal word Sigma-Aldrich - 284513 Warning

Page 1 of 11



Hazard statement(s)	
H226	Flammable liquid and vapor.
H315	Causes skin irritation.
H332	Harmful if inhaled.
H411	Toxic to aquatic life with long lasting effects.
Precautionary statement(s)	
P210	Keep away from heat/ sparks/ open flames/ hot surfaces. No smoking.
P233	Keep container tightly closed.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ ventilating/ lighting/ equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapors/ spray.
P264	Wash skin thoroughly after handling.
P271	Use only outdoors or in a well-ventilated area.
P273	Avoid release to the environment.
P280	Wear protective gloves/ eye protection/ face protection.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/ shower.
P304 + P340 + P312	IF INHALED: Remove person to fresh air and keep comfortable for breathing. Call a POISON CENTER/ doctor if you feel unwell.
P332 + P313	If skin irritation occurs: Get medical advice/ attention.
P362	Take off contaminated clothing and wash before reuse.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant
	foam to extinguish.
P391	Collect spillage.
P403 + P235	Store in a well-ventilated place. Keep cool.
P501	Dispose of contents/ container to an approved waste disposal
	plant.

### 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

### **SECTION 3: Composition/information on ingredients**

# **3.1**Substances<br/>Formula: $C_6H_5Cl$ <br/>Molecular weight:112.56 g/mol<br/>CAS-No.CAS-No.:108-90-7<br/>203-628-5<br/>Index-No.:203-628-5<br/>602-033-00-1ComponentClassificationComponentClassificationchlorobenzeneElam Lig. 3: Acute Top

chlorobenzene		
	Flam. Liq. 3; Acute Tox. 4; Skin Irrit. 2; Aquatic Acute	
	2; Aquatic Chronic 2;	
	H226, H332, H315, H401, H411	

For the full text of the H-Statements mentioned in this Section, see Section 16.

Sigma-Aldrich - 284513

Page 2 of 11

Concentration



### **SECTION 4: First aid measures**

### 4.1 Description of first-aid measures

### **General advice**

Show this material safety data sheet to the doctor in attendance.

### If inhaled

After inhalation: fresh air. If breathing stops: mouth-to-mouth breathing or artificial respiration. Oxygen if necessary. Immediately call in physician.

### In case of skin contact

In case of skin contact: Take off immediately all contaminated clothing. Rinse skin with water/ shower.

### In case of eye contact

After eye contact: rinse out with plenty of water. Remove contact lenses.

### If swallowed

After swallowing: make victim drink water (two glasses at most). Consult doctor if feeling unwell.

### **4.2** Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

**4.3 Indication of any immediate medical attention and special treatment needed** No data available

### **SECTION 5: Firefighting measures**

### 5.1 Extinguishing media

**Suitable extinguishing media** Water Foam Carbon dioxide (CO2) Dry powder

**Unsuitable extinguishing media** For this substance/mixture no limitations of extinguishing agents are given.

### 5.2 Special hazards arising from the substance or mixture

Carbon oxides Hydrogen chloride gas Combustible. Vapors are heavier than air and may spread along floors. Forms explosive mixtures with air at elevated temperatures. Development of hazardous combustion gases or vapours possible in the event of fire.

### 5.3 Advice for firefighters

Stay in danger area only with self-contained breathing apparatus. Prevent skin contact by keeping a safe distance or by wearing suitable protective clothing.

### 5.4 Further information

Remove container from danger zone and cool with water. Suppress (knock down) gases/vapors/mists with a water spray jet. Prevent fire extinguishing water from contaminating surface water or the ground water system.

Sigma-Aldrich - 284513

Page 3 of 11



### **SECTION 6: Accidental release measures**

- 6.1 Personal precautions, protective equipment and emergency procedures Advice for non-emergency personnel: Do not breathe vapors, aerosols. Avoid substance contact. Ensure adequate ventilation. Keep away from heat and sources of ignition. Evacuate the danger area, observe emergency procedures, consult an expert. For personal protection see section 8.
- **6.2 Environmental precautions** Do not let product enter drains. Risk of explosion.
- **6.3 Methods and materials for containment and cleaning up** Cover drains. Collect, bind, and pump off spills. Observe possible material restrictions (see sections 7 and 10). Take up with liquid-absorbent material (e.g. Chemizorb®). Dispose of properly. Clean up affected area.
- **6.4** Reference to other sections For disposal see section 13.

### SECTION 7: Handling and storage

### 7.1 Precautions for safe handling

### Advice on safe handling

Work under hood. Do not inhale substance/mixture. Avoid generation of vapours/aerosols.

### Advice on protection against fire and explosion

Keep away from open flames, hot surfaces and sources of ignition. Take precautionary measures against static discharge.

### **Hygiene measures**

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance. For precautions see section 2.2.

### 7.2 Conditions for safe storage, including any incompatibilities

### Storage conditions

Keep container tightly closed in a dry and well-ventilated place. Keep away from heat and sources of ignition.

Storage class (TRGS 510): 3: Flammable liquids

### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

### SECTION 8: Exposure controls/personal protection

### 8.1 Control parameters

### Ingredients with workplace control parameters

Component	CAS-No.	Value	Control	Basis	
			parameters		
chlorobenzene	108-90-7	TWA	10 ppm	USA. ACGIH Threshold Limit Values (TLV)	
	Remarks	Confirmed humans	en with unknown relevance to		

Sigma-Aldrich - 284513

Page 4 of 11



TWA	75 ppm 350 mg/m3	USA. Occupational Exposure Limits (OSHA) - Table Z-1 Limits for Air Contaminants
PEL	10 ppm 46 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)

### Biological occupational exposure limits

Component	CAS-No.	Parameters	Value	Biological specimen	Basis
chlorobenzene	108-90-7	4- Chlorocatec hol	100mg/g Creatinin e	Urine	ACGIH - Biological Exposure Indices (BEI)
	Remarks	End of shift at end of workweek			
		p- Chlorophen ol	20mg/g Creatinin e	Urine	ACGIH - Biological Exposure Indices (BEI)
		End of shift at end of workweek			

### 8.2 Exposure controls

### Appropriate engineering controls

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance.

### Personal protective equipment

### Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses

### **Skin protection**

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de).

Full contact Material: Viton® Minimum layer thickness: 0.7 mm Break through time: 480 min Material tested:Vitoject® (KCL 890 / Aldrich Z677698, Size M)

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de). Splash contact Material: Nitrile rubber Minimum layer thickness: 0.4 mm Break through time: 10 min Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

Sigma-Aldrich - 284513

Page 5 of 11



### **Body Protection**

Flame retardant antistatic protective clothing.

### **Respiratory protection**

required when vapours/aerosols are generated. Our recommendations on filtering respiratory protection are based on the following standards: DIN EN 143, DIN 14387 and other accompanying standards relating to the used respiratory protection system.

### **Control of environmental exposure**

Do not let product enter drains. Risk of explosion.

### **SECTION 9: Physical and chemical properties**

### 9.1 Information on basic physical and chemical properties

a)	Appearance	Form: liquid Color: colorless
b)	Odor	weak
c)	Odor Threshold	No data available
d)	рН	No data available
e)	Melting point/freezing point	Melting point/range: -45 °C (-49 °F) - lit.
f)	Initial boiling point and boiling range	132 °C 270 °F - lit.
g)	Flash point	27 °C (81 °F) - DIN 51755 Part 1
h)	Evaporation rate	No data available
i)	Flammability (solid, gas)	No data available
j)	Upper/lower flammability or explosive limits	Upper explosion limit: 11 %(V) Lower explosion limit: 1.3 %(V)
k)	Vapor pressure	12.05 hPa at 20 °C (68 °F) - OECD Test Guideline 104
I)	Vapor density	No data available
m)	Density	1.106 g/cm3 at 25 °C (77 °F) - lit.
	Relative density	No data available
n)	Water solubility	0.207 g/l at 20 °C (68 °F)
o)	Partition coefficient: n-octanol/water	log Pow: 2.84 at 20 °C (68 °F) Bioaccumulation is not expected., (ECHA)
p)	Autoignition temperature	No data available
q)	Decomposition temperature	No data available
r)	Viscosity	No data available
s)	Explosive properties	No data available
t)	Oxidizing properties	No data available

Sigma-Aldrich - 284513

Page 6 of 11



### **SECTION 10: Stability and reactivity**

### **10.1 Reactivity**

Vapor/air-mixtures are explosive at intense warming.

### **10.2 Chemical stability**

The product is chemically stable under standard ambient conditions (room temperature).

### **10.3 Possibility of hazardous reactions**

Exothermic reaction with: Alkali metals Alkaline earth metals Oxidizing agents dimethyl sulfoxide Nitric acid Risk of explosion with: sodium in finely distributed form. with sodium

### 10.4 Conditions to avoid Heating.

**10.5** Incompatible materials rubber

### **10.6 Hazardous decomposition products** In the event of fire: see section 5

### **SECTION 11: Toxicological information**

### **11.1 Information on toxicological effects**

### Acute toxicity

LD50 Oral - Rat - male and female - > 2,000 mg/kg (OECD Test Guideline 401) LC50 Inhalation - Rat - male - 4 h - 15.57 mg/l (OECD Test Guideline 403) Dermal: No data available

### Skin corrosion/irritation

Skin - Rabbit Result: Skin irritation - 4 h (OECD Test Guideline 404)

### Serious eye damage/eye irritation

Eyes - Rabbit Result: No eye irritation

Sigma-Aldrich - 284513

Page 7 of 11



(OECD Test Guideline 405)

### Respiratory or skin sensitization

Local lymph node assay (LLNA) - Mouse Result: negative (OECD Test Guideline 429)

### Germ cell mutagenicity

Test Type: Ames test Test system: Salmonella typhimurium Metabolic activation: with and without metabolic activation Method: OECD Test Guideline 471 Result: negative Test Type: Mutagenicity (mammal cell test): Test system: Chinese hamster lung cells Metabolic activation: with and without metabolic activation Method: OECD Test Guideline 476 Result: negative Test Type: Mutagenicity (mammal cell test): chromosome aberration. Test system: Chinese hamster ovary cells Metabolic activation: with and without metabolic activation Method: OECD Test Guideline 473 Result: negative

### Carcinogenicity

- IARC: No ingredient of this product present at levels greater than or equal to 0.1% is identified as probable, possible or confirmed human carcinogen by IARC.
- NTP: No ingredient of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is on OSHA's list of regulated carcinogens.

### **Reproductive toxicity**

No data available

### Specific target organ toxicity - single exposure No data available

### **Specific target organ toxicity - repeated exposure** No data available

**Aspiration hazard** 

No data available

### **11.2 Additional Information**

### RTECS: CZ0175000

To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Systemic effects:

CNS disorders tachycardia drop in blood pressure agitation, spasms ataxia (impaired locomotor coordination) narcosis

Sigma-Aldrich - 284513

Page 8 of 11



Headache

Damage to:

Liver Kidney

Handle in accordance with good industrial hygiene and safety practice.

### SECTION 12: Ecological information

### **12.1 Toxicity**

	loxiercy	
	Toxicity to fish	static test LC50 - Lepomis macrochirus (Bluegill sunfish) - 4.5 mg/l - 96 h Remarks: (ECHA)
	Toxicity to daphnia and other aquatic invertebrates	static test EC50 - Daphnia magna (Water flea) - 26 mg/l - 48 h (OECD Test Guideline 202)
	Toxicity to algae	static test EC10 - Desmodesmus subspicatus (green algae) - 5.8 mg/l - 72 h (OECD Test Guideline 201)
		static test ErC50 - Desmodesmus subspicatus (green algae) - 11.4 mg/l - 72 h (OECD Test Guideline 201)
	Toxicity to bacteria	static test EC50 - activated sludge - 140 mg/l - 30 min (OECD Test Guideline 209)
12.2	Persistence and deg Biodegradability	aerobic - Exposure time 28 d Result: 15 % - Not readily biodegradable. (OECD Test Guideline 301F) aerobic - Exposure time 28 d Result: 0 % - Not readily biodegradable. (OECD Test Guideline 301C)
	Theoretical oxygen	2,060 mg/g

demand Remarks: (Lit.) Ratio BOD/ThBOD 1.5 % Remarks: (Lit.)

### **12.3 Bioaccumulative potential**

Bioaccumulation Cyprinus carpio (Carp) - 49 d at 25 °C(chlorobenzene)

> Bioconcentration factor (BCF): 3.9 - 23 (OECD Test Guideline 305C)

Sigma-Aldrich - 284513

Page 9 of 11



### 12.4 Mobility in soil

No data available

### 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

### **12.6 Other adverse effects**

Discharge into the environment must be avoided.

### **SECTION 13: Disposal considerations**

### **13.1 Waste treatment methods**

### Product

Waste material must be disposed of in accordance with the national and local regulations. Leave chemicals in original containers. No mixing with other waste. Handle uncleaned containers like the product itself. See www.retrologistik.com for processes regarding the return of chemicals and containers, or contact us there if you have further questions.

### SECTION 14: Transport information

### DOT (US)

UN number: 1134 Class: 3 Proper shipping name: Chlorobenzene Reportable Quantity (RQ): 100 lbs	Packing group: III	
Reportable Quantity (RQ): 100 lbs Poison Inhalation Hazard: No		
<b>IMDG</b> UN number: 1134 Class: 3 Proper shipping name: CHLOROBENZENE Marine pollutant : yes	Packing group: III	EMS-No: F-E, S-D
IATA UN number: 1134 Class: 3 Proper shipping name: Chlorobenzene	Packing group: III	

### **SECTION 15: Regulatory information**

### SARA 302 Components

This material does not contain any components with a section 302 EHS TPQ.

### SARA 313 Components

The following components are subject to reporting levels established by SARA Title III, Section 313:

	CAS-No.	Revision Date
chlorobenzene	108-90-7	2007-07-01

### SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard

Sigma-Aldrich - 284513

Page 10 of 11



The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada

:

Reportable Quantity D021 lbs

### Massachusetts Right To Know Components

No components are subject to the Massachusetts Right to Know Act.

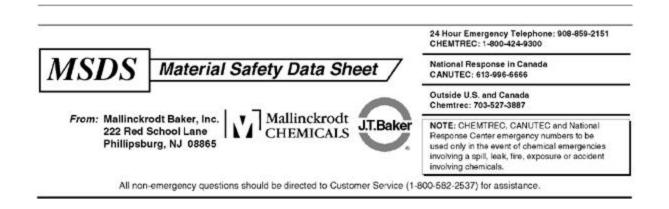
### **SECTION 16: Other information**

### Further information

The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.


Version: 6.4 Revision Date: 07/28/2021 Print Date: 02/05/2022

Sigma-Aldrich - 284513

Page 11 of 11



MSDS Number: C2915 * * * * * Effective Date: 08/02/01 * * * * * Supercedes: 09/15/98



# CHLOROFORM

# **1. Product Identification**

Synonyms: Trichloromethane; Methyl trichloride; Methane trichloride CAS No.: 67-66-3 Molecular Weight: 119.38 Chemical Formula: CHCl3 Product Codes: J.T. Baker: 9174, 9175, 9180, 9181, 9182, 9183, 9184, 9186, 9187, 9257 Mallinckrodt: 1473, 2175, 4432, 4434, 4439, 4440, 4441, 4443, 4444, H407, V551

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Chloroform Ethyl Alcohol	67-66-3 64-17-5	98 - 100% 0 - 1%	Yes Yes

# **3. Hazards Identification**

### **Emergency Overview**

### DANGER! MAY BE FATAL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. MAY AFFECT CENTRAL NERVOUS SYSTEM, CARDIOVASCULAR SYSTEM, LIVER AND KIDNEYS. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

**J.T. Baker SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Cancer Causing) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 2 - Moderate Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Blue (Health)

### **Potential Health Effects**

-----

### Inhalation:

Acts as a relatively potent anesthetic. Irritates respiratory tract and causes central nervous system effects, including headache, drowsiness, dizziness. Exposure to higher concentrations may result in unconsciousness and even death. May cause liver injury and blood disorders. Prolonged exposure may lead to death due to irregular heart beat and kidney and liver disorders.

### **Ingestion:**

Causes severe burning in mouth and throat, pain in the chest and vomiting. Large quantities may cause symptoms similar to inhalation.

### **Skin Contact:**

Causes skin irritation resulting in redness and pain. Removes natural oils. May be absorbed through skin.

### **Eye Contact:**

Vapors causes pain and irritation to eyes. Splashes may cause severe irritation and possible eye damage.

### **Chronic Exposure:**

Prolonged or repeated exposure to vapors may cause damage to the nervous system, the heart and the liver and kidneys. Contact with liquid has defatting effect and may cause chronic irritation of skin with cracking and drying, and corresponding dermatitis.

# Chloroform is a suspected human carcinogen.

### Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders or eye problems, or impaired liver, kidney or respiratory function may be more susceptible to the effects of the substance.

# 4. First Aid Measures

### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

### Ingestion:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately.

### **Skin Contact:**

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse.

### **Eye Contact:**

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

### Note to Physician:

Because kidney and liver effects may be delayed, keep victim under observation for 24 to 48 hr. Administration of fluids may help to prevent kidney failure. Obtain blood glucose, urinalysis, liver function tests, chest x-ray, and monitor cardiac function and fluid/electrolyte status. Monitor liver and kidney function for 4 to 5 days after exposure. Disulfiram, its metabolites, and a high carbohydrate diet appear to protect somewhat against chloroform toxicity. Do not give adrenalin! Tests may show increased bilirubin, ketosis, lowered blood prothombin, and fibrogen.

# 5. Fire Fighting Measures

Fire:

Slight fire hazard when exposed to high heat; otherwise, practically not flammable. **Explosion:** 

Sealed containers may rupture when heated.

### **Fire Extinguishing Media:**

Use any means suitable for extinguishing surrounding fire.

### **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker SOLUSORB® solvent adsorbent is recommended for spills of this product.

# 7. Handling and Storage

Keep in a tightly closed light-resistant container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Wear special protective equipment (Sec. 8) for maintenance break-in or where exposures may exceed established exposure levels. Wash hands, face, forearms and neck when exiting restricted areas. Shower, dispose of outer clothing, change to clean garments at the end of the day. Avoid cross-contamination of street clothes. Wash hands before eating and do not eat, drink, or smoke in workplace. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product. Chloroform odor threshold: 250 mg/m3. The odor threshold only serves as a warning of exposure; not smelling it does not mean you are not being exposed.

# 8. Exposure Controls/Personal Protection

### **Airborne Exposure Limits:**

Chloroform: -OSHA Permissible Exposure Limit (PEL): 50 ppm (TWA) Ceiling -ACGIH Threshold Limit Value (TLV): 10 ppm (TWA), Listed as A3 animal carcinogen Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, Industrial Ventilation, A Manual of Recommended Practices, most recent edition, for details. **Personal Respirators (NIOSH Approved):** 

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134). This substance has poor warning properties.

### **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

### **Eve Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

**Appearance:** Clear, colorless liquid. Odor: Characteristic ethereal odor. **Solubility:** 0.8g/100g water @ 20C (68F). **Specific Gravity:** 1.48 @ 20C/4C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 62C (144F) **Melting Point:** -63.5C (-83F) Vapor Density (Air=1): 4.1 Vapor Pressure (mm Hg): 160 @ 20C (68F) **Evaporation Rate (BuAc=1):** 11.6

# **10. Stability and Reactivity**

### **Stability:**

Stable under ordinary conditions of use and storage. pH decreases on prolonged exposure to light and air due to formation of HCl.

### **Hazardous Decomposition Products:**

May produce carbon monoxide, carbon dioxide, hydrogen chloride and phosgene when heated to decomposition.

### Hazardous Polymerization:

Will not occur.

### Incompatibilities:

Strong caustics and chemically active metals such as aluminum, magnesium powder, sodium, or potassium; acetone, fluorine, methanol, sodium methoxide, dinitrogen tetroxide, tert-butoxide, triisopropylphosphine.

### **Conditions to Avoid:**

Light, heat, air and incompatibles.

# **11. Toxicological Information**

## **Toxicological Data:**

Chloroform: oral rat LD50: 908 mg/kg; skin rabbit LD50: > 20 gm/kg; inhalation rat LC50: 47702 mg/m3/4H; irritation data: skin rabbit 10 mg/24H open mild; eye rabbit: 20 mg/24H moderate; investigated as a tumorigen, mutagen, reproductive effector.

### **Reproductive Toxicity:**

Birth defects have been seen in rats and mice exposed by inhalation of chloroform at concentrations greater than 100 ppm in air. Ingestion of chloroform by pregnant laboratory animals has resulted in fetotoxicity but not birth defects, and only at levels causing severe maternal effects.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Chloroform (67-66-3)	No	Yes	2B
Ethyl Alcohol (64-17-5)	No	No	None

# **12. Ecological Information**

### **Environmental Fate:**

When released into the soil, this material is expected to leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released to water, this material is expected to quickly evaporate. When released into the water, this material is expected to have a half-life between 1 and 10 days. This material has a log octanol-water partition coefficient of less than 3.0. This material is not expected to significantly bioaccumulate. When released into the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material may be moderately degraded by photolysis. When released into the air, this material may be removed from the atmosphere to a moderate extent by wet deposition. When released into the air, this material is expected to have a half-life of greater than 30 days.

### **Environmental Toxicity:**

This material is not expected to be toxic to aquatic life. The LC50/96-hour values for fish are over 100 mg/l.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# **14. Transport Information**

**Domestic (Land, D.O.T.)** 

Proper Shipping Name: RQ, CHLOROFORM

Hazard Class: 6.1 UN/NA: UN1888 Packing Group: III Information reported for product/size: 52L

International (Water, I.M.O.)

_____

Proper Shipping Name: CHLOROFORM Hazard Class: 6.1 UN/NA: UN1888 Packing Group: III Information reported for product/size: 52L

# **15. Regulatory Information**

------\Chemical Inventory Status - Part 1\-----TSCA EC Japan Australia Ingredient YesYesYesYesYesYesYesYes Chloroform (67-66-3) Ethyl Alcohol (64-17-5) ------\Chemical Inventory Status - Part 2\-------Canada--Korea DSL NDSL Phil. Ingredient ---------------Yes Yes No Chloroform (67-66-3) Yes Ethyl Alcohol (64-17-5) Yes Yes No Yes -----\Federal, State & International Regulations - Part 1\-------SARA 302- -----SARA 313-----RQ TPQ List Chemical Catg. Ingredient _____ _____ ____ ____ 10 10000 Yes No Chloroform (67-66-3) Ethyl Alcohol (64-17-5) No No No No -----\Federal, State & International Regulations - Part 2\------RCRA- -TSCA-CERCLA 261.33 8(d) Ingredient 
 CERCEL 

 10
 U044
 No

 No
 No
 No
 _____ ____ Chloroform (67-66-3) Ethyl Alcohol (64-17-5)

Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: No Pressure: No Reactivity: No (Mixture / Liquid)

### WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

Australian Hazchem Code: 2Z Poison Schedule: S6

### WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

NFPA Ratings: Health: 2 Flammability: 0 Reactivity: 0

### Label Hazard Warning:

DANGER! MAY BE FATAL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. MAY AFFECT CENTRAL NERVOUS SYSTEM, CARDIOVASCULAR SYSTEM, LIVER AND KIDNEYS. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

### Label Precautions:

Do not breathe vapor. Do not get in eyes, on skin, or on clothing. Keep container closed. Use only with adequate ventilation.

Wash thoroughly after handling.

### Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. In all cases get medical attention immediately.

### **Product Use:**

Laboratory Reagent.

### **Revision Information:**

MSDS Section(s) changed since last revision of document include: 8, 16. **Disclaimer:** 

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION. **Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)



# **SAFETY DATA SHEET**

Version 6.6 Revision Date 07/28/2021 Print Date 02/05/2022

### SECTION 1: Identification of the substance/mixture and of the company/undertaking

### **1.1 Product identifiers**

Product name	:	Cobalt(II) chloride
Product Number	:	232696
Brand	:	SIGALD
Index-No.	:	027-004-00-5
CAS-No.	:	7646-79-9

### 1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

### 1.3 Details of the supplier of the safety data sheet

Company	: Sigma-Aldrich Inc. 3050 SPRUCE ST ST. LOUIS MO 63103 UNITED STATES
Telephone Fax	: +1 314 771-5765 : +1 800 325-5052
Fax	. TI 000 323-3032

### **1.4 Emergency telephone**

Emergency Phone #	:	800-424-9300 CHEMTREC (USA) +1-703- 527-3887 CHEMTREC (International) 24	
		Hours/day; 7 Days/week	

### **SECTION 2: Hazards identification**

### 2.1 Classification of the substance or mixture

### GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Acute toxicity, Oral (Category 4), H302 Respiratory sensitization (Category 1), H334 Skin sensitization (Sub-category 1A), H317 Germ cell mutagenicity (Category 2), H341 Carcinogenicity, Inhalation (Category 1B), H350 Reproductive toxicity (Category 1B), H360 Short-term (acute) aquatic hazard (Category 1), H400 Long-term (chronic) aquatic hazard (Category 1), H410

For the full text of the H-Statements mentioned in this Section, see Section 16.

### 2.2 GHS Label elements, including precautionary statements

SIGALD - 232696

Page 1 of 10



Pictogram	
Signal word	Danger
Hazard statement(s)	
H302	Harmful if swallowed.
H317	May cause an allergic skin reaction.
H334	May cause allergy or asthma symptoms or breathing difficulties if inhaled.
H341	Suspected of causing genetic defects.
H350	May cause cancer by inhalation.
H360	May damage fertility or the unborn child.
H410	Very toxic to aquatic life with long lasting effects.
Precautionary statement(s)	
P201	Obtain special instructions before use.
P202	Do not handle until all safety precautions have been read and understood.
P261	Avoid breathing dust/ fume/ gas/ mist/ vapors/ spray.
P264	Wash skin thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P272	Contaminated work clothing must not be allowed out of the workplace.
P273	Avoid release to the environment.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P285	In case of inadequate ventilation wear respiratory protection.
P301 + P312 + P330	IF SWALLOWED: Call a POISON CENTER/ doctor if you feel unwell. Rinse mouth.
P302 + P352	IF ON SKIN: Wash with plenty of soap and water.
P304 + P341	IF INHALED: If breathing is difficult, remove person to fresh air and keep comfortable for breathing.
P308 + P313	IF exposed or concerned: Get medical advice/ attention.
P333 + P313	If skin irritation or rash occurs: Get medical advice/ attention.
P363	Wash contaminated clothing before reuse.
P391	Collect spillage.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

### 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

### **SECTION 3:** Composition/information on ingredients

3.1	<b>Substances</b> Synonyms	:	Cobaltous chloride		
	Formula	:	Cl ₂ Co		
	Molecular weight	:	129.84 g/mol		
	CAS-No.	:	7646-79-9		
	EC-No.	:	231-589-4		
	Index-No.	:	027-004-00-5		
	Component			Classification	Concentration
SIGAI	_D - 232696				Page 2 of 10



Cobalt(II) chloride		
	Acute Tox. 4; Resp. Sens. 1; Skin Sens. 1A; Muta. 2; Carc. 1B; Repr. 1B; Aquatic Acute 1; Aquatic Chronic 1; H302, H334, H317, H341, H350, H360, H400, H410 Concentration limits: >= 0.01 %: Carc. 1B, H350; M-Factor - Aquatic Acute: 10 - Aquatic Chronic: 10	<= 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

### **SECTION 4: First aid measures**

#### 4.1 Description of first-aid measures

#### **General advice**

First aiders need to protect themselves. Show this material safety data sheet to the doctor in attendance.

#### If inhaled

After inhalation: fresh air. Call in physician.

#### In case of skin contact

In case of skin contact: Take off immediately all contaminated clothing. Rinse skin with water/ shower. Consult a physician.

#### In case of eye contact

After eye contact: rinse out with plenty of water. Call in ophthalmologist. Remove contact lenses.

#### If swallowed

After swallowing: immediately make victim drink water (two glasses at most). Consult a physician.

#### 4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

### **4.3 Indication of any immediate medical attention and special treatment needed** No data available

#### **SECTION 5: Firefighting measures**

#### 5.1 Extinguishing media

### Suitable extinguishing media

Use extinguishing measures that are appropriate to local circumstances and the surrounding environment.

SIGALD - 232696

Page 3 of 10



### Unsuitable extinguishing media

For this substance/mixture no limitations of extinguishing agents are given.

# **5.2** Special hazards arising from the substance or mixture

Hydrogen chloride gas Cobalt/cobalt oxides Not combustible. Ambient fire may liberate hazardous vapours.

**5.3** Advice for firefighters Stay in danger area only with self-contained breathing apparatus. Prevent skin contact by keeping a safe distance or by wearing suitable protective clothing.

## 5.4 Further information

Suppress (knock down) gases/vapors/mists with a water spray jet. Prevent fire extinguishing water from contaminating surface water or the ground water system.

#### **SECTION 6: Accidental release measures**

- **6.1 Personal precautions, protective equipment and emergency procedures** Advice for non-emergency personnel: Avoid generation and inhalation of dusts in all circumstances. Avoid substance contact. Ensure adequate ventilation. Evacuate the danger area, observe emergency procedures, consult an expert. For personal protection see section 8.
- **6.2 Environmental precautions** Do not let product enter drains.

#### 6.3 Methods and materials for containment and cleaning up

Cover drains. Collect, bind, and pump off spills. Observe possible material restrictions (see sections 7 and 10). Take up carefully. Dispose of properly. Clean up affected area. Avoid generation of dusts.

**6.4** Reference to other sections For disposal see section 13.

### **SECTION 7: Handling and storage**

### 7.1 Precautions for safe handling

### Advice on safe handling

Work under hood. Do not inhale substance/mixture.

#### Hygiene measures

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance. For precautions see section 2.2.

### 7.2 Conditions for safe storage, including any incompatibilities

### Storage conditions

Tightly closed. Dry. Keep in a well-ventilated place. Keep locked up or in an area accessible only to qualified or authorized persons.

Handle and store under inert gas. Hygroscopic. Storage class (TRGS 510): 6.1D: Non-combustible, acute toxic Cat.3 / toxic hazardous materials or hazardous materials causing chronic effects

SIGALD - 232696

Page 4 of 10



### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

### SECTION 8: Exposure controls/personal protection

#### 8.1 Control parameters

#### Ingredients with workplace control parameters

Contains no substances with occupational exposure limit values.

#### 8.2 Exposure controls

#### Appropriate engineering controls

Immediately change contaminated clothing. Apply preventive skin protection. Wash hands and face after working with substance.

#### Personal protective equipment

#### Eye/face protection

Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU). Safety glasses

#### **Skin protection**

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de).

### Full contact Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min

Material tested: KCL 741 Dermatril® L

This recommendation applies only to the product stated in the safety data sheet, supplied by us and for the designated use. When dissolving in or mixing with other substances and under conditions deviating from those stated in EN374 please contact the supplier of CE-approved gloves (e.g. KCL GmbH, D-36124 Eichenzell, Internet: www.kcl.de).

Splash contact

Material: Nitrile rubber Minimum layer thickness: 0.11 mm Break through time: 480 min Material tested:KCL 741 Dermatril® L

#### **Body Protection**

protective clothing

### **Respiratory protection**

required when dusts are generated. Our recommendations on filtering respiratory protection are based on the following standards: DIN EN 143, DIN 14387 and other accompanying standards relating to the used respiratory protection system.

### **Control of environmental exposure**

Do not let product enter drains.

SIGALD - 232696

Page 5 of 10

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



## SECTION 9: Physical and chemical properties

# 9.1 Information on basic physical and chemical properties

a)	Appearance	Form: crystalline Color: light blue
b)	Odor	No data available
c)	Odor Threshold	No data available
d)	рН	No data available
e)	Melting point/freezing point	Melting point/range: 724 °C (1335 °F) - lit.
f)	Initial boiling point and boiling range	1,049 °C 1,920 °F at 1,013 hPa
g)	Flash point	()Not applicable
h)	Evaporation rate	No data available
i)	Flammability (solid, gas)	The product is not flammable.
j)	Upper/lower flammability or explosive limits	No data available
k)	Vapor pressure	No data available
I)	Vapor density	No data available
m)	Density	3.36 g/cm3 at 25 °C (77 °F)
	Relative density	No data available
n)	Water solubility	585.9 g/l at 20 °C (68 °F) - OECD Test Guideline 105 - soluble
o)	Partition coefficient: n-octanol/water	Not applicable for inorganic substances
p)	Autoignition temperature	No data available
q)	Decomposition temperature	No data available
r)	Viscosity	No data available
s)	Explosive properties	No data available
t)	Oxidizing properties	No data available
Oth	er safety informatio	n

**9.2 Other safety information** No data available

# SECTION 10: Stability and reactivity

#### **10.1 Reactivity**

No data available

#### **10.2** Chemical stability

The product is chemically stable under standard ambient conditions (room temperature) .

SIGALD - 232696

Page 6 of 10

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



#### 10.3 Possibility of hazardous reactions

Risk of explosion with: Alkali metals Violent reactions possible with: Oxidizing agents

- **10.4 Conditions to avoid** Avoid moisture. no information available
- **10.5 Incompatible materials** No data available
- **10.6 Hazardous decomposition products** In the event of fire: see section 5

#### **SECTION 11: Toxicological information**

### 11.1 Information on toxicological effects

### Acute toxicity

LD50 Oral - Rat - male and female - 537 mg/kg (OECD Test Guideline 401) Inhalation: No data available LD50 Dermal - Rat - male and female - > 2,000 mg/kg (OECD Test Guideline 402) No data available

#### Skin corrosion/irritation

Skin - Rabbit Result: No skin irritation - 4 h (OECD Test Guideline 404)

#### Serious eye damage/eye irritation

Eyes - Rabbit Result: Corrosive (OECD Test Guideline 405)

# Respiratory or skin sensitization

No data available

#### Germ cell mutagenicity

Suspected of causing genetic defects. Test Type: Ames test Test system: S. typhimurium Metabolic activation: with and without metabolic activation Method: OECD Test Guideline 471 Result: negative

Test Type: In vivo micronucleus test Species: Mouse

Application Route: inhalation (dust/mist/fume) Method: OECD Test Guideline 475 Result: negative

#### Carcinogenicity

SIGALD - 232696

Page 7 of 10

The life science business of Merck KGaA, Darmstadt, Germany operates as MilliporeSigma in the US and Canada



Carcinogenicity- Mouse- male and female- inhalation (vapor)Remarks: May cause cancer by inhalation.

- IARC: 2B Group 2B: Possibly carcinogenic to humans (Cobalt(II) chloride)
  - 2B Group 2B: Possibly carcinogenic to humans (Cobalt(II) chloride)
- NTP: No ingredient of this product present at levels greater than or equal to 0.1% is identified as a known or anticipated carcinogen by NTP.
- OSHA: No component of this product present at levels greater than or equal to 0.1% is on OSHA's list of regulated carcinogens.

#### **Reproductive toxicity**

Presumed human reproductive toxicant

**Specific target organ toxicity - single exposure** No data available

**Specific target organ toxicity - repeated exposure** No data available

**Aspiration hazard** No data available

#### **11.2 Additional Information**

RTECS: GF9800000

Blood disorders, Cough, Shortness of breath, Headache, Nausea, Vomiting To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Stomach - Irregularities - Based on Human Evidence

Stomach - Irregularities - Based on Human Evidence

### **SECTION 12: Ecological information**

#### 12.1 Toxicity

Toxicity to fish	flow-through test LC50 - Danio rerio (zebra fish) - 85.3 mg/l - 96 h Remarks: (ECHA)
Toxicity to daphnia and other aquatic invertebrates	flow-through test LC50 - Chironomus sp 429 mg/l - 96 h Remarks: (ECHA)
Toxicity to algae	static test ErC50 - Dunaliella tertiolecta (marine algae) - 71.314 mg/l - 96 h Remarks: (ECHA)

### Toxicity to bacteria static test EC50 - activated sludge - 120 mg/l - 30 min (OECD Test Guideline 209)

#### 12.2 Persistence and degradability

The methods for determining the biological degradability are not applicable to inorganic substances.

SIGALD - 232696

Page 8 of 10



#### 12.3 Bioaccumulative potential No data available

# 12.4 Mobility in soil

## No data available

### 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects No data available

### **SECTION 13: Disposal considerations**

### 13.1 Waste treatment methods

### Product

Waste material must be disposed of in accordance with the national and local regulations. Leave chemicals in original containers. No mixing with other waste. Handle uncleaned containers like the product itself. See www.retrologistik.com for processes regarding the return of chemicals and containers, or contact us there if you have further questions.

### **SECTION 14: Transport information**

### DOT (US)

Not dangerous goods

### IMDG

UN number: 3077 Class: 9 Packing group: III EMS-No: F-A, S-F Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Cobalt(II) chloride) Marine pollutant : yes

### IATA

UN number: 3077 Class: 9 Packing group: III Proper shipping name: Environmentally hazardous substance, solid, n.o.s. (Cobalt(II) chloride)

### **Further information**

EHS-Mark required (ADR 2.2.9.1.10, IMDG code 2.10.3) for single packagings and combination packagings containing inner packagings with Dangerous Goods > 5L for liquids or > 5kg for solids.Packages smaller than or equal to 5 kg / L, not dangerous goods of Class 9

### **SECTION 15: Regulatory information**

### SARA 302 Components

This material does not contain any components with a section 302 EHS TPQ.

### SARA 313 Components

The following components are subject to reporting levels established by SARA Title III, Section 313:

SIGALD - 232696

Page 9 of 10



Cobalt(II) chloride	CAS-No. 7646-79-9	Revision Date 2015-07-08
<b>SARA 311/312 Hazards</b> Acute Health Hazard, Chronic Health Hazard		
Massachusetts Right To Know Components No components are subject to the Massachusetts Rig	ht to Know Act.	
No components are subject to the Massachusetts Rig	ht to Know Act.	
Pennsylvania Right To Know Components Cobalt(II) chloride	CAS-No. 7646-79-9	Revision Date 2015-07-08
New Jersey Right To Know Components Cobalt(II) chloride	CAS-No. 7646-79-9	Revision Date 2015-07-08

### **SECTION 16: Other information**

### Further information

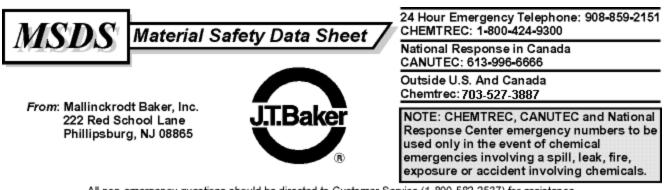
The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Copyright 2020 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only.

The branding on the header and/or footer of this document may temporarily not visually match the product purchased as we transition our branding. However, all of the information in the document regarding the product remains unchanged and matches the product ordered. For further information please contact mlsbranding@sial.com.

Version: 6.6

Revision Date: 07/28/2021


Print Date: 02/05/2022

SIGALD - 232696

Page 10 of 10



MSDS Number: M4420 * * * * * Effective Date: 05/14/03 * * * * * Supercedes: 07/22/02



All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance.

# **METHYLENE CHLORIDE**

# **1. Product Identification**

**Synonyms:** MC; Dichloromethane (DCM); Methylene dichloride; Methylene bichloride; Methane dichloride CAS No.: 75-09-2 Molecular Weight: 84.93 **Chemical Formula:** CH2Cl2 Product Codes: 9235, 9264, 9266, 9295, 9315, 9324, 9329, 9330, 9348, 9350, 9965, Q480

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Methylene Chloride	75-09-2	> 99%	Yes

# 3. Hazards Identification

### **Emergency Overview**

WARNING! HARMFUL IF SWALLOWED, INHALED OR ABSORBED

## THROUGH SKIN. AFFECTS CENTRAL NERVOUS SYSTEM, LIVER, CARDIOVASCULAR SYSTEM, AND BLOOD. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

_____

# **SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Cancer Causing) Flammability Rating: 1 - Slight Reactivity Rating: 2 - Moderate Contact Rating: 3 - Severe Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: Blue (Health)

### **Potential Health Effects**

-----

### Inhalation:

Causes irritation to respiratory tract. Has a strong narcotic effect with symptoms of mental confusion, light-headedness, fatigue, nausea, vomiting and headache. Causes formation of carbon monoxide in blood which affects cardiovascular system and central nervous system. Continued exposure may cause increased light-headedness, staggering, unconsciousness, and even death. Exposure may make the symptoms of angina (chest pains) worse.

### **Ingestion:**

May cause irritation of the gastrointestinal tract with vomiting. If vomiting results in aspiration, chemical pneumonia could follow. Absorption through gastrointestinal tract may produce symptoms of central nervous system depression ranging from light headedness to unconsciousness.

### **Skin Contact:**

Causes irritation, redness and pain. Prolonged contact can cause burns. Liquid degreases the skin. May be absorbed through skin.

### **Eye Contact:**

Vapors can cause eye irritation. Contact can produce pain, inflammation and temporal eye damage.

### **Chronic Exposure:**

Can cause headache, mental confusion, depression, liver effects, kidney effects, bronchitis, loss of appetite, nausea, lack of balance, and visual disturbances. Can cause dermatitis upon prolonged skin contact. Methylene chloride may cause cancer in humans.

### **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders, eye problems, impaired liver, kidney, respiratory or cardiovascular function may be more susceptible to the effects of this substance.

# 4. First Aid Measures

# Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

### **Ingestion:**

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately. **Skin Contact:** 

Immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

# Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

# 5. Fire Fighting Measures

### Fire:

Autoignition temperature: 556C (1033F)

Flammable limits in air % by volume:

lel: 12; uel: 23

Forms flammable vapor-air mixtures above 100C (212F).

## **Explosion:**

Concentrated can be ignited by a high intensity ignition source. Vapor may form flammable mixture in atmosphere that contains a high percentage of oxygen. Sealed containers may rupture when heated.

### **Fire Extinguishing Media:**

Dry chemical, foam or carbon dioxide. Water spray may be used to keep fire exposed containers cool.

### **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Combustion by-products include phosgene and hydrogen chloride gases. Structural firefighters' clothing provides only limited protection to the combustion products of this material.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

# 7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from any source of heat or ignition. Outside or detached storage is recommended. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product. To minimize decomposition, all storage containers should be galvanized or lined with a phenolic coating. This material may corrode plastic and rubber. Wear special protective equipment (Sec. 8) for maintenance break-in or where exposures may exceed established exposure levels. Wash hands, face, forearms and neck when exiting restricted areas. Shower, dispose of outer clothing, change to clean garments at the end of the day. Avoid cross-contamination of street clothes. Wash hands before eating and do not eat, drink, or smoke in workplace. Odor Threshold: 205 - 307 ppm. The odor threshold only serves as a warning of exposure; not smelling it does not mean you are not being exposed.

# 8. Exposure Controls/Personal Protection

## **Airborne Exposure Limits:**

Methylene Chloride (Dichloromethane): - OSHA Permissible Exposure Limit (PEL) -

25 ppm (TWA), 125 ppm (STEL), 12.5 ppm (8-hour TWA - Action Level)

- ACGIH Threshold Limit Value (TLV) -

50 ppm (TWA), A3 - suspected human carcinogen.

### Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details. **Personal Respirators (NIOSH Approved):** 

If the exposure limit is exceeded, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. The cartridges recommended for this material have a predicted service of less than 30 minutes at concentrations of ten times (10x) the exposure limits. Actual service life will vary considerbly, depending on concentration levels, temperature, humidity, and work rate. This substance has poor warning properties.

### **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact. Neoprene is a recommended material for personal protective equipment. Natural rubber and polyvinyl chloride ARE NOT recommended materials for personal protective equipment.

### **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# **Other Control Measures:**

Do not use closed circuit rebreathing system employing soda lime or other carbon dioxide absorber because of formation of toxic compounds capable of producing cranial nerve paralysis. See OSHA Standard for medical surveillance, record keeping, and reporting requirements for methylene chloride (29 CFR 1910.1052).

# 9. Physical and Chemical Properties

**Appearance:** Clear, colorless liquid. Odor: Chloroform-like odor. **Solubility:** 1.32 gm/100 gm water @ 20C. **Specific Gravity:** 1.318 @ 25C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 39.8C (104F) **Melting Point:** -97C (-143F) Vapor Density (Air=1): 2.9 Vapor Pressure (mm Hg): 350 @ 20C (68F) **Evaporation Rate (BuAc=1):** 27.5

# **10. Stability and Reactivity**

### **Stability:**

Stable under ordinary conditions of use and storage.

### **Hazardous Decomposition Products:**

Emits highly toxic fumes of phosgene when heated to decomposition. Decomposes in a flame or hot surface to form toxic gas phosgene and corrosive mists of hydrochloric acid. Carbon dioxide and carbon monoxide may form when heated to decomposition.

### Hazardous Polymerization:

Will not occur.

### **Incompatibilities:**

Strong oxidizers, strong caustics, plastics, rubber, nitric acid, water + heat, and chemically active metals, such as aluminum and magnesium powder, sodium, potassium, and lithium. Avoid contact with open flames and electrical arcs. Liquid methylene chloride will attack some forms of plastics, rubber, and coatings.

### **Conditions to Avoid:**

Moisture, heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

#### **Toxicological Data:**

Dichloromethane: Oral rat LD50: 1600 mg/kg; inhalation rat LC50: 52 gm/m3; investigated as a tumorigen, mutagen, reproductive effector.

#### **Reproductive Toxicity:**

Dichloromethane has been linked to spontaneous abortions in humans.

# **12. Ecological Information**

#### **Environmental Fate:**

When released into the soil, this material may leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released into water, this material may biodegrade to a moderate extent. When released to water, this material is expected to quickly evaporate. This material has a log octanol-water partition coefficient of less than 3.0. This material is not expected to significantly bioaccumulate. When released into the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life of greater than 30 days. When released into the air, this material may be removed from the atmosphere to a moderate extent by wet deposition.

### **Environmental Toxicity:**

The LC50/96-hour values for fish are over 100 mg/l. This material is not expected to be toxic to aquatic life.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# **14. Transport Information**

Domestic (Land, D.O.T.)

**Proper Shipping Name:** DICHLOROMETHANE **Hazard Class:** 6.1 **UN/NA:** UN1593 Packing Group: III **Information reported for product/size:** 52L

International (Water, I.M.O.)

_____

**Proper Shipping Name:** DICHLOROMETHANE **Hazard Class:** 6.1 **UN/NA:** UN1593 Packing Group: III **Information reported for product/size:** 52L

International (Air, I.C.A.O.)

-----

**Proper Shipping Name:** DICHLOROMETHANE **Hazard Class:** 6.1 **UN/NA:** UN1593 Packing Group: III **Information reported for product/size:** 52L

# **15. Regulatory Information**

\Chemical Inventory Status - Part Ingredient		TSCA	EC	Japan	Australia
Methylene Chloride (75-09-2)					Yes
\Chemical Inventory Status - Part	2\			anada	
Ingredient		Korea	DSL		Phil.
Methylene Chloride (75-09-2)		Yes		No	
\Federal, State & International Re	5				 A 313
Ingredient	RQ	TPQ	Li	st Che	mical Catg.
Methylene Chloride (75-09-2)				S	
\Federal, State & International Re	egulati	ons -		2\ T	
Ingredient	CERCL	A		3 8	
Methylene Chloride (75-09-2)		-			0

Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: No Pressure: No Reactivity: No (Pure / Liquid)

#### WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

# Australian Hazchem Code: 2Z

Poison Schedule: S5

### WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

NFPA Ratings: Health: 2 Flammability: 1 Reactivity: 0 Label Hazard Warning: WARNING! HARMFUL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. AFFECTS CENTRAL NERVOUS SYSTEM, LIVER, CARDIOVASCULAR SYSTEM, AND BLOOD. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

### **Label Precautions:**

Do not breathe vapor.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Keep away from heat and flame.

Do not get in eyes, on skin, or on clothing.

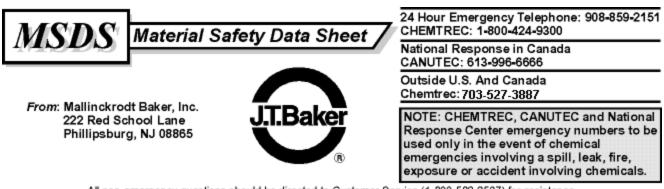
### Label First Aid:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. In all cases, get medical attention.

### **Product Use:**

Laboratory Reagent.

### **Revision Information:**


MSDS Section(s) changed since last revision of document include: 3.

### **Disclaimer:**

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

MSDS Number: H2381 * * * * * Effective Date: 11/02/01 * * * * * Supercedes: 04/15/99



All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance.

# HEXANE

# **1. Product Identification**

Synonyms: Hexanes,Normal Hexane; Hexyl Hydride; Hexane 95% CAS No.: 110-54-3 (n-hexane) Molecular Weight: 86.18 Chemical Formula: CH3(CH2)4CH3 n-hexane Product Codes: 9262, 9304, 9308, N168

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Hexane	110-54-3	85 - 100%	Yes
Methylcyclopentane	96-37-7	1 - 2%	Yes
Trace amount of Benzene (10 ppm)	071-43-2	*	No

# **3. Hazards Identification**

### **Emergency Overview**

-----

## DANGER! EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE. HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS THE CENTRAL AND PERIPHERAL NERVOUS SYSTEMS.

# J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate Flammability Rating: 3 - Severe (Flammable) Reactivity Rating: 0 - None Contact Rating: 2 - Moderate Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES; CLASS B EXTINGUISHER Storage Color Code: Red (Flammable)

### **Potential Health Effects**

_____

The health hazards addressed are for the major component: n-hexane.

### Inhalation:

Inhalation of vapors irritates the respiratory tract. Overexposure may cause lightheadedness, nausea, headache, and blurred vision. Greater exposure may cause muscle weakness, numbress of the extremities, unconsciousness and death.

### **Ingestion:**

May produce abdominal pain, nausea. Aspiration into lungs can produce severe lung damage and is a medical emergency. Other symptoms expected to parallel inhalation.

### **Skin Contact:**

May cause redness, irritation, with dryness, cracking.

### **Eye Contact:**

Vapors may cause irritation. Splashes may cause redness and pain.

### **Chronic Exposure:**

Repeated or prolonged skin contact may defat the skin and produce irritation and dermatitis. Chronic inhalation may cause peripheral nerve disorders and central nervous system effects.

### **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders or eye problems or impaired respiratory function may be more susceptible to the effects of the substance. May affect the developing fetus.

# 4. First Aid Measures

### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

### **Ingestion:**

Aspiration hazard. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention

# immediately.

# Skin Contact:

Remove any contaminated clothing. Wipe off excess from skin. Wash skin with soap and water for at least 15 minutes. Get medical attention if irritation develops or persists. **Eve Contact:** 

# Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

# Note to Physician:

BEI=2,5-hexadione in urine, sample at end of shift at workweeks end, 5 mg/g creatine. Also, measure n-hexane in expired air. Analgesics may be necessary for pain management, there is no specific antidote. Monitor arterial blood gases in cases of severe aspiration.

# 5. Fire Fighting Measures

# Fire:

Flash point: -23C (-9F) CC Autoignition temperature: 224C (435F) Flammable limits in air % by volume: lel: 1.2; uel: 7.7 Extremely Flammable Liquid and Vapor! Vapor may cause flash fire. Dangerous fire

hazard when exposed to heat or flame.

## **Explosion:**

Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Contact with oxidizing materials may cause extremely violent combustion.Explodes when mixed @ 28C with dinitrogen tetraoxide. Sensitive to static discharge.

### **Fire Extinguishing Media:**

Dry chemical, foam or carbon dioxide. Water may be ineffective.

### **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Water spray may be used to keep fire exposed containers cool. Vapors can flow along surfaces to distant ignition source and flash back. Vapor explosion hazard exists indoors, outdoors, or in sewers.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! If a leak or spill has not ignited, use water spray to disperse the vapors, to protect personnel attempting to stop leak, and to flush spills away from exposures. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll

free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker SOLUSORB® solvent adsorbent is recommended for spills of this product.

# 7. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from direct sunlight and any area where the fire hazard may be acute. Store in tightly closed containers (preferably under nitrogen atmosphere). Outside or detached storage is preferred. Inside storage should be in a standard flammable liquids storage room or cabinet. Separate from oxidizing materials. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

# **Airborne Exposure Limits:**

N-Hexane [110-54-3]: -OSHA Permissible Exposure Limit (PEL): 500 ppm (TWA) -ACGIH Threshold Limit Value (TLV): 50 ppm (TWA), Skin other isomers of hexane -ACGIH Threshold Limit Value (TLV): 500 ppm (TWA),1000ppm (STEL) Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details. **Personal Respirators (NIOSH Approved):** 

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134).

# **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

# **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

**Appearance:** Clear, colorless liquid. **Odor:** Light odor. Solubility: Insoluble in water. **Specific Gravity:** 0.66 pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** ca. 68C (ca. 154F) **Melting Point:** ca. -95C (ca. -139F) Vapor Density (Air=1): 3.0 Vapor Pressure (mm Hg): 130 @ 20C (68F) **Evaporation Rate (BuAc=1):** 9

# **10. Stability and Reactivity**

Stability:
Stable under ordinary conditions of use and storage. Heat will contribute to instability.
Hazardous Decomposition Products:
May produce acrid smoke and irritating fumes when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
Strong oxidizers.
Conditions to Avoid:
Heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

N-Hexane: Oral rat LD50: 28710 mg/kg. Irritation eye rabbit: 10 mg mild. Investigated as a tumorigen, mutagen and reproductive effector.

-----\Cancer Lists\-----

Ingredient	NTP Known	Carcinogen Anticipated	IARC Category
Hexane (110-54-3) Methylcyclopentane (96-37-7) Trace amount of Benzene (10 ppm) (071-43-2)	No No Yes	No No No	None None 1

# **12. Ecological Information**

### **Environmental Fate:**

When released into the soil, this material may biodegrade to a moderate extent. When released into the soil, this material is not expected to leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released into water, this material may biodegrade to a moderate extent. When released to water, this material is expected to quickly evaporate. When released to water, this material is expected to a half-life between 1 and 10 days. This material has an estimated bioconcentration factor (BCF) of less than 100. This material has a log octanol-water partition coefficient of greater than 3.0. This material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to days.

**Environmental Toxicity:** 

No information found.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# **14. Transport Information**

**Domestic (Land, D.O.T.)** 

Proper Shipping Name: HEXANES Hazard Class: 3 UN/NA: UN1208 Packing Group: II Information reported for product/size: 52L International (Water, I.M.O.)

_____

Proper Shipping Name: HEXANES Hazard Class: 3 UN/NA: UN1208 Packing Group: II Information reported for product/size: 52L

# **15. Regulatory Information**

\Chemical Inventory Status - Part 1\- Ingredient			EC	Japan	Australia
Hexane (110-54-3)	Yes Yes Yes Yes		Yes		
Methylcyclopentane (96-37-7)					Yes
Trace amount of Benzene (10 ppm) (071-43-2)		Yes	Yes	Yes	Yes
\Chemical Inventory Status - Part 2\-					
			Ca	anada	
Ingredient		Korea			Phil.
Hexane (110-54-3)		Yes		no	
Methylcyclopentane (96-37-7)		Yes	Yes	No	Yes
Trace amount of Benzene (10 ppm) (071-43-2)		Yes	Yes	No	Yes
	2		Li	st Che	A 313 mical Catg
Hexane (110-54-3) No	)	No	Ye	5	No
Methylcyclopentane (96-37-7) No	)	No	No		No
Trace amount of Benzene (10 ppm) No (071-43-2)	)	No	Ye	5	No
\Federal, State & International Regul	ati	ons -		2\ T	
	RCL	A	-	3 8	
			No		
	00		1.0	IN	0
			No		

Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: Yes Pressure: No Reactivity: No (Mixture / Liquid)

### WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

Australian Hazchem Code: 3[Y]E Poison Schedule: None allocated.

# WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

NFPA Ratings: Health: 1 Flammability: 3 Reactivity: 0

## Label Hazard Warning:

DANGER! EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE. HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS THE CENTRAL AND PERIPHERAL NERVOUS SYSTEMS.

### **Label Precautions:**

Keep away from heat, sparks and flame.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Avoid breathing vapor or mist.

Avoid contact with eyes, skin and clothing.

# Label First Aid:

Aspiration hazard. If swallowed, vomiting may occur spontaneously, but DO NOT INDUCE. If vomiting occurs, keep head below hips to prevent aspiration into lungs. Never give anything by mouth to an unconscious person. Call a physician immediately. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. In all cases call a physician.

# **Product Use:**

Laboratory Reagent.

# **Revision Information:**

MSDS Section(s) changed since last revision of document include: 8.

### **Disclaimer:**

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION. **Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

	Material Safety Data Sheet			
Section 1. Pro	duct and Company Identification			
Product Name	Hydrochloric Acid, NF	Product	HX0606	5
		Code		
Manufacturer	EMD Chemicals Inc.		Effective	3/3/2003
	P.O. Box 70		Date	
	480 Democrat Road			
	Gibbstown, NJ 08027			
	Prior to January 1, 2003 EMD Chemicals In	c. was		
	EM Industries, Inc. or EM Science, Divisior	n of		
	EM Industries, Inc.			
For More Info	rmation Call	In Case o	f Emergenc	y Call
856-423-6300	Technical Service		-9300 CHEM	
Monday–Friday	:: 8:00 AM - 5:00 PM	(USA)		
5 5		613–996–	-6666 CANL	JTEC
		(Canada)		
		· · · · · ·	Day: 7 Days	/Week
Synonym	MURIATIC ACID			
Material Uses				
Chemical	Inorganic Acid.			
Family	morganie / leid.			

Section 2. Composition and Information on Ingredients		
Component	CAS #	% by Weight
HYDROCHLORIC ACID	7647–01–0 100	

## Section 3. Hazards Identification

Section 5. Mazaru	Sidentification			
<b>Physical State and</b>	Liquid. (Colorless.)			
Appearance				
Emergency	DANGER! POISON!			
Overview	MAY BE FATAL IF INHALED OR SWALLOWED.			
	CAUSES SEVERE EYE AND SKIN BURNS.			
	CAUSES SEVERE RESPIRATORY TRACT IRRITATION.			
	CAUSES DAMAGE TO THE FOLLOWING ORGANS: LUNGS,			
	RESPIRATORY TRACT, SKIN, EYE, LENS OR CORNEA.			
<b>Routes of Entry</b>	Absorbed through skin. Eye contact. Inhalation. Ingestion.			
<b>Potential Acute He</b>	alth			
Effects				
Eyes	Extremely hazardous in case of eye contact (corrosive). Causes severe eye			
	burns.			
Skin	Extremely hazardous in case of skin contact (corrosive). Skin contact			
	produces severe burns.			
Inhalation	n Extremely hazardous in case of inhalation (lung irritant). May be fatal if			
	inhaled.			
Ingestion	Extremely hazardous in case of ingestion. May be fatal if swallowed.			
Potential Chronic Health Effects				
Carcinogeni	c This material is not known to cause cancer in animals or humans.			
Effect	S			
	Additional information See Toxicological Information (section 11)			

Medical ConditionsRepeated or prolonged contact with spray mist may produce chronic eyeAggravated byirritation and severe skin irritation. Repeated or prolonged exposure to<br/>spray mist may produce respiratory tract irritation leading to frequent<br/>attacks of bronchial infection. Repeated exposure to a highly toxic<br/>material may produce general deterioration of health by an accumulation<br/>in one or many human organs.

### Section 4. First Aid Measures

Eye Contact	Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention immediately.
Skin Contact	In case of contact, immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Cold water may be used. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention immediately.
Inhalation	If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.
Ingestion	DO NOT induce vomiting. If affected person is conscious give plenty of water to drink. Get medical attention immediately.

### **Section 5. Fire Fighting Measures**

Flammability of the May be combustible at high temperature.		
Product		
Auto-ignition	Not available.	
Temperature		
Flash Points N	Not available.	
<b>Flammable Limits</b>	Not available.	
Products of	These products are carbon oxides (CO, CO2), halogenated compounds.	
Combustion		
Fire Hazards in	Not available.	
<b>Presence of Various</b>		
Substances		
<b>Explosion Hazards</b>	<b>Risks of explosion of the product in presence of static discharge:</b> No.	
in Presence of		
Various Substances	Risks of explosion of the product in presence of mechanical impact:	
	No.	
Fire Fighting Media	Use water spray or fog.	
and Instructions		
	Wear MSHA/NIOSH approved self-contained breathing apparatus or	
(Fire) e	equivalent and full protective gear.	
	Flammable hydrogen gas may be produced on prolonged contact with	
on Fire Hazards	metals such as aluminum, tin, lead and zinc.	
Special Remarks on I	Not available.	
<b>Explosion Hazards</b>		

### Section 6. Accidental Release Measures

Small Spill and	Dilute with water and mop up, or absorb with an inert dry material and
Leak	place in an appropriate waste disposal container.
Large Spill and	Stop leak if without risk. Cover with DRY earth, DRY sand or other
Leak	non-combustible material followed with plastic sheet to minimize

# Hydrochloric Acid, NF

	spreading or contact with rain. Do not get water inside container. Do not
	touch spilled material. Use water spray curtain to divert vapor drift. Use
	water spray to reduce vapors. Prevent entry into sewers, basements or
	confined areas; dike if needed. Eliminate all ignition sources. Call for
	assistance on disposal. Finish cleaning by spreading water on the
	contaminated surface and allow to evacuate through the sanitary system.
	Be careful that the product is not present at a concentration level above
	TLV. Check TLV on the MSDS and with local authorities.
Spill Kit	The following EMD Chemicals Inc. SpillSolv ® absorbent is
Information	recommended for this product: SX1310 Acid Treatment Kit
	•

# Section 7. Handling and Storage

Handling	Do not ingest. Do not breathe vapor or mist. Keep container closed. Use	
	only with adequate ventilation. Do not get in eyes, on skin, or on clothing.	
Storage	Keep container in a cool, well-ventilated area.	

# Section 8. Exposure Controls/Personal Protection

Engineering	Provide exhaust ventilation or other engineering controls to keep the	
Controls	airborne concentrations of vapors below their respective occupational	
	exposure limits. Ensure that eyewash stations and safety showers are	
	proximal to the work-station location.	
<b>Personal Protection</b>		
Eyes	Face shield.	
Body	Full suit.	
Respiratory	iratory Vapor respirator. Be sure to use an approved/certified respirator or	
	equivalent. Wear appropriate respirator when ventilation is inadequate.	
	Gloves.	
Feet	Boots.	
<b>Protective Clothing</b>		
(Pictograms)		
	Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A	
in Case of a Large	self-contained breathing apparatus should be used to avoid inhalation of	
Spill	the product. Suggested protective clothing might not be sufficient; consult	
	a specialist BEFORE handling this product.	
Product Name	Exposure Limits	
HYDROCHLORIC		
	Spitzenbegrenzung: 8 mg/m3	
	MAK: 8 mg/m3	
	DK–Arbejdstylsinet (Denmark, 1996).	
	Loftværdi: 7 mg/m3	
	Loftværdi: 5 ppm	
	GV: 7 mg/m3	
	GV: 5 ppm	
	80/1107/EEC (Europe, 1996).	
	STEL: 10 mg/m3	
	STEL: 15 ppm	
	TWA: 5 mg/m3	
	TWA: 8 ppm	
	EH40–OES (United Kingdom (UK), 1997).	
	STEL: 8 mg/m3	

# Hydrochloric Acid, NF STEL: 5 ppm TWA: 2 mg/m3 TWA: 1 ppm ACGIH (United States, 1994). CEIL: 7.5 mg/m3 CEIL: 5 ppm NIOSH REL (United States, 1994). CEIL: 7 mg/m3 CEIL: 5 ppm OSHA Final Rule (United States, 1989). CEIL: 7 mg/m3 CEIL: 5 ppm

Section 9. Physical and Chemical Properties		
Odor	Pungent.	
Color	Clear. Colorless.	
<b>Physical State and</b>	Liquid. (Colorless.)	
Appearance		
Molecular Weight	36.46 g/mole	
<b>Molecular Formula</b>	Cl-H	
рН	Not available.	
<b>Boiling/Condensation</b> 110°C (230°F)		
Point		
<b>Melting/Freezing</b>	-74°C (-101.2°F)	
Point		
Critical	51.5°C (124.7°F)	
Temperature		
Specific Gravity	1.2 (Water = 1)	
Vapor Pressure	21.3 kPa (160 mmHg) (@ 20°C)	
Vapor Density	>1 (Air = 1)	
Odor Threshold	Not available.	
<b>Evaporation Rate</b>	>1	
LogKow	Not available.	
Solubility	Soluble in water.	

# Section 10. Stability and Reactivity

Stability and	The product is stable.	
Reactivity		
<b>Conditions of</b>	Not available.	
Instability		
Incompatibility with Reactive with metals, alkalis.		
Various Substances		
<b>Rem/Incompatibility</b>	y Not available.	
Hazardous	These products are halogenated compounds.	
Decomposition		
Products		
Hazardous	Will not occur.	
Polymerization		
Incompatibility with Various Substances Rem/Incompatibility Hazardous Decomposition Products Hazardous	y Not available. These products are halogenated compounds	

# Section 11. Toxicological Information

<b>RTECS Number:</b>		
]	Hydrochloric Acid MW4025000	
Toxicity	Acute oral toxicity (LD50): 900 mg/kg [Rabbit].	
	Acute toxicity of the vapor (LC50): 1108 ppm 1 hour(s) [Mouse].	
<b>Chronic Effects on</b>	Not available.	
Humans		
Acute Effects on	Extremely hazardous in case of eye contact (corrosive). Causes severe eye	
Humans	burns. Extremely hazardous in case of skin contact (corrosive). Skin	
	contact produces severe burns. Extremely hazardous in case of inhalation	
	(lung irritant). May be fatal if inhaled. Extremely hazardous in case of	
	ingestion. May be fatal if swallowed.	
Synergetic Product	s Not available.	
(Toxicologically)		
Irritancy	Draize Test (Rabbit):	
	Eyes: 5mg/30s. Reaction: Mild.	
	Eye: 100 mg/24h moderate	
Sensitization	Not available.	
Carcinogenic	This material is not known to cause cancer in animals or humans.	
Effects		
Toxicity to	Tests on laboratory animals for reproductive effects are cited in Registry	
Reproductive	of Toxic Effects on Chemical Substances (RTECS).	
System		
<b>Teratogenic Effects</b>	Not available.	
<b>Mutagenic Effects</b>	Tests on laboratory animals for mutagenic effects are cited in Registry of	
	Toxic Effects of Chemical Substances (RTECS).	

### Section 12. Ecological Information

	8
Ecotoxicity	Not available.
<b>BOD5 and COD</b>	Not available.
Toxicity of the	The products of degradation are as toxic as the product itself.
Products of	
<b>Biodegradation</b>	

# Section 13. Disposal Considerations

EPA Waste Number	D002
Treatment	Specified Technology – Neutralize to pH 6–9. Contact your local permitted waste disposal site (TSD) for permissible treatment sites. Always contact a permitted waste disposal (TSD) to assure compliance with all current local, state, and Federal Regulations.

# Section 14. Transport Information

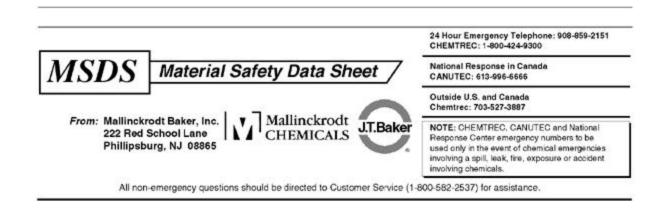
<b>DOT Classification</b>	Proper Shipping Name:
	HYDROCHLORIC ACID
	Hazard Class: 8
	UN number: UN1789
	Packing Group: II
	RQ: 5000 lbs. (2268 kg)
<b>TDG Classification</b>	Not available.
IMO/IMDG	Not available.

Classification	
ICAO/IATA	Not available.
Classification	

Section 15. Regu	latory Information
U.S. Federal	TSCA 8(b) inventory: HYDROCHLORIC ACID
Regulations	
	SARA 302/304/311/312 extremely hazardous substances:
	HYDROCHLORIC ACID
	SARA 302/304 emergency planning and notification: HYDROCHLORIC
	ACID
	SARA 302/304/311/312 hazardous chemicals: HYDROCHLORIC ACID
	SARA 311/312 MSDS distribution – chemical inventory – hazard
	identification: HYDROCHLORIC ACID: Sudden Release of Pressure, Immediate (Acute) Health Hazard, Delayed (Chronic) Health Hazard
	SARA 313 toxic chemical notification and release reporting:
	HYDROCHLORIC ACID
	Clean Water Act (CWA) 307: No products were found.
	Clean Water Act (CWA) 311: HYDROCHLORIC ACID
	Clean air act (CAA) 112 accidental release prevention: HYDROCHLORIC ACID
	Clean air act (CAA) 112 regulated flammable substances: No products were found.
	Clean air act (CAA) 112 regulated toxic substances: HYDROCHLORIC
	ACID
WHMIS (Canada)	Class D–1A: Material causing immediate and serious toxic effects (VERY TOXIC).
	CLASS E: Corrosive liquid.
	CEPA DSL: HYDROCHLORIC ACID
	This product has been classified in accordance with the hazard criteria of
	the Controlled Product Regulations and the MSDS contains all required information.
International	information.
Regulations	
EINECS	HYDROCHLORIC ACID 231–595–7
	R23– Toxic by inhalation.
	R35– Causes severe burns.
	R37– Irritating to respiratory system.
International Lists	Australia (NICNAS): HYDROCHLORIC ACID
	Japan (MITI): HYDROCHLORIC ACID
	Korea (TCCL): HYDROCHLORIC ACID
	Philippines (RA6969): HYDROCHLORIC ACID
	China: No products were found.
State Regulations	Pennsylvania RTK: HYDROCHLORIC ACID: (environmental hazard,
	generic environmental hazard)
	Massachusetts RTK: HYDROCHLORIC ACID
	New Jersey: HYDROCHLORIC ACID
	California prop. 65: No products were found.

#### **Section 16. Other Information**

National Fire Protection Association (U.S.A.) 0 Fire 30 Hazard Health


Reactivity

Specific Hazard

**Other Special** Section 2 lists this product as 100% which indicates that it is a concentrated **Considerations** acid.

Changed Since Last Revision Notice to Reader

The statements contained herein are based upon technical data that EMD Chemicals Inc. believes to be reliable, are offered for information purposes only and as a guide to the appropriate precautionary and emergency handling of the material by a properly trained person having the necessary technical skills. Users should consider these data only as a supplement to other information gathered by them and must make independent determinations of suitability and completeness of information from all sources to assure proper use, storage and disposal of these materials and the safety and health of employees and customers and the protection of the environment. EMD CHEMICALS INC. MAKES NO REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE, WITH RESPECT TO THE INFORMATION HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. MSDS Number: M2015 * * * * * Effective Date: 11/12/01 * * * * * Supercedes: 12/14/00



# **METHYL ALCOHOL**

# **1. Product Identification**

Synonyms: Wood alcohol; methanol; carbinol CAS No.: 67-56-1 Molecular Weight: 32.04 Chemical Formula: CH3OH Product Codes: J.T. Baker: 5217, 5370, 5794, 5811, 5842, 5869, 9049, 9063, 9065, 9066, 9067, 9069, 9070, 9071, 9073, 9075, 9076, 9077, 9091, 9093, 9096, 9097, 9098, 9263, 9822, 9830, V654 Mallinckrodt: 3004, 3006, 3016, 3017, 3018, 3024, 3041, 3701, 4295, 5160, 8814, H080, H488, H603, H985, V079, V571

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Methyl Alcohol	67-56-1	100%	Yes

# 3. Hazards Identification

# Emergency Overview

## POISON! DANGER! VAPOR HARMFUL. MAY BE FATAL OR CAUSE BLINDNESS IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. CANNOT BE MADE NONPOISONOUS. FLAMMABLE LIQUID AND VAPOR. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM AND LIVER.

# **SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Poison) Flammability Rating: 3 - Severe (Flammable) Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe (Life) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES; CLASS B EXTINGUISHER Storage Color Code: Red (Flammable)

### **Potential Health Effects**

-----

## Inhalation:

A slight irritant to the mucous membranes. Toxic effects exerted upon nervous system, particularly the optic nerve. Once absorbed into the body, it is very slowly eliminated. Symptoms of overexposure may include headache, drowsiness, nausea, vomiting, blurred vision, blindness, coma, and death. A person may get better but then worse again up to 30 hours later.

### **Ingestion:**

Toxic. Symptoms parallel inhalation. Can intoxicate and cause blindness. Usual fatal dose: 100-125 milliliters.

### **Skin Contact:**

Methyl alcohol is a defatting agent and may cause skin to become dry and cracked. Skin absorption can occur; symptoms may parallel inhalation exposure.

### **Eye Contact:**

Irritant. Continued exposure may cause eye lesions.

### **Chronic Exposure:**

Marked impairment of vision has been reported. Repeated or prolonged exposure may cause skin irritation.

### **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders or eye problems or impaired liver or kidney function may be more susceptible to the effects of the substance.

# 4. First Aid Measures

### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give

oxygen. Get medical attention immediately.

## Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention immediately.

# Skin Contact:

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

# Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

# **5. Fire Fighting Measures**

# Fire:

Flash point: 12C (54F) CC Autoignition temperature: 464C (867F) Flammable limits in air % by volume: lel: 6.0; uel: 36 Flammable Liquid and Vapor!

## **Explosion:**

Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Moderate explosion hazard and dangerous fire hazard when exposed to heat, sparks or flames. Sensitive to static discharge.

# **Fire Extinguishing Media:**

Use alcohol foam, dry chemical or carbon dioxide. (Water may be ineffective.) **Special Information:** 

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Use water spray to blanket fire, cool fire exposed containers, and to flush non-ignited spills or vapors away from fire. Vapors can flow along surfaces to distant ignition source and flash back.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! If a leak or spill has not ignited, use water spray to disperse the vapors, to protect personnel attempting to stop leak, and to flush spills away from exposures. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker SOLUSORB® solvent adsorbent is recommended for spills of this product.

# 7. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment, including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product. Do Not attempt to clean empty containers since residue is difficult to remove. Do not pressurize, cut, weld, braze, solder, drill, grind or expose such containers to heat, sparks, flame, static electricity or other sources of ignition: they may explode and cause injury or death.

# 8. Exposure Controls/Personal Protection

## **Airborne Exposure Limits:**

For Methyl Alcohol: - OSHA Permissible Exposure Limit (PEL): 200 ppm (TWA) - ACGIH Threshold Limit Value (TLV): 200 ppm (TWA), 250 ppm (STEL) skin Vontilation System:

## Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details. Use explosion-proof equipment.

## Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134). This substance has poor warning properties. **Skin Protection:** 

# Rubber or neoprene gloves and additional protection including impervious boots, apron, or coveralls, as needed in areas of unusual exposure.

## **Eye Protection:**

Use chemical safety goggles. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

**Appearance:** Clear, colorless liquid. **Odor:** Characteristic odor. Solubility: Miscible in water. **Specific Gravity:** 0.8 pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 64.5C (147F) **Melting Point:** -98C (-144F) Vapor Density (Air=1): 1.1 Vapor Pressure (mm Hg): 97 @ 20C (68F) **Evaporation Rate (BuAc=1):** 5.9

# **10. Stability and Reactivity**

Stability:
Stable under ordinary conditions of use and storage.
Hazardous Decomposition Products:
May form carbon dioxide, carbon monoxide, and formaldehyde when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
Strong oxidizing agents such as nitrates, perchlorates or sulfuric acid. Will attack some forms of plastics, rubber, and coatings. May react with metallic aluminum and generate hydrogen gas.
Conditions to Avoid:
Heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

Methyl Alcohol (Methanol) Oral rat LD50: 5628 mg/kg; inhalation rat LC50: 64000

ppm/4H; skin rabbit LD50: 15800 mg/kg; Irritation data-standard Draize test: skin, rabbit: 20mg/24 hr. Moderate; eye, rabbit: 100 mg/24 hr. Moderate. Investigated as a mutagen, reproductive effector.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Methyl Alcohol (67-56-1)	No	No	None

# **12. Ecological Information**

## **Environmental Fate:**

When released into the soil, this material is expected to readily biodegrade. When released into the soil, this material is expected to leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released into the water, this material is expected to have a half-life between 1 and 10 days. When released into water, this material is expected to readily biodegrade. When released into the air, this material is expected to readily biodegrade. When released into the air, this material is expected to readily biodegrade. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into air, this material is expected to be readily degraded into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into air, this material is expected to be readily degraded into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into air, this material is expected to be readily removed from the atmosphere by wet deposition.

## **Environmental Toxicity:**

This material is expected to be slightly toxic to aquatic life.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

## **14. Transport Information**

Domestic (Land, D.O.T.) Proper Shipping Name: METHANOL Hazard Class: 3 UN/NA: UN1230 Packing Group: II Information reported for product/size: 358LB International (Water, I.M.O.)

_____

**Proper Shipping Name:** METHANOL **Hazard Class:** 3, 6.1 **UN/NA:** UN1230 Packing Group: II **Information reported for product/size:** 358LB

# **15. Regulatory Information**

```
-----\Chemical Inventory Status - Part 1\-----
                             TSCA EC Japan Australia
Ingredient
_____ ___ ___ ___ ___ ___ ____
Methyl Alcohol (67-56-1)
                              Yes Yes Yes
                                           Yes
------\Chemical Inventory Status - Part 2\-----
                                  --Canada--
                          Korea DSL NDSL Phil.
Ingredient
_____ ____
                                         Yes
                               Yes Yes No
Methyl Alcohol (67-56-1)
-----\Federal, State & International Regulations - Part 1\-----
                         -SARA 302- -----SARA 313-----
                          RQ TPQ
Ingredient
                                  List Chemical Catq.
_____ ___ ___ ____
                          No No
                                  Yes
Methyl Alcohol (67-56-1)
                                          No
-----\Federal, State & International Regulations - Part 2\-----
                             -RCRA- -TSCA-
                         CERCLA 261.33 8(d)
Ingredient
_____
                                 ____
                                       ____
                          5000 U154 No
Methyl Alcohol (67-56-1)
```

Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: Yes Pressure: No Reactivity: No (Pure / Liquid)

Australian Hazchem Code: 2PE Poison Schedule: S6 WHMIS: This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

NFPA Ratings: Health: 1 Flammability: 3 Reactivity: 0

## Label Hazard Warning:

POISON! DANGER! VAPOR HARMFUL. MAY BE FATAL OR CAUSE BLINDNESS IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. CANNOT BE MADE NONPOISONOUS. FLAMMABLE LIQUID AND VAPOR. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM AND LIVER.

### Label Precautions:

Avoid breathing vapor. Avoid contact with eyes, skin and clothing. Wash thoroughly after handling. Keep container closed. Use only with adequate ventilation.

Keep away from heat, sparks and flame.

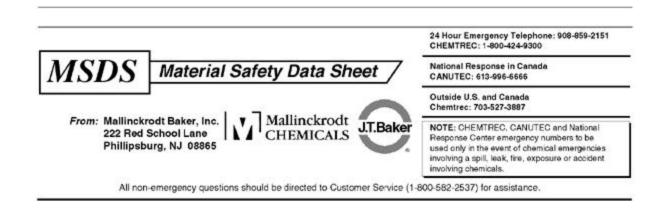
## Label First Aid:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. In all cases get medical attention immediately.

### **Product Use:**

Laboratory Reagent.

### **Revision Information:**


MSDS Section(s) changed since last revision of document include: 3, 8.

### **Disclaimer:**

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

MSDS Number: M4628 * * * * * Effective Date: 08/02/01 * * * * * Supercedes: 09/15/98



# **METHYL ETHYL KETONE**

# **1. Product Identification**

Synonyms: 2-Butanone; ethyl methyl ketone; MEK; Methyl acetone CAS No.: 78-93-3 Molecular Weight: 72.11 Chemical Formula: CH3COCH2CH3 Product Codes: J.T. Baker: 5385, 9214, 9319, 9323, 9414, Q531 Mallinckrodt: 6206, 6233, 6240, 6243

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Methyl Ethyl Ketone	78-93-3	99 - 100%	Yes

# **3. Hazards Identification**

## **Emergency Overview**

-----

# Page 2 of 8

## **DANGER! EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY** CAUSE FLASH FIRE. HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF **INHALED OR ABSORBED THROUGH SKIN. AFFECTS CENTRAL NERVOUS** SYSTEM. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT.

#### **J.T. Baker SAF-T-DATA**^(tm) Ratings (Provided here for your convenience) -

Health Rating: 2 - Moderate Flammability Rating: 4 - Extreme (Flammable) Reactivity Rating: 2 - Moderate Contact Rating: 2 - Moderate Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES; CLASS B EXTINGUISHER Storage Color Code: Red (Flammable) _____

### **Potential Health Effects**

_____

_____

### Inhalation:

Causes irritation to the nose and throat. Concentrations above the TLV may cause headache, dizziness, nausea, shortness of breath, and vomiting. Higher concentrations may cause central nervous system depression and unconsciousness.

### **Ingestion:**

May produce abdominal pain, nausea. Aspiration into lungs can produce severe lung damage and is a medical emergency. Other symptoms expected to parallel inhalation.

#### **Skin Contact:**

Causes irritation to skin. Symptoms include redness, itching, and pain. May be absorbed through the skin with possible systemic effects.

### **Eve Contact:**

Vapors are irritating to the eyes. Splashes can produce painful irritation and eye damage. **Chronic Exposure:** 

Prolonged skin contact may defat the skin and produce dermatitis. Chronic exposure may cause central nervous system effects.

### **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders or eye problems or impaired respiratory function may be more susceptible to the effects of the substance.

## 4. First Aid Measures

### Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

### **Ingestion:**

Aspiration hazard. If swallowed, vomiting may occur spontaneously, but DO NOT INDUCE. If vomiting occurs, keep head below hips to prevent aspiration into lungs. Never give anything by mouth to an unconscious person. Call a physician immediately. Skin Contact:

Immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

## **Eye Contact:**

Immediately flush eyes with plenty of water for at least 15 minutes, lifting upper and lower eyelids occasionally. Get medical attention.

# 5. Fire Fighting Measures

### Fire:

Flash point: -9C (16F) CC Autoignition temperature: 404C (759F) Flammable limits in air % by volume: lel: 1.4; uel: 11.4 Extremely Flammable.

### Explosion:

Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Vapors can flow along surfaces to distant ignition source and flash back. Contact with strong oxidizers may cause fire. Sealed containers may rupture when heated. Sensitive to static discharge.

### **Fire Extinguishing Media:**

Dry chemical, foam or carbon dioxide. Water spray may be used to keep fire exposed containers cool, dilute spills to nonflammable mixtures, protect personnel attempting to stop leak and disperse vapors.

### **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. This highly flammable liquid must be kept from sparks, open flame, hot surfaces, and all sources of heat and ignition.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! If a leak or spill has not ignited, use water spray to disperse the vapors, to protect personnel attempting to stop leak, and to flush spills away from exposures. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker SOLUSORB® solvent adsorbent is recommended for spills of this product.

# 7. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment, including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

## **Airborne Exposure Limits:**

-OSHA Permissible Exposure Limit (PEL): 200 ppm (TWA)

-ACGIH Threshold Limit Value (TLV):

200 ppm (TWA), 300 ppm (STEL)

## Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details. Use explosion-proof equipment.

## **Personal Respirators (NIOSH Approved):**

If the exposure limit is exceeded and engineering controls are not feasible, a full facepiece respirator with organic vapor cartridge may be worn up to 50 times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator. WARNING: Air purifying respirators do not protect workers in oxygen-deficient atmospheres.

### **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact. Butyl rubber is a suitable material for personal protective equipment.

## **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

## **Appearance:**

Clear, colorless liquid. **Odor:** Sharp mint-like odor. **Solubility:** 29 g in 100 g of water. **Specific Gravity:** 0.81 @ 20C/4C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 80C (176F) **Melting Point:** -86C (-123F) Vapor Density (Air=1): 2.5 Vapor Pressure (mm Hg): 78 @ 20C (68F) **Evaporation Rate (BuAc=1):** 2.7 (Ether = 1)

# **10. Stability and Reactivity**

**Stability:** 

Stable under ordinary conditions of use and storage.
Hazardous Decomposition Products:
Carbon dioxide and carbon monoxide may form when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
Oxidizing materials, caustics, amines, ammonia, strong bases, chloroform, chlorosulfonic acid, oleum, potassium-t-butoxide, heat or flame, hydrogen peroxide, nitric acid. Can attack many plastics, resins and rubber.

### **Conditions to Avoid:**

Heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

## **Toxicological Data:**

Oral rat LD50: 2737 mg/kg; inhalation rat LC50: 23,500 mg/m3/8-hr; skin rabbit LD50: 6480 mg/kg; investigated as a mutagen, reproductive effector. **Reproductive Toxicity:** Has shown teratogenic effects in laboratory animals.

-----\Cancer Lists\-----

	NTP (	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Methyl Ethyl Ketone (78-93-3)	No	No	None

# **12. Ecological Information**

## **Environmental Fate:**

When released into the soil, this material may leach into groundwater. When released into the soil, this material may evaporate to a moderate extent. When released into water, this material may biodegrade to a moderate extent. When released into water, this material may evaporate to a moderate extent. When released into water, this material is expected to have a half-life between 10 and 30 days. This material is not expected to significantly bioaccumulate. When released into the air, this material is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life between 1 and 10 days.

### **Environmental Toxicity:**

This material is not expected to be toxic to aquatic life. The LC50/96-hour values for fish are over 100 mg/l.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

## **14. Transport Information**

**Domestic (Land, D.O.T.)** 

Proper Shipping Name: ETHYL METHYL KETONE Hazard Class: 3 UN/NA: UN1193 Packing Group: II Information reported for product/size: 366LB

International (Water, I.M.O.)

Proper Shipping Name: ETHYL METHYL KETONE Hazard Class: 3 UN/NA: UN1193 Packing Group: II Information reported for product/size: 366LB

# **15. Regulatory Information**

-----\Chemical Inventory Status - Part 1\-----TSCA EC Japan Australia Ingredient Yes Yes Yes Yes Methyl Ethyl Ketone (78-93-3) ------\Chemical Inventory Status - Part 2\-------Canada--Korea DSL NDSL Phil. Ingredient _____ ___ ____ Yes Yes No Yes Methyl Ethyl Ketone (78-93-3) -----\Federal, State & International Regulations - Part 1\-------SARA 302- ----SARA 313-----RQ TPQ List Chemical Catg. Ingredient _____ ___ ____ No No No Yes Methyl Ethyl Ketone (78-93-3) -----\Federal, State & International Regulations - Part 2\-------RCRA- -TSCA-CERCLA Ingredient 261.33 8(d) ----- -----_____ ____ No Methyl Ethyl Ketone (78-93-3) 5000 U159 Chemical Weapons Convention: No TSCA 12(b): No CDTA: Yes SARA 311/312: Acute: Yes Chronic: Yes Fire: Yes Pressure: No Reactivity: No (Pure / Liquid)

Australian Hazchem Code: 2[Y]E Poison Schedule: S5 WHMIS: This MSDS has been as a l

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

NFPA Ratings: Health: 3 Flammability: 3 Reactivity: 0 Label Hazard Warning: DANGER! EXTREMELY FLAMMABLE LIQUID AND VAPOR. VAPOR MAY CAUSE FLASH FIRE. HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. AFFECTS CENTRAL NERVOUS SYSTEM. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. Label Precautions: Keep away from heat, sparks and flame. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Avoid breathing vapor. Avoid contact with eyes, skin and clothing. Label First Aid: Aspiration hazard. If swallowed, vomiting may occur spontaneously, but DO NOT INDUCE. If vomiting occurs, keep head below hips to prevent aspiration into lungs. Never give anything by mouth to an unconscious person. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In all cases, get medical attention. **Product Use:** Laboratory Reagent. **Revision Information:** MSDS Section(s) changed since last revision of document include: 8. **Disclaimer:** 

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

# Honeywell

ersion 1	Revision Date 03/23/2009	Print Date 09/12/20
ECTION 1. PRODUCT AND CO	OMPANY IDENTIFICATION	
Product name MSDS Number Product Use Description	<ul> <li>Acetonitrile (014, 015, 016, 017,</li> <li>000000011306</li> <li>Solvent</li> </ul>	018)
Company	: Honeywell International, Inc. 101 Columbia Road Morristown, NJ 07962-1057	
For more information call	: 1-800-368-0050 (Monday-Friday, 9:00am-5:00pm	)
In case of emergency call	<ul> <li>Medical: 1-800-498-5701</li> <li>Transportation: 1-800-424-9300</li> <li>(24 hours/day, 7 days/week)</li> </ul>	0 or +1-703-527-3887
CTION 2. HAZARDS IDENTI	FICATION	
Emergency Overview		
Form	: liquid, clear	
Color	: colourless	
Odor	: sweet ether-like	
Hazard Summary	: Flammable. In use, may form fla mixture. May be harmful if inhale absorbed through skin. May be to eyes, respiratory system and the gastrointestinal tract. Can ca May cause convulsions. Sympto absorbed through skin. Repeate dryness or cracking.	ed. May be harmful if harmful if swallowed. Irritating skin. May cause irritation of ause fatal cyanide poisoning. oms may be delayed. Can be
Potential Health Effects		
Skin	<ul> <li>Irritating to skin.</li> <li>Can be absorbed through skin.</li> <li>May be harmful if absorbed through can cause fatal cyanide poisoni</li> <li>Symptoms may be delayed.</li> <li>Prolonged or repeated skin control</li> <li>defatting resulting in drying, red</li> </ul>	ing. tact with liquid may cause

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

	Revision Date 03/23/2009	Print Date 09/12/2
Eyes	: Irritating to eyes. Causes itching, burning, redness a	nd tearing.
Ingestion	<ul> <li>Ingestion may cause gastrointestin vomiting and diarrhoea.</li> <li>May cause systemic poisoning with those of inhalation.</li> <li>Can cause fatal cyanide poisoning Symptoms may be delayed.</li> </ul>	n symptoms paralleling
Inhalation	<ul> <li>Causes respiratory tract irritation. Inhalation of high vapour concentra depression and narcosis. Causes headache, drowsiness or on nervous system.</li> <li>Can cause fatal cyanide poisoning Symptoms may be delayed.</li> </ul>	other effects to the central
Chronic Exposure	<ul> <li>Can cause fatal cyanide poisoning Causes damage to the kidneys/live system/central nervous system thre exposure.</li> <li>Prolonged or repeated skin contact defatting resulting in drying, rednes</li> </ul>	er/eyes/brain/respiratory ough prolonged or repeated t with liquid may cause
Aggravated Medical Condition	<ul> <li>People suffering from pre-existing texperience adverse effects. Neurological disorders Heart disease Respiratory disorders Liver disorders Kidney disorders Skin disorders Eye disorders</li> </ul>	thyroid conditions may
Target Organs	: Respiratory system Cardiovascular system Central nervous system Liver Kidney	
Carcinogenicity		
No component of this prod	duct present at levels greater than or equal to by NTP, IARC, or OSHA.	o 0.1% is identified as a knov

# Honeywell

rsion 1		Revision Date 03/23/2009	F	Print Date 09/12/2
Component		CAS	-No.	Weight %
Acetonitrile		75-	05-8	100.00
CTION 4. FIRST AID MEASU	RES	3		
Inhalation	:	Remove to fresh air. If not breathing, giv If breathing is difficult, give oxygen. Use provided a qualified operator is present.	e oxyge	n as required,
Skin contact	:	Wash off immediately with plenty of wat minutes. Take off contaminated clothing immediately. Wash contaminated clothin physician.	g and sł	noes
Eye contact	:	Rinse immediately with plenty of water, for at least 15 minutes. Call a physician		nder the eyelids,
Ingestion	:	Call a physician. Do not induce vomiting advice. Immediate medical attention is r anything by mouth to an unconscious pe	equired	
Notes to physician				
Treatment	:	Treat as cyanide poisoning. Symptoms appear for several hours. Keep under mat least 48 hours.		
CTION 5. FIRE-FIGHTING ME	AS	URES		
Flash point	:	6 °C (43 °F) open cup		
Ignition temperature	:	524 °C (975 °F)		
Lower explosion limit	:	3 %(V)		
Upper explosion limit	:	16 %(V)		
Suitable extinguishing media	:	Carbon dioxide (CO2) Dry chemical Alcohol-resistant foam Cool closed containers exposed to fire v	with wa	ter spray.
Extinguishing media which shall not be used for safety	:	Do not use a solid water stream as it ma fire.	ay scatt	ter and spread

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

/ersion 1		Revision Date 03/23/2009	Print Date 09/12/201
reasons Specific hazards during fire fighting	:	Flammable. Vapours may form explosive mixture Vapours are heavier than air and ma Vapors may travel to areas away fro igniting/flashing back to vapor source In case of fire hazardous decomposi produced such as: Hydrogen cyanide (hydrocyanic acid Carbon dioxide (CO2), carbon mono nitrogen (NOx), dense black smoke.	ay spread along floors. om work site before e. ition products may be d) bxide (CO), oxides of
Special protective equipment for fire-fighters	:	Wear self-contained breathing appar	ratus and protective suit.
ECTION 6. ACCIDENTAL RELI	EAS	E MEASURES	
Personal precautions	:	Wear personal protective equipment Immediately evacuate personnel to a Keep people away from and upwind Ensure adequate ventilation. Remove all sources of ignition. Do not swallow. Avoid breathing vapors, mist or gas. Avoid contact with skin, eyes and clo	safe areas. of spill/leak.
Environmental precautions	:	Prevent further leakage or spillage if Discharge into the environment mus Do not flush into surface water or sa Prevent product from entering drains Collect contaminated fire extinguishing must not be discharged into drains.	it be avoided. initary sewer system. s.
Methods for cleaning up	:	Ventilate the area. No sparking tools should be used. Use explosion-proof equipment. Contain and collect spillage with nor materials, e.g. sand, earth, vermiculi and place in container for disposal a regulations (see section 13).	ite, diatomaceous earth
ECTION 7. HANDLING AND ST	FOR	AGE	
Handling			
Handling	:	Wear personal protective equipment Use only in well-ventilated areas. Keep container tightly closed. Do not smoke.	t.
		Page 4 / 10	

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

/ersion 1	Revision Date 03/23/2009	Print Date 09/12/201
	Do not swallow. Avoid breathing vapors, mist o Avoid contact with skin, eyes a	
Advice on protection against fire and explosion	<ul> <li>Keep away from fire, sparks a Take precautionary measures Ensure all equipment is electr transfer operations.</li> <li>Use explosion-proof equipment Keep product and empty conta sources of ignition.</li> <li>No sparking tools should be u No smoking.</li> </ul>	against static discharges. ically grounded before beginning nt. ainer away from heat and
Storage		
Requirements for storage areas and containers	place.	a in a dry, cool and well-ventilated must be carefully resealed and le. urces of ignition. ht. e substances. npty. oraze, solder, drill, grind or sources of ignition.
Protective measures	: Ensure that eyewash stations the workstation location.	and safety showers are close to
Engineering measures	: Use with local exhaust ventila Prevent vanor buildun by prov	
	and after use.	viding adequate ventilation during
Eye protection		ds wear:
	<ul> <li>and after use.</li> <li>Do not wear contact lenses.</li> <li>Wear as appropriate: Safety glasses with side-shiele If splashes are likely to occur,</li> </ul>	ds wear: complete protection to eyes

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

Skin and body protection Respiratory protection Hygiene measures	:	Solve Flam If spla Prote In case equip For re conta	ashes are likely active suit se of insufficien oment. escue and mair ained breathing	ron static protective to occur, wear: t ventilation wea	-	iratory
	:	equip For re conta	oment. escue and mair ained breathing		ar suitable resp	iratory
Hygiene measures	:		NIOSH approve		-	use self-
		Wash produ Keep Remo Do no Avoid	n hands before uct. o working clothe ove and wash c ot swallow. d breathing vap	eat, drink or sm breaks and imm s separately. contaminated clo ors, mist or gas. kin, eyes and clo	nediately after h	-
Exposure Guidelines						
Acetonitrile	75-05-	-8	ACGIH	TWA		20 ppm
				signation: absorbed throu	gh the skin.	
			NIOSH	REL	20 ppm	34 mg/m3
			US CA OEL	TWA PEL	40 ppm	70 mg/m3
			US CA OEL	STEL	60 ppm	105 mg/m3
				signation: absorbed throug	gh the skin.	
			OSHA Z1	PEL	40 ppm	70 mg/m3
			OSHA Z1A	TWA	40 ppm	70 mg/m3
			OSHA Z1A	STEL	60 ppm	105 mg/m3
CTION 9. PHYSICAL AND (	СНЕМ	ICAL	PROPERTIES			
Form	:	liqui	d, clear			

Page 6 / 10

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

rsion 1	Revision Date 03/23/2009	Print Date 09/12/2
Color	: colourless	
Odor	: sweet ether-like	
Molecular Weight	: 41 g/mol	
рН	: not applicable	
Melting point/range	: -46 °C (-51 °F)	
Boiling point/boiling range	: 82 °C (180 °F)	
Vapor pressure	: 97.325 hPa at 20 °C (68 °F)	
Relative vapour density	: 1.42 (Air = 1.0)	
Density	: 0.7875 g/cm3 at 15 °C (59 °F)	
Water solubility	: completely soluble	
CTION 10. STABILITY AND F		
CTION 10. STABILITY AND F	: Heat, flames and sparks.	
		and coatings.
Conditions to avoid	<ul> <li>Heat, flames and sparks. Keep away from direct sunlight.</li> <li>Acids Bases Oxidizing agents Reducing agents Sulfites Perchlorates</li> </ul>	ition products may be d) oxide (CO), oxides of

Page 7 / 10

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

rsion 1		Revis	sion Date 03/23/2009	Print Date 09/12/20
Acute or	al toxicity	: LD50 r Dose:	at 2,460 mg/kg	
Acute de	rmal toxicity	: LD50 r Dose:≑	abbit > 2,000 mg/kg	
Acute inł	nalation toxicity		at 7551 ppm ure time: 8 h	
CTION 12	ECOLOGICAL IN	IFORMATION	N	
Toxicity 1	o fish	Specie Dose:	rough test LC50 s: Pimephales promelas (fath 1,640 mg/l ure time: 96 h	ead minnow)
	DISPOSAL CON			tal regulations.
Waste In		e all Federal, FORMATION	State, and Local Environmen	tal regulations.
Waste In	formation: Observe TRANSPORT INI UN-Number Proper shipping Class Packing group	e all Federal, FORMATION g name he goods up tion (cargo tion craft) tion	State, and Local Environmen : 1648 : Acetonitrile 3 II	tal regulations.

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

Pa Ha En Ma CTION 15. REG Inventories EU. EINECS US. Toxic Sub Control Act Australia. Indus Chemical (Noti Assessment) A Canada. Cana	stances strial fication and	: Of	On the inventory, or in compliance On TSCA Inventory	e with the inventory
EU. EINECS US. Toxic Sub- Control Act Australia. Indus Chemical (Noti Assessment) A Canada. Cana	stances strial fication and	:	On the inventory, or in compliance On TSCA Inventory	with the inventory
EU. EINECS US. Toxic Sub- Control Act Australia. Indus Chemical (Noti Assessment) A Canada. Cana	strial fication and	: :	On TSCA Inventory	with the inventory
US. Toxic Sub Control Act Australia. Indu Chemical (Noti Assessment) A Canada. Cana	strial fication and	:	On TSCA Inventory	with the inventory
Control Act Australia. Indus Chemical (Noti Assessment) A Canada. Cana	strial fication and	:		
Chemical (Noti Assessment) A Canada. Cana	fication and	:		
			On the inventory, or in compliance	with the inventory
Environmental Act (CEPA). De Substances Lis (Can. Gaz. Par	Protection omestic st (DSL).	:	All components of this product are	on the Canadian DSL list.
Japan. Kashin List	Hou Law	:	On the inventory, or in compliance	with the inventory
Korea. Toxic C Control Law (T		:	On the inventory, or in compliance	with the inventory
Philippines. Th Substances an and Nuclear W Act	d Hazardous	:	On the inventory, or in compliance	with the inventory
China. Invento Chemical Subs		:	On the inventory, or in compliance	with the inventory
CH INV - Switz	erland	:	On the inventory, or in compliance	with the inventory
NZIOC - New 2	Zealand	:	On the inventory, or in compliance	with the inventory
TSCA 12B		:	US. Toxic Substances Control Act Notification (40 CFR 707, Subpt D	
			Acetonitrile	75-05-8
National regu	atory informa	tio	n	

Page 9 / 10

# Honeywell

# Acetonitrile (014, 015, 016, 017, 018)

ersion 1		Revision Date 03	B/23/2009 Print Date 09/12/20				
SARA 313 Components	:	Acetonitrile	75-05-8				
SARA 311/312 Hazards	:	Fire Hazard Acute Health Haza Chronic Health Haz					
CERCLA Reportable Quantity	:	5000 lbs					
California Prop. 65	:		roduct contains a chemical known in the				
		State of California Acrylonitrile	to cause cancer. 107-13-1				
Massachusetts RTK	:	Acetonitrile	75-05-8				
New Jersey RTK	:	Acetonitrile	75-05-8				
Pennsylvania RTK	:	Acetonitrile	75-05-8				
WHMIS Classification	:		een classified according to the hazard criteria MSDS contains all of the information R.				
CTION 16. OTHER INFORM	ΑΤΙΟ	DN					
		-	FPA				
Health Hazard Flammability	:	2* 2 3 3					
Physical Hazard	:	5 5 0					
Instability	:	0					
Further information							
* - Chronic health hazard							

MSDS Number: T3913 * * * * * Effective Date: 11/02/01 * * * * * Supercedes: 11/17/99



# TOLUENE

# **1. Product Identification**

Synonyms: Methylbenzene; Toluol; Phenylmethane CAS No.: 108-88-3 Molecular Weight: 92.14 Chemical Formula: C6H5-CH3 Product Codes: J.T. Baker: 5375, 5584, 5809, 5812, 9336, 9351, 9364, 9456, 9457, 9459, 9460, 9462, 9466, 9472, 9476 Mallinckrodt: 4483, 8091, 8092, 8604, 8608, 8610, 8611, V560

# 2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Toluene	108-88-3	100%	Yes

# **3. Hazards Identification**

## **Emergency Overview**

## POISON! DANGER! HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. VAPOR HARMFUL. FLAMMABLE LIQUID AND VAPOR. MAY AFFECT LIVER, KIDNEYS, BLOOD SYSTEM, OR CENTRAL NERVOUS SYSTEM. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT.

**J.T. Baker SAF-T-DATA**^(tm) Ratings (Provided here for your convenience)

------

Health Rating: 2 - Moderate Flammability Rating: 3 - Severe (Flammable) Reactivity Rating: 0 - None Contact Rating: 1 - Slight Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES; CLASS B EXTINGUISHER Storage Color Code: Red (Flammable)

## **Potential Health Effects**

-----

## Inhalation:

Inhalation may cause irritation of the upper respiratory tract. Symptoms of overexposure may include fatigue, confusion, headache, dizziness and drowsiness. Peculiar skin sensations (e. g. pins and needles) or numbness may be produced. Very high concentrations may cause unconsciousness and death.

### **Ingestion:**

Swallowing may cause abdominal spasms and other symptoms that parallel over-exposure from inhalation. Aspiration of material into the lungs can cause chemical pneumonitis, which may be fatal.

## **Skin Contact:**

Causes irritation. May be absorbed through skin.

## Eye Contact:

Causes severe eye irritation with redness and pain.

## **Chronic Exposure:**

Reports of chronic poisoning describe anemia, decreased blood cell count and bone marrow hypoplasia. Liver and kidney damage may occur. Repeated or prolonged contact has a defatting action, causing drying, redness, dermatitis. Exposure to toluene may affect the developing fetus.

## **Aggravation of Pre-existing Conditions:**

Persons with pre-existing skin disorders or impaired liver or kidney function may be more susceptible to the effects of this substance. Alcoholic beverage consumption can enhance the toxic effects of this substance.

# 4. First Aid Measures

## Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is

difficult, give oxygen. CALL A PHYSICIAN IMMEDIATELY.

## Ingestion:

Aspiration hazard. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately. If vomiting occurs, keep head below hips to prevent aspiration into lungs. **Skin Contact:** 

# In case of contact, immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Call a physician immediately.

## Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

# **5. Fire Fighting Measures**

## Fire:

Flash point: 7C (45F) CC Autoignition temperature: 422C (792F) Flammable limits in air % by volume: lel: 3.3; uel: 19

Flammable liquid and vapor!

Dangerous fire hazard when exposed to heat or flame. Vapors can flow along surfaces to distant ignition source and flash back.

## **Explosion:**

Above flash point, vapor-air mixtures are explosive within flammable limits noted above. Contact with strong oxidizers may cause fire or explosion. Sensitive to static discharge.

## Fire Extinguishing Media:

Dry chemical, foam or carbon dioxide. Water may be used to flush spills away from exposures and to dilute spills to non-flammable mixtures.

## **Special Information:**

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Water spray may be used to keep fire exposed containers cool.

# 6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! If a leak or spill has not ignited, use water spray to disperse the vapors, to protect personnel attempting to stop leak, and to flush spills away from exposures. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

J. T. Baker SOLUSORB® solvent adsorbent is recommended for spills of this product.

# 7. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment, including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

# 8. Exposure Controls/Personal Protection

## **Airborne Exposure Limits:**

Toluene:

- OSHA Permissible Exposure Limit (PEL):

200 ppm (TWA); 300 ppm (acceptable ceiling conc.); 500 ppm (maximum conc.).

- ACGIH Threshold Limit Value (TLV):

50 ppm (TWA) skin, A4 - Not Classifiable as a Human Carcinogen.

## **Ventilation System:**

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

## **Personal Respirators (NIOSH Approved):**

If the exposure limit is exceeded and engineering controls are not feasible, a half-face organic vapor respirator may be worn for up to ten times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece organic vapor respirator may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. For emergencies or instances where the exposure levels are not known, use a full-face piece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

## **Skin Protection:**

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

## **Eye Protection:**

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

# 9. Physical and Chemical Properties

**Appearance:** Clear, colorless liquid. **Odor:** Aromatic benzene-like. Solubility: 0.05 gm/100gm water @ 20C (68F). **Specific Gravity:** 0.86 @ 20C / 4 C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 111C (232F) **Melting Point:** -95C (-139F) Vapor Density (Air=1): 3.14 Vapor Pressure (mm Hg): 22 @ 20C (68F) **Evaporation Rate (BuAc=1):** 2.24

# **10. Stability and Reactivity**

Stability:
Stable under ordinary conditions of use and storage. Containers may burst when heated.
Hazardous Decomposition Products:
Carbon dioxide and carbon monoxide may form when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
Heat, flame, strong oxidizers, nitric and sulfuric acids, chlorine, nitrogen tetraoxide; will attack some forms of plastics, rubber, coatings.
Conditions to Avoid:
Heat, flames, ignition sources and incompatibles.

# **11. Toxicological Information**

## **Toxicological Data:**

Oral rat LD50: 636 mg/kg; skin rabbit LD50: 14100 uL/kg; inhalation rat LC50: 49 gm/m3/4H; Irritation data: skin rabbit, 500 mg, Moderate; eye rabbit, 2 mg/24H, Severe. Investigated as a tumorigen, mutagen, reproductive effector.

## **Reproductive Toxicity:**

Has shown some evidence of reproductive effects in laboratory animals.

\Cancer Lists\					
	NTP Carcinogen				
Ingredient	Known	Anticipated	IARC Category		
Toluene (108-88-3)	No	No	3		

# **12. Ecological Information**

### **Environmental Fate:**

When released into the soil, this material may evaporate to a moderate extent. When released into the soil, this material is expected to leach into groundwater. When released into the soil, this material may biodegrade to a moderate extent. When released into water, this material may evaporate to a moderate extent. When released into water, this material may biodegrade to a moderate extent. When released into water, this material may biodegrade to a moderate extent. When released into water, this material may biodegrade to a moderate extent. When released into the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life of less than 1 day. This material is not expected to significantly bioaccumulate. This material has a log octanol-water partition coefficient of less than 3.0. Bioconcentration factor = 13.2 (eels).

## **Environmental Toxicity:**

This material is expected to be toxic to aquatic life. The LC50/96-hour values for fish are between 10 and 100 mg/l.

# **13. Disposal Considerations**

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

# **14. Transport Information**

Domestic (Land, D.O.T.)

**Proper Shipping Name:** TOLUENE **Hazard Class:** 3 **UN/NA:** UN1294 Packing Group: II **Information reported for product/size:** 390LB International (Water, I.M.O.)

Proper Shipping Name: TOLUENE Hazard Class: 3 UN/NA: UN1294 Packing Group: II Information reported for product/size: 390LB

# **15. Regulatory Information**

```
-----\Chemical Inventory Status - Part 1\-----
 Ingredient
                                 TSCA EC Japan Australia
 _____ ___ ___ ___ ___ ___ ____ ____
 Toluene (108-88-3)
                                  Yes Yes Yes
                                                Yes
 ------\Chemical Inventory Status - Part 2\-----
                                      --Canada--
 Ingredient
                                 Korea DSL NDSL Phil.
 _____
                                  ----- ---- -----
                                  Yes Yes No Yes
 Toluene (108-88-3)
 -----\Federal, State & International Regulations - Part 1\------
                              -SARA 302- -----SARA 313-----
 Ingredient
                              RQ TPQ
                                       List Chemical Catg.
 -----
                                 ____
                                       -----
                             ___
                              No No
 Toluene (108-88-3)
                                       Yes
                                              No
 -----\Federal, State & International Regulations - Part 2\------
                                           -TSCA-
                                     -RCRA-
                                    -KURA
261.33
                              CERCLA
 Ingredient
                                            8(d)
                              _____
 _____
                                     _____
                                            ____
 Toluene (108-88-3)
                              1000 U220
                                            No
Chemical Weapons Convention: No TSCA 12(b): No CDTA: Yes
```

Chemical Weapons Convention: No TSCA 12(b): No CDTA: Yes SARA 311/312: Acute: Yes Chronic: Yes Fire: Yes Pressure: No Reactivity: No (Pure / Liquid)

## WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE BIRTH DEFECTS OR OTHER REPRODUCTIVE HARM.

Australian Hazchem Code: 3[Y]E Poison Schedule: S6 WHMIS: This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

# **16. Other Information**

## NFPA Ratings: Health: 2 Flammability: 3 Reactivity: 0 Label Hazard Warning: POISON! DANGER! HARMFUL OR FATAL IF SWALLOWED. HARMFUL IF INHALED OR ABSORBED THROUGH SKIN. VAPOR HARMFUL. FLAMMABLE LIQUID AND VAPOR. MAY AFFECT LIVER, KIDNEYS, BLOOD SYSTEM, OR CENTRAL NERVOUS SYSTEM. CAUSES IRRITATION TO SKIN, EYES AND **RESPIRATORY TRACT.** Label Precautions: Keep away from heat, sparks and flame. Keep container closed. Use only with adequate ventilation. Wash thoroughly after handling. Avoid breathing vapor. Avoid contact with eyes, skin and clothing. Label First Aid: Aspiration hazard. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If vomiting occurs, keep head below hips to prevent aspiration into lungs. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases call a physician immediately. **Product Use:** Laboratory Reagent. **Revision Information:** MSDS Section(s) changed since last revision of document include: 8. **Disclaimer:**

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

**Prepared by:** Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

# Attachment 7

Calculations Used to Determine Potential Emission Rate and Controlled / Proposed Emissions.

## Unit 1.

Engine: John Deere Process Rate or Capacity: 215 Hp Fuel Type: Diesel Emissions controls: Limit hours of operations.

The NOx, CO, VOCs, PM, and HAPs emission rates were determined using AP 42, Fifth Edition, Volume I Chapter 3: Stationary Internal Combustion Sources, 3.3 Gasoline and Diesel Industrial Engines, Final Section - Supplement B, October 1996 (Attachment 6).

The SOx emission rate was determined using a mass balance for ultra-low sulfur diesel fuel (15 ppm).

## Example Calculations

- NOx, CO, VOC and PM Emission Rate (lb./hr.) = Emission Factor (lb./hp-hr.) x Horse Power (hp)
- SOx emission rate (lb./hr.) = Sulfur Content of Fuel x Quantity of Fuel Burned x 2 (lbs. SOx /lbs. Sulfur)
- HAP Emission Rate (lb./hr.) = Emission Factor (lb./ MMBtu) x Fuel Input (MMBtu / hr.)
- Uncontrolled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)
- Controlled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 500 (hr./yr.) ÷ 2,000 (lbs./ton)

### Unit 1. NOx, CO, VOC and PM Emissions Rate Calculation

Pollutant	HP	Emission factor (lb./hp-hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
NOx	215	0.031	6.67	29.19	1.67
СО	215	6.68 E-03	1.44	6.29	0.36
VOCs	215	2.47 E-03	0.53	2.33	0.13
PM10/2.5	215	2.20 E-03	0.47	2.07	0.12

### Unit 1. SOx Emission Rate Calculation

Pollutant	Sulfur Content of Fuel	ΗР	Fuel Consumption Factor (lb./hp-hr.)	Quantity of Fuel Burned (lbs./hr.)	lbs. SOx / lbs. Sulfur	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
SOx	1.5E-05	215	0.38	81.7	2	0.002	0.01	0.001

## Unit 1. (continued)

Pollutant	НР	Fuel Consumption Factor (Ib./hp-hr.)	Quantity of Fuel Burned (lbs./hr.)	Energy Conversion Factor (MMBtu / Ibdiesel fuel)	Fuel Input (MMBtu / hr.)
HAPs	215	0.38	81.7	0.0195	1.59

Unit 1. HAPs Emission Rate Calculation

Pollutant	Emission Factor (lb./MMBtu)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
HAPs	6.33E-03	1.59	0.010	0.044	2.52E-03

HAP Pollutant	Emission Factor (lb/MMBtu) (fuel input)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
Benzene	9.33E-04	1.59	1.49E-03	6.51E-03	3.72E-04
Toluene	4.09E-04	1.59	6.52E-04	2.85E-03	1.63E-04
Xylenes	2.85E-04	1.59	4.54E-04	1.99E-03	1.14E-04
Propylene	2.58E-03	1.59	4.11E-03	1.80E-02	1.03E-03
Formaldehyde	1.18E-03	1.59	1.88E-03	8.24E-03	4.70E-04
Acetaldehyde	7.67E-04	1.59	1.22E-03	5.35E-03	3.06E-04
Acrolein	9.25E-05	1.59	1.47E-04	6.46E-04	3.69E-05
Naphthalene	8.48E-05	1.59	1.35E-04	5.92E-04	3.38E-05
Total HAPS	6.33E-03	1.59	0.010	0.044	0.0025

### Unit 5.

Boiler: Superior Process Rate or Capacity: 8.369 MMBtu Fuel Type: pipeline natural gas Emissions controls: none.

The NOx, CO, VOCs, SOx and PM emission rates were determined using the manufacturer's specifications titled *Webster Combustion Estimated Emissions – JB and JBX Burners, 2016* (Attachment 6).

### **Example Calculations**

- NOx, CO, VOCs, SOx, and PM Emission Rate (lb./hr.) = Emission Factor (lb./MMBtu.) x Process Rate (MMBtu/hr.)
- Uncontrolled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)
- Controlled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)

Pollutant	MMBtu	Emission factor (lb./MMBtu)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 8,760 hrs./yr. (ton/yr.)
NOx	8.369	0.03	0.25	1.10	1.10
СО	8.369	0.037	0.31	1.36	1.36
VOCs	8.369	0.008	0.07	0.29	0.29
SOx	8.369	0.001	0.01	0.04	0.04
PM10/2.5	8.369	0.0048	0.04	0.18	0.18

#### Unit 5. NOx, CO, VOC, SOx, and PM Emissions Rate Calculation

## Unit 6.

Boiler: Cleaver Brooks Process Rate or Capacity (MMBTU): 5.175 MMBtu Fuel Type: pipeline natural gas Emissions controls: none.

The NOx, CO, VOCs, SOx and PM emission rates were determined using the manufacturer's specifications titled *Clever-Brooks Boiler Expected Emission Data*, 2021 (Attachment 6).

### **Example Calculations**

- NOx, CO, VOCs, SOx, and PM Emission Rate (lb./hr.) = Emission Factor (lb./MMBtu.) x Process Rate (MMBtu/hr.)
- Uncontrolled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)
- Controlled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)

Pollutant	MMBtu	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 8,760 hrs./yr. (ton/yr.)
NOx	5.175	0.36	1.58	1.58
СО	5.175	0.19	0.83	0.83
VOCs	5.175	0.018	0.08	0.08
SOx	5.175	0.003	0.01	0.01
PM10/2.5	5.175	0.039	0.17	0.17

#### Unit 6. NOx, CO, VOC, SOx, and PM Emissions Rate Calculation

### Unit 7.

Engine: Cummins Process Rate or Capacity: 2,220 Hp Fuel Type: Diesel Emissions controls: Limit hours of operations.

The NOx and CO emission rates are based on 1.25x of the emission rates observed in a 2021 emissions compliance test (Attachment 6).

The VOC, PM, and HAPs emission rates were determined from AP 42, Fifth Edition, Volume I Chapter 3: Stationary Internal Combustion Sources, 3.4 Large Stationary Diesel and All Stationary Dual-fuel Engines, Final Section - Supplement B, October 1996.

The SOx emission rates were determined using a mass balance for ultra-low sulfur diesel fuel (15 ppm).

### **Example Calculations**

- NOx and CO = Measured emission rates (lb./hr.) x 1.25
- VOCs and PM Emission Rate (lb./hr.) = Emission Factor (lb./hp-hr.) x Horse Power (HP)
- SOx emission rate (lb./hr.) = Sulfur Content of Fuel x Quantity of Fuel Burned x 2 (lbs. SOx /lbs. Sulfur)
- HAP Emission Rate (lb./hr.) = Emission Factor (lb./ MMBtu) x Fuel Input (MMBtu / hr.)
- Uncontrolled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)
- Controlled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 500 (hr./yr.) ÷ 2,000 (lbs./ton)

Pollutant	HP	Emission factor (lb./hp-hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
NOx	2,220	NA	41.63	182.32	10.41
СО	2,220	NA	13.25	58.04	3.31
VOCs	2,220	7.05 E-04	1.57	6.86	0.39
PM10/2.5	2,220	7.0 E-04	1.55	6.81	0.39

#### Unit 7. NOx, CO, VOC and PM Emissions Rate Calculation

### Unit 7. SOx Emission Rate Calculation

Pollutant	Sulfur Content of Fuel	HP	Fuel Consumption Factor (lb./hp-hr.)	Quantity of Fuel Burned (lbs./hr.)	lbs. SOx / lbs. Sulfur	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
SOx	1.5E-05	2,220	0.38	843.6	2	0.025	0.11	0.01

## Unit 7. (continued)

HAPs

ł	Unit 7. HAPS Emissio	on Rate Calculation	<u>n</u>		
	Pollutant	НР	Fuel Consumption Factor (lb./hp-hr.)	Quantity of Fuel Burned (Ibs./hr.)	Energy Conversion Factor (MMBtu / Ibdiesel fuel)

0.38

### Unit 7. HAPs Emission Rate Calculation

2,220

Pollutant	Emission Factor (Ib./MMBtu)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
HAPs	4.15E-03	16.45	0.068	0.299	0.017

843.6

Fuel Input (MMBtu / hr.)

16.45

0.0195

HAP Pollutant	Emission Factor (Ib/MMBtu) (fuel input)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
Benzene	7.76E-04	16.45	1.28E-02	5.59E-02	3.19E-03
Toluene	2.81E-04	16.45	4.62E-03	2.03E-02	1.16E-03
Xylenes	1.93E-04	16.45	3.18E-03	1.39E-02	7.94E-04
Propylene	2.79E-03	16.45	4.59E-02	2.01E-01	1.15E-02
Formaldehyde	7.89E-05	16.45	1.30E-03	5.69E-03	3.25E-04
Acetaldehyde	2.52E-05	16.45	4.15E-04	1.82E-03	1.04E-04
Acrolein	7.88E-06	16.45	1.30E-04	5.68E-04	3.24E-05
Total HAPS	4.15E-03	16.45	0.068	0.299	0.017

### Unit 8.

Engine: Cummins Process Rate or Capacity: 2,220 Hp Fuel Type: Diesel Emissions controls: Limit hours of operations.

The NOx and CO emission rates are based on 1.25x of the emission rates observed in a 2021 emissions compliance test (Attachment 6).

The VOC, PM, and HAPs emission rates were determined from AP 42, Fifth Edition, Volume I Chapter 3: Stationary Internal Combustion Sources, 3.4 Large Stationary Diesel and All Stationary Dual-fuel Engines, Final Section - Supplement B, October 1996.

The SOx emission rates were determined using a mass balance for ultra-low sulfur diesel fuel (15 ppm).

### **Example Calculations**

- NOx and CO = Measured emission rates (lb./hr.)
- VOCs and PM Emission Rate (lb./hr.) = Emission Factor (lb./hp-hr.) x Horse Power (HP)
- SOx emission rate (lb./hr.) = Sulfur Content of Fuel x Quantity of Fuel Burned x 2 (lbs. SOx /lbs. Sulfur)
- HAP Emission Rate (lb./hr.) = Emission Factor (lb./ MMBtu) x Fuel Input (MMBtu / hr.)
- Uncontrolled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 8,760 (hr./yr.) ÷ 2,000 (lbs./ton)
- Controlled Emissions (ton/yr.) = Emission Rate (lbs./hr.) x 500 (hr./yr.) ÷ 2,000 (lbs./ton)

Pollutant	HP	Emission factor (lb./hp-hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
NOx	2,220	NA	44.0	192.72	11.0
СО	2,220	NA	13.25	58.04	3.31
VOCs	2,220	7.05 E-04	1.57	6.86	0.39
PM10/2.5	2,220	7.0 E-04	1.55	6.81	0.39

#### Unit 8. NOx, CO, VOC and PM Emissions Rate Calculation

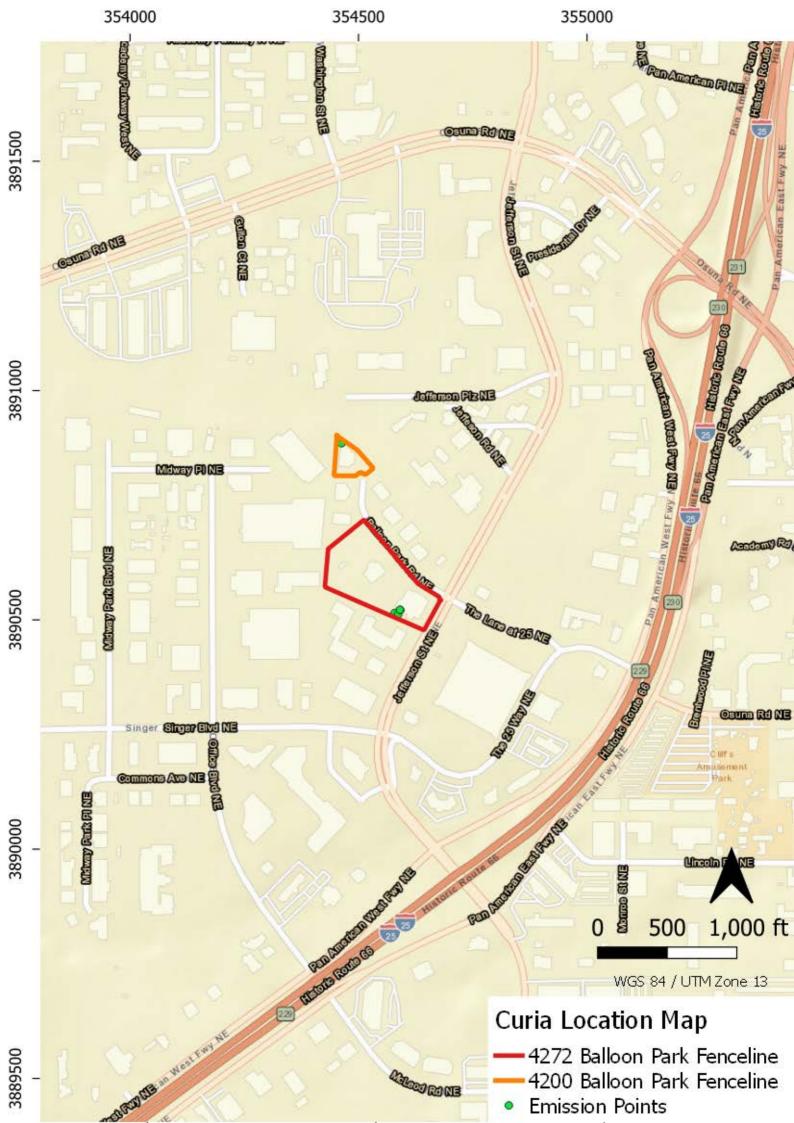
### Unit 8. SOx Emission Rate Calculation

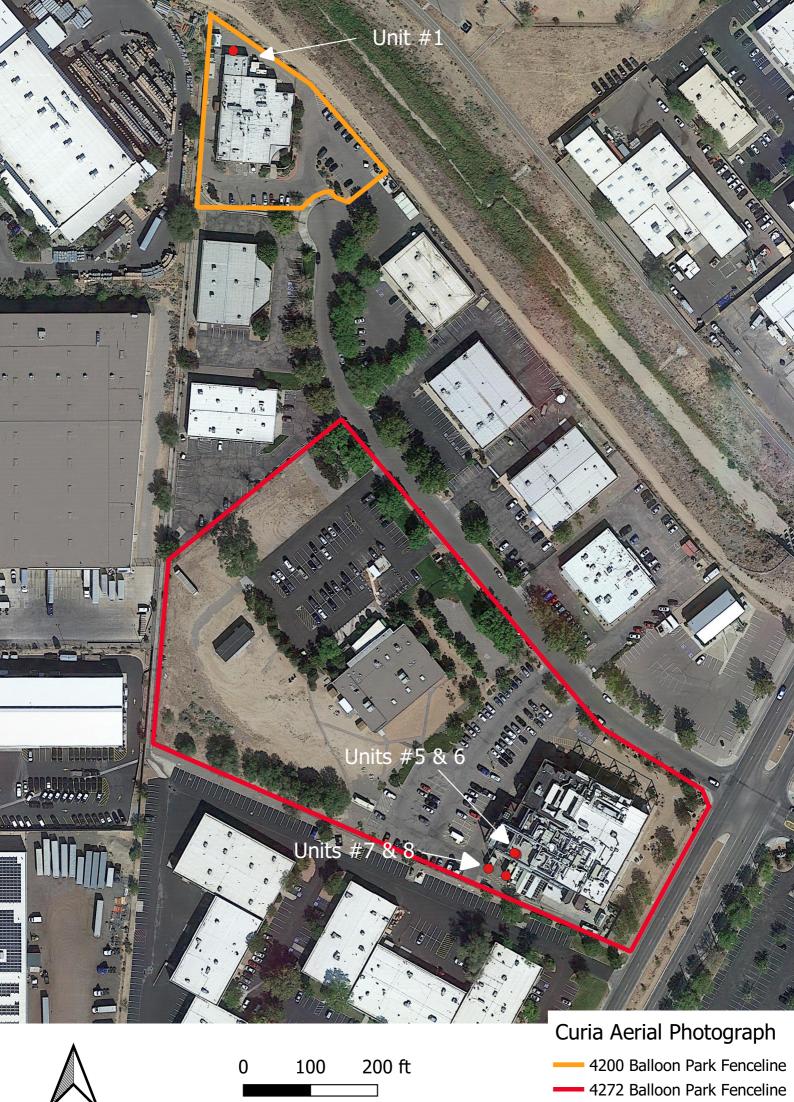
Pollutant	Sulfur Content of Fuel	HP	Fuel Consumption Factor (lb./hp-hr.)	Quantity of Fuel Burned (lbs./hr.)	lbs. SOx / Ibs. Sulfur	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
SOx	1.5E-05	2,220	0.38	843.6	2	0.025	0.11	0.01

## Unit 8. (continued)

Pollutant	НР	Fuel Consumption Factor (lb./hp-hr.)	Quantity of Fuel Burned (Ibs./hr.)	Energy Conversion Factor (MMBtu / Ibdiesel fuel)	Fuel Input (MMBtu / hr.)
HAPs	2,220	0.38	843.6	0.0195	16.45

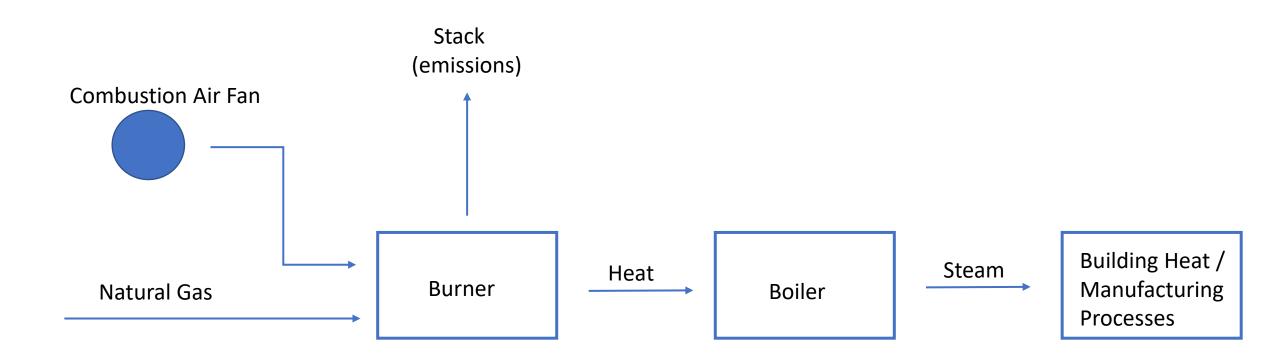
### Unit 8. HAPs Emission Rate Calculation


Pollutant	Emission Factor (lb./MMBtu)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
HAPs	4.15E-03	16.45	0.068	0.299	0.017

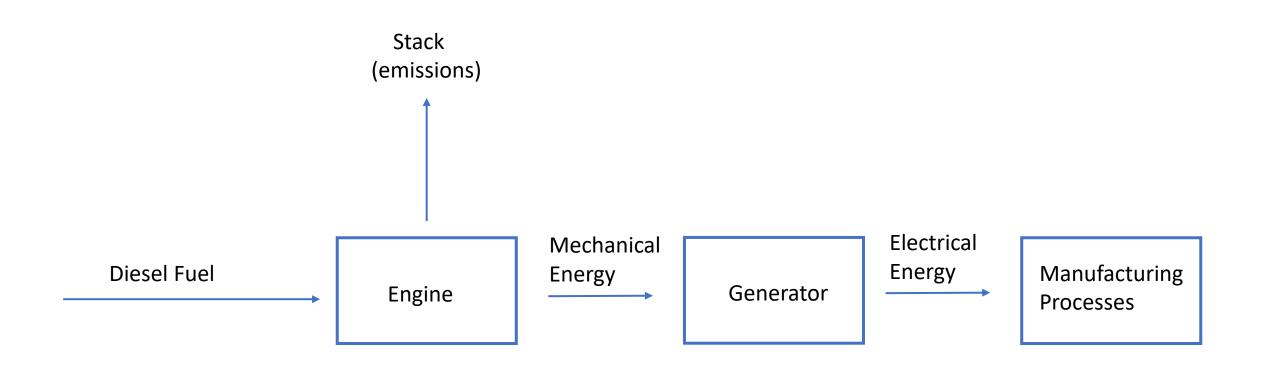

HAP Pollutant	Emission Factor (lb/MMBtu) (fuel input)	Fuel Input (MMBtu / hr.)	Emissions (lb./hr.)	Uncontrolled 8750 hrs./yr. (ton/yr.)	Controlled 500 hrs./yr. (ton/yr.)
Benzene	7.76E-04	16.45	1.28E-02	5.59E-02	3.19E-03
Toluene	2.81E-04	16.45	4.62E-03	2.03E-02	1.16E-03
Xylenes	1.93E-04	16.45	3.18E-03	1.39E-02	7.94E-04
Propylene	2.79E-03	16.45	4.59E-02	2.01E-01	1.15E-02
Formaldehyde	7.89E-05	16.45	1.30E-03	5.69E-03	3.25E-04
Acetaldehyde	2.52E-05	16.45	4.15E-04	1.82E-03	1.04E-04
Acrolein	7.88E-06	16.45	1.30E-04	5.68E-04	3.24E-05
Total HAPS	4.15E-03	16.45	0.068	0.299	0.017

Curia New Mexico, LLC Permit 491-M7-RV1 Modification Application Operational and Maintenance Strategy

- The engineering and maintenance (E&M) departments performs routine daily, weekly, monthly, semiannual and annual maintenance on the boilers and emergency generators. If they are not operating within specification and the issue cannot be resolved internally, the E&M Department will schedule an emergency service call with Mountaintop Services, Richard Kingsbury, who specializes in the service of our emergency generators. LDH Enterprises, Larry Hicks, specializes in the service of our boilers. The equipment will be shut down until such service occurs.
- 2. The boilers operate continuously. The site may shutdown the boilers, only one at a time, due to: 1) routine maintenance (as specified by the manufacturer); 2) site emergency; or 3) equipment malfunction. The boilers do not have pollution control equipment. The site emergency generators are tested monthly and are inspected annual. The emergency generator's pollution control is limited operating hours (not to exceed 500 hours per year and the site has averaged about 10 hours per year of use).
- 3. The site uses routine daily, weekly, monthly, semi-annual and annual maintenance on the boilers and emergency generators to ensure the equipment is operating according to manufacturer's specifications.


Site Location Map and Aerial Photograph






Emission Points

Process Flow Diagram



Curia New Mexico, LLC Permit 491-M7-RV1 Modification Application May 15, 2022 Process Flow Diagram Units 5 and 6 Boilers



Curia New Mexico, LLC Permit 491-M7-RV1 Modification Application May 15, 2022 Process Flow Diagram Units 1, 7, and 8 Emergency Generators

## Attachment 11 Zoning Certification

# **CITY OF ALBUQUERQUE**

CODE ENFORCEMENT Plaza Del Sol Building, Suite 500 600 2nd Street NW Albuquerque, NM 87102 Tel: (505) 924-3850 Fax: (505) 924-3847



Date: May 3, 2022

VIA Email, john.gerbackjr@curiaglobal.com John Gerback Jr. 4401 Alexander Blvd. NE Albuquerque, NM 87107

RE: 4200 Balloon Park Rd. NE the "property". UPC: 101706219116630224

To Whom It May Concern:

This letter will certify that according to the map on file in this office on May 3, 2022, the referenced property, legally described as: LT 10A BALLOON FIELD INDUSTRIAL PARK REPL OF TRS 10 & 11 BALLOON FIELD INDUSTRIAL PARK CONT 1.2009 AC M/L OR 52,311 SQ FT M/L Albuquerque, Bernalillo County, New Mexico, is Zoned: NON-RESIDENTIAL – BUSINESS PARK ZONE DISTRICT (NR-BP)

PO Box 1293

The current use of the property is Office, Wholesaling and distribution center, which is a permissive use in the NR-BP Zone.

Albuquerque

NM 87103

This property has been inspected and it was found to be in compliance with the applicable provisions of the Integrated Development Ordinance. This site is controlled by an approved site development plan, Z-79-94. There is an exception for an 8' security fence around the site, #PR-2020-004308. There are no overlays associated with this site.

www.cabq.gov

If you have any questions regarding this matter please contact me at (505) 924-3301 or by email at ametzgar@cabq.gov.

Sincerely: Angelo Metzgar,

Code Compliance Manager, Code Enforcement, Planning Department

# **CITY OF ALBUQUERQUE**

CODE ENFORCEMENT Plaza Del Sol Building, Suite 500 600 2nd Street NW Albuquerque, NM 87102 Tel: (505) 924-3850 Fax: (505) 924-3847



Date: May 3, 2022

VIA Email, john.gerbackjr@curiaglobal.com John Gerback Jr. 4401 Alexander Blvd. NE Albuquerque, NM 87107

RE: 4272 Balloon Park Rd. NE the "property". UPC: 101706224206030215

To Whom It May Concern:

This letter will certify that according to the map on file in this office on May 3, 2022, the referenced property, legally described as: * 1 CORRECTED PLAT OF BALLOON FIELD INDUSTRIAL PARK CONT 1.0044 AC Albuquerque, Bernalillo County, New Mexico, is Zoned: NON-RESIDENTIAL – BUSINESS PARK ZONE DISTRICT (NR-BP)

PO Box 1293 The current use of the property is Office, Wholesaling and distribution center, which is a permissive use in the NR-BP Zone.

Albuquerque Albuquerque This property has been inspected and it was found to be in compliance with the applicable provisions of the Integrated Development Ordinance. This site is controlled by an approved site development plan, 1002205. There is an exception for an 8' security fence around the site. There are no overlays associated with this site.

If you have any questions regarding this matter please contact me at (505) 924-3301 or by email at <u>ametzgar@cabq.gov</u>.

www.cabq.gov

ncerely:

Code Compliance Manager, Code Enforcement, Planning Department

### NON-RESIDENTIAL - BUSINESS PARK ZONE DISTRICT (NR-BP)

*Purpose:* The purpose of the NR-BP zone district is to accommodate a wide range of nonresidential uses in campus-like settings to buffer potential impacts from surrounding uses and adjacent areas. Allowable uses include a wide variety of office, commercial, research, light industrial, office, distribution, showroom, processing, and institutional uses

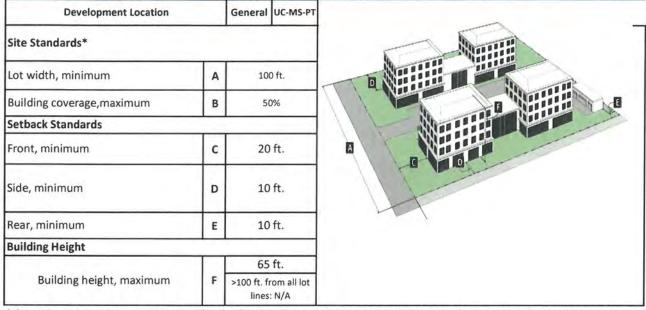


This document provides a summary about development in the NR-BP zone district. It includes links to Frequently Asked Questions (FAQs) about allowable uses, use-standards, development standards, and the approval process.

The document also includes a summary of the development standards and a summary of the allowable uses in this zone. To see the full Integrated Development Ordinance (IDO), click the link below. https://ido.abc-zone.com/

#### Notes:

- Check the project website for links to the Integrated Development Ordinance, the Allowable Uses Table, and excerpts from the Allowable Uses Table for each zone district. https://abc-zone.com/node/919
- Check the IDO to see if there are any Use-specific Standards or an Airport Protection Overlay zone that may change the allowable uses on your property. (See IDO Part 4 and Section 3-3, respectively). For more information, see these FAQs: <u>https://abc-zone.com/node/915</u> https://abc-zone.com/node/931
- 3. Check the IDO to find development standards for your zone district and any context-specific standards that apply to your property. (See IDO Parts 2 and 5.) For more information, see this FAQ: <a href="https://abc-zone.com/node/930">https://abc-zone.com/node/930</a>
- Check the IDO to find review and approval processes that may apply to a zone district, your project, or your property. (See IDO Part 6.) For more information, see this FAQ: <u>https://abc-zone.com/node/933</u>


If you have other questions, contact the Planning Department at 924-3860 and request to schedule a Preapplication Review Team Meeting (PRT).

### **Development Standards Summary**

### Table 2-5-3: NR-BP Zone District Dimensional Standards

UC-MS-PT = Urban Centers, Main Street areas, and Premium Transit areas BR = bedroom DU = dwelling units

Note: Any different dimensional standards in Part 14-16-3 (Overlay Zones) and Section 14-16-5-9 (Neighborhood Edges) applicable to the property shall prevail over the standards in this table.



[1] Residential development that qualifies for funding through Article 14-17 of ROA 1994 (Family Housing Developments) may be eligible for development incentives specified in that Article.

*See IDO Subsection 14-16-5-1(C)(2) Contextual Residential Development in Areas of Consistency, if applicable, for additional standards that modify these general dimensional standards.

Overlay Zones	Part 14-16-3	Landscaping, Buffering, and Screening	14-16-5-6
Allowable Uses	14-16-4-2	Walls and Fences	14-16-5-7
Use-specific Standards	14-16-4-3	Outdoor Lighting	14-16-5-8
Dimensional Standards	14-16-5-1	Neighborhood Edges	14-16-5-9
Site Design and Sensitive Lands	14-16-5-2	Solar Access	14-16-5-10
Access and Connectivity	14-16-5-3	Building Design	14-16-5-11
Subdivision of Land	14-16-5-4	Signs	14-16-5-12
Parking and Loading	14-16-5-5	Operations and Maintenance	14-16-5-13

### **Use Table Summary**

The following excerpt from Table 4-2-1 shows the allowable uses for the **NR-BP zone district only** (highlighted). See the Integrated Development Ordinance (IDO) for the complete list of uses allowed in all zone districts and use definitions (Table 4-2-1 and Subsection 14-16-7-1, respectively).

- ▷ Permissive uses (P) are allowed in this zone by right, without any other approvals
- ⇔ Conditional uses (C) require approval at a public hearing (see Subsection 14-16-6-6(A) for more info)
- Accessory uses (A) must be in addition to an allowed primary use (either P or C)

The column on the far right (also highlighted), provides IDO section references for Use-specific Standards that may apply to a use. These Use-specific Standards may change the allowable uses depending on the context of the site or may impose requirements on the development.

Zone District >>	1		-		100	1								-	-	100	1000	-		
Zone District >>		F	Resid	enti	al	100	1	Mixed-use					No	n-re:	ider	ntial			Use-specific Standards	
Land Uses	R-A	R-1	R-MC	R-T	R-ML	R-MH	T-XM	NX-L	W-XW	H-XM	NR-C	NR-BP	NR-LM	NR-GM	NR-SU	A	MR-P	0	Use-sp Stano	
PRIMARY USES THAT MA	AY B	E A	CCE	sso	RY	N S	ом	E ZC	DNE	DIS	TRI	CTS				-				
RESIDENTIAL USES										-										
Household Living		-																		
Dwelling, live-work	-			С	С	Ρ	Ρ	Ρ	Ρ	Ρ	CA	CA			1				4-3(B)(6)	
CIVIC AND INSTITUTIONAL US	SES				_															
Adult or child day care facility			с	с	с	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	A	А						
Community center or library	с	Р		Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	с	с	с	С		Р		с	<u>4-3(C)(1)</u>	
Elementary or middle school	с	с		с	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Р	Р	cv			Р		с	<u>4-3(C)(2)</u>	
High school	С	С		С	С	Ρ	Р	Р	Р	Ρ	Ρ	Р	С			Р			4-3(C)(3)	
Hospital									Ρ	Ρ	Ρ	Ρ							4-3(C)(4)	
Museum				CV	CV	С	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ		Ρ	Α		4-3(C)(5)	
Overnight shelter	-									С	С	С	С	С					4-3(C)(6)	
Parks and open space	Ρ	Ρ		Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Р	С	С	Α	Р	Ρ	Ρ	4-3(C)(7)	
Religious institution	Ρ	Ρ		Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р	Р	CV	CV					4-3(C)(8)	
Sports field							CV	С	Р	Р	Ρ	Р	Р	С	-	Ρ		С		
University or college						CV	CV	С	Ρ	Ρ	Ρ	Р	CV	CV						
Vocational school						CV	Ρ	Ρ	Ρ	Р	Ρ	Р	Ρ	Ρ						
COMMERCIAL USES	-	_						_										-		
Agriculture and Animal-relat	ed				-		-													
Community garden	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	С	С		Α	А	A	4-3(D)(1)	
General agriculture	Ρ											С	Ρ	Ρ			Р	Α	4-3(D)(3)	
Kennel	С							С	С		Ρ	Ρ	Ρ	Ρ				•	4-3(D)(4)	
Nursery	Р								Α		Ρ	Ρ	Ρ	Ρ		Α	A			

CV = Conditional if Structure Zone District >>	-													Her		in e u	-		
zone District >>		F	Resid	enti	al		1	Vixe	d-us	e		-	No	n-res	sider	ntial		1	Use-specific Standards
Land Uses	R-A	R-1	R-MC	R-T	R-ML	R-MH	T-XIM	WX-F	M-XIM	H-XW	NR-C	NR-BP	NR-LM	NR-GM	NR-SU	A	m m	0	Use-s Stan
Veterinary hospital	С						С	Р	Ρ	Р	Р	Р	Р	Ρ					4-3(D)(5)
Other pet services	С						С	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ					
Food, Beverage, and Indoor E	inter	tain	ment																
Adult entertainment												Р	Р	Ρ					4-3(D)(6)
Auditorium or theater						Α	Α	Α	Р	Р	Ρ	Р	Р	Ρ					4-3(D)(7)
Catering service									Ρ	Ρ	Р	Р	Ρ	Ρ					
Health club or gym			Α		Α	Α	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	А					4-3(D)(9)
Mobile food truck court							С	Ρ	Ρ	Ρ	Р	Ρ	Ρ	С					4-3(D)(10)
Nightclub				1.1					Ρ	Ρ	Р	Р	Р						4-3(D)(8)
Restaurant							С	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р					4-3(D)(8)
Tap room or tasting room							С	С	Ρ	Р	Ρ	Ρ	Ρ	Р					4-3(D)(8)
Other indoor entertainment							с	Р	Р	Р	Р	Ρ	Р	Р		Р		с	4-3(D)(12)
odging								-							~				
Campground or recreational vehicle park									с		Р	Р					A	с	4-3(D)(14)
Hotel or motel							Р	Ρ	Р	Ρ	Р	Р	Р	Ρ					4-3(D)(15)
Motor Vehicle-related										-									
Car wash								Р	Р	Р	Ρ	Р	Р	Ρ					4-3(D)(16)
Heavy vehicle and equipment sales, rental, fueling, and repair											Р	с	Р	Р					<u>4-3(D)(17)</u>
ight vehicle fueling station								с	Ρ	Р	Р	Р	Р	Ρ					<u>4-3(D)(18)</u>
ight vehicle repair								Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ					4-3(D)(19)
light vehicle sales and rental								с	Ρ	Ρ	Р	Р	Ρ	Ρ					<u>4-3(D)(20)</u>
Outdoor vehicle storage											С	С	Р	Ρ			А		4-3(D)(21)
Paid parking lot			А		А	А	С	Ρ	Ρ	А	Ρ	Ρ	Ρ	Ρ	А	А	Α		4-3(D)(22)
Parking structure			А		А	А	CA	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	А				4-3(D)(22)
Offices and Services																			
Bank							Ρ	Р	Р	Ρ	Ρ	Р	Р	CV					4-3(D)(23)
Blood services facility									С	С	С	Р	Р	Ρ					
Club or event facility							С	Р	Ρ	Ρ	Ρ	Р	Ρ	CV		Ρ	Ρ	С	4-3(D)(24)
Commercial services								Р	Р	Р	Ρ	Ρ	Р	Р					
Construction contractor acility and yard										с	Ρ	Р	Ρ	Р					<u>4-3(D)(25)</u>
Medical or dental clinic							Ρ	Р	Р	Ρ	Ρ	Р	Р	Р					4-3(D)(26)
Mortuary								С	Р	Ρ	Ρ	Р	С		A		-		

CV = Conditional if Structure	-		51 5 1	/eans		nore		- Tel	прот	ury	Dia	IIK C	cii -	NOL		veu			
Zone District >>		I	Resid	enti	al	and and		Vixe	d-us	e			No	n-res	iden	tial			Use-specific Standards
Land Uses	R-A	R-1	R-MC	R-T	R-ML	R-MH	T-XM	WX-F	M-XIM	H-XM	NR-C	NR-BP	NR-LM	NR-GM	NR-SU	A	m m	0	Use-s Stan
Office							Р	Р	Р	Р	Р	Р	Р	Ρ					
Personal and business services, small							Ρ	Р	Р	Р	Ρ	Ρ	Ρ	Ρ					<u>4-3(D)(27)</u>
Personal and business services, large									Ρ	Ρ	Ρ	Ρ	Ρ	Ρ					<u>4-3(D)(27)</u>
Research or testing facility							Ρ	Р	Р	Ρ	Ρ	Ρ	Ρ	Ρ					<u>4-3(D)(28)</u>
Self-storage								С	С	Ρ	Ρ	Ρ	Ρ	Р			Α		4-3(D)(29)
<b>Outdoor Recreation and Ente</b>	rtain	nmei	nt		-														
Amphitheater				11.1						С	С	С	С	С	Α	Ρ	Α	С	
Drive-in theater									С	С	С	С	С						4-3(D)(31)
Other outdoor entertainment	CA	CA	СА	CA	CA	СА	А	A	А	Α	Ρ	Ρ	Р	А		Ρ		Ρ	<u>4-3(D)(32)</u>
Retail Sales					-	2.2				-	-								
Adult retail										Р		Р	Р	Ρ				- 1	<u>4-3(D)(6)</u>
Bakery goods or confectionery shop							с	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р					
Building and home improvement materials store									с	с	Ρ	Ρ	Р	с					<u>4-3(D)(34)</u>
Cannabis retail							Р	Р	Р	Ρ	Р	Р	А	А					4-3(D)(35)
Farmers' market	Т		Т	Т	Т	Т	т	Ρ	Ρ	Ρ	Ρ	Р	CV	CV		Р	Α	CA	4-3(D)(36)
General retail, small			Α			Α	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ					4-3(D)(37)
General retail, medium									Ρ	Ρ	Ρ	С	С						4-3(D)(37)
General retail, large									С	С	Ρ	Р							4-3(D)(37)
Liquor retail							С	А	С	С	С	С	С	С					4-3(D)(39)
Nicotine retail							CA	А	С	С	С	С	С	С					4-3(D)(40)
Pawn shop								С	Р	Ρ	Ρ	Ρ	Ρ	Ρ					4-3(D)(41)
Transportation																			
Freight terminal or dispatch center												с	P	Ρ					<u>4-3(D)(43)</u>
Helipad									CA	CA	А	Ρ	Ρ	Ρ	А				4-3(D)(44)
Park-and-ride lot						С	С	С	Ρ	С	С	Ρ	С	С	А	A			4-3(D)(45)
Railroad yard												С	Ρ	Ρ					4-3(D)(46)
Transit facility		-			-	С	С	С	Р	Р	Р	P	P	P		-	_		4-3(D)(47)

CV = Conditional if Structure	Vaca	int fo	or 5 y	/ears	sor	nore	T	= Ter	npoi	ary	Bla	nk C	ell =	Not	Allo	wed	<u>.</u>		
Zone District >>	Residential					Mixed-use			Non-residential							Use-specific Standards			
Land Uses	R-A	R-1	R-MC	R-T	R-ML	R-MH	T-XM	NX-L	M-XM	H-XIN	NR-C	NR-BP	NR-LM	NR-GM	NR-SU	A	MR-P	0	Use-specifi Standards
INDUSTRIAL USES																	-		
Manufacturing, Fabrication,	and A	Assei	mbly									1							- here -
Artisan manufacturing							С	Ρ	Р	Р	Ρ	Р	Ρ	Ρ					4-3(E)(1)
Cannabis cultivation							С	Ρ	Р	Ρ	Ρ	Р	Р	Ρ					4-3(E)(2)
Cannabis-derived products	Γ						с	Р	Р	Р	Р	Р	Р	Р					4-3(E)(3)
manufacturing							Ľ	-	-	-									
Light manufacturing										Α	Р	Р	Р	Р					<u>4-3(E)(4)</u>
Telecommunications, Tower	s, and	d Uti	lities			_	_		-		_					_		_	
Drainage facility	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Р	Ρ	Р	Α	Α	Α	С	
Electric utility	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Α	Α	А	А	4-3(E)(8)
Geothermal energy generation	Α	А	А	А	А	А	А	А	А	А	А	Р	Ρ	Ρ		A	А		<u>4-3(E)(9)</u>
Major utility, other	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Α	Α	Α	A	
Solar energy generation	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Α	Р	Ρ	Ρ	4-3(E)(10)
Wind energy generation							Α	Α	Α	Α	Α	Α	Α	С	А	Α	Α		4-3(E)(11)
Wireless Telecommunication	s Faci	ility (	WTF	)															
Architecturally integrated	A	A	Α	A	A	A	A	Α	A	A	A	Α	Α	A	A	Α			
Non-commercial or broadcasting antenna	А	A	А	A	А	A	А	А	А	A	А	А	А	A	А	А	-		
Collocation	A	A	A	A	A	A	A	Ā	A	A	A	A	A	A	A	A	-		4-3(E)(12)
Freestanding		the distant	-	a kani			Р	P	Р	P	Р	Ρ	Р	Р	A				<u>+ 5(E/(2E/</u>
Public utility collocation	A	A	Α	A	A	A	A	Ā	A	A	A	A	A	A	A	A	-		
Roof-mounted			A	- 1	A	A	A	A	A	A	A	A	A	A	A		-		
Small cell	A	A	Α	A	A	A	Α	Ā	A	A	A	A	A	A	A	A	A	A	
Waste and Recycling				-		-													
Recycling drop-off bin facility						А	А	А	А	А	Ρ	Р	Р	Р				Π	<u>4-3(E)(13)</u>
Salvage yard												С	С	Ρ					4-3(E)(15)
Wholesaling and Storage																			
Outdoor storage								CA	С	С	С	A	Р	Р					4-3(E)(17)
Warehousing	H	_					-		С	C	P	P	P	P	-	_	-	-	4-3(E)(18)
Wholesaling and distribution								-							-	-	-	-	
center									С	С	Р	Ρ	Ρ	Р		1.1			4-3(E)(19)

CV = Conditional if Structure	vaca	nt to	or 5 y	/ears	orn	nore		- Ter	npor	ary	віа	пкС	ell =	NOL	Allov	wea				
Zone District >>	2	F	lesid	enti	al	in the second se	r	Vixe	d-us	e	11		No	n-res	iden	ntial			Use-specific Standards	
Land Uses	R-A	R-1	R-MC	R-T	R-ML	R-MH	NIX-T	MX-L	IM-XIM	H-XM	NR-C	NR-BP	NR-LM	NR-GM	NR-SU	A	m m	0		
ACCESSORY AND TEMPO	RA	RYL	JSES	5																
ACCESSORY USES	-		1			-									-				4-3(F)(1)	
Agriculture sales stand	A	A	Α	Α	Α	Α	Α	Α	Α	A	A	A	CA	CA			Α		4-3(F)(2)	
Animal keeping	A	Α	Α	Α	A	Α	Α	A	A	A	A	Α	Α	A	100			CA	4-3(F)(3)	
Automated Teller Machine ATM)			А		А	А	А	А	A	А	A	А	А	А		т	т			
Drive-through or drive-up facility								A	Α	CA	A	A	А						<u>4-3(F)(4)</u>	
Dwelling unit, accessory with kitchen		А		А	A	Α	Α	Α	А		А	A	Α	Α	A		Α		<u>4-3(F)(5)</u>	
Dwelling unit, accessory without kitchen	CA	A		Α	Α	Α	Α	A	Α		A	Α	Α	A	A		Α		<u>4-3(F)(5)</u>	
Garden	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α				Α			
Mobile food truck	А	Α	A	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α			4-3(F)(11)	
Mobile vending cart							Α	Α	А	Α	Α	Α	Α	Α		Α		Α	4-3(F)(12)	
Outdoor dining area							CA	Α	Α	Α	Α	Α	Α	Α	Α				4-3(F)(14)	
Other use accessory to non- residential primary use							А	А	А	А	А	A	А	А	А			A	<u>4-3(F)(16</u> )	
TEMPORARY USES				-						2					-					
Temporary Uses That Require	AP	ermi	t													-				
Circus									Т		Т	Т	Т						4-3(G)(1)	
Construction staging area, trailer, or office	т	т	т	т	т	т	т	т	т	т	т	т	т	т	Т	т	Т		<u>4-3(G)(2)</u>	
Dwelling, temporary	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		4-3(G)(3)	
Fair, festival, or theatrical performance	т	т	Т	Т	Т	т	т	Т	Т	т	т	т			Т	т	т		<u>4-3(G)(4)</u>	
Open air market							Т	Т	Т	Т	Т						Т		4-3(G)(5)	
Park-and-ride facility, temporary						т	т	т	т	т	т	т	т	т	Т		т		<u>4-3(G)(6)</u>	
Real estate office or model home	т	Т	Т	т	Т	т	т	Т	т	т	т	т	Т	т	Т				<u>4-3(G)(7)</u>	
Seasonal outdoor sales							Т	Т	Т	Т	Т	Т	Т	Т			1	-	4-3(G)(8)	
Temporary use not listed		1.1.1	Т			Т	Т	Т	Т	Т	Т	Т	Т	Т	Т		Т		4-3(G)(9)	

### **Regulatory Review**

Curia is required to comply with the regulations promulgated by the U.S. Environmental Protection Agency (EPA) with respect to emissions of air pollutants. This attachment evaluates the applicability of federal air quality regulations to the generators and boilers.

# National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR Part 63, Subpart ZZZZ)

This regulation applies to owners and operators of all stationary reciprocating internal combustion engines (RICE) irrespective of the date the engine is constructed. Under Subpart ZZZZ [§63.5690(a)(1)(iii)] the emergency generators are considered "existing, emergency, compression ignition engines at an area source" since construction was before June 12, 2006. Curia will comply with the requirements of 40 CFR Part 63, Subpart ZZZZ.

### <u>New Source Performance Standard for Stationary Compression Ignition Internal Combustion</u> (40 CFR Part 60. sub-pan IIII)

This regulation applies to owners and operators of stationary compression ignition (diesel-fired) engines for which construction commenced after July 11, 2005, and which are manufactured after April 1, 2006. Construction commenced on the diesel-fired emergency generators before July 11, 2005, and they were manufactured before April 1, 2006. Hence, these generators are not subject to the requirements of NSPS IIII.

### National Emission Standards for Hazardous Air Pollutants for Industrial Commercial and Institutional Boilers Area Sources (40 CFR63 Subpart JJJJJ)

This regulation applies to an industrial, commercial or institutional boiler as defined in §63.11237 that is located at, or is part of, an area source of hazardous air pollutants (HAPs). The boilers at the Curia Site are gas-fired boilers, and hence will not be subject to the Area Source Boiler MACT requirements, codified in 40 CFR Part 63, Subpart JJJJJJ [§ 63.11195(e)].

Permit Application Review Fees



# **City of Albuquerque**

Environmental Health Department Air Quality Program



## **Permit Application Review Fee Instructions**

All source registration, authority-to-construct, and operating permit applications for stationary or portable sources shall be charged an application review fee according to the fee schedule in 20.11.2 NMAC. These filing fees are required for both new construction, reconstruction, and permit modifications applications. Qualified small businesses as defined in 20.11.2 NMAC may be eligible to pay one-half of the application review fees and 100% of all applicable federal program review fees.

Please fill out the permit application review fee checklist and submit with a check or money order payable to the "City of Albuquerque Fund 242" and either:

- be delivered in person to the Albuquerque Environmental Health Department, 3rd floor, Suite 3023 or Suite 3027, Albuquerque-Bernalillo County Government Center, south building, One Civic Plaza NW, Albuquerque, NM or,
- 2. mailed to Attn: Air Quality Program, Albuquerque Environmental Health Department, P.O. Box 1293, Albuquerque, NM 87103.

The department will provide a receipt of payment to the applicant. The person delivering or filing a submittal shall attach a copy of the receipt of payment to the submittal as proof of payment Application review fees shall not be refunded without the written approval of the manager. If a refund is requested, a reasonable professional service fee to cover the costs of staff time involved in processing such requests shall be assessed. Please refer to 20.11.2 NMAC (effective January 10, 2011) for more detail concerning the "Fees" regulation as this checklist does not relieve the applicant from any applicable requirement of the regulation.



# **City of Albuquerque**

Environmental Health Department Air Quality Program



### Permit Application Review Fee Checklist Effective January 1, 2022 – December 31, 2022

Please completely fill out the information in each section. Incompleteness of this checklist may result in the Albuquerque Environmental Health Department not accepting the application review fees. If you should have any questions concerning this checklist, please call 768-1972.

### I. COMPANY INFORMATION:

Company Name	Curia New Mexico, LLC				
Company Address	pany Address 4401 Alexander Blvd NE Albuquerque, NM 87107				
Facility Name	Curia New Mexico				
Facility Address	oon Park Road Albuqu	uerque, NM 87109			
Contact Person					
Contact Person Phone Number					
Are these application review fees for an	existing permitted source located	Yes	No		
within the City of Albuquerque or Berna	alillo County?	105	INU		
If yes, what is the permit number associa	<b>Permit</b> # 491-M7-RV1				
Is this application review fee for a Quali 20.11.2 NMAC? (See Definition of Quali	Yes	No⊠			

### II. STATIONARY SOURCE APPLICATION REVIEW FEES:

If the application is for a new stationary source facility, please check all that apply. If this application is for a modification to an existing permit please see Section III.

Check All That Apply	Stationary Sources	Review Fee	Program Element							
	Air Quality Notifications									
	AQN New Application	\$599.00	2801							
	AQN Technical Amendment	\$327.00	2802							
	AQN Transfer of a Prior Authorization	\$327.00	2803							
	Not Applicable	See Sections Below								
	Stationary Source Review Fees (Not Based on Proposed Allowable Emission Rate)									
	Source Registration required by 20.11.40 NMAC	\$ 610.00	2401							
	A Stationary Source that requires a permit pursuant to 20.11.41 NMAC or other board regulations and are not subject to the below proposed allowable emission rates	\$ 1,220.00	2301							
	Not Applicable	See Sections Below								
Stationary Source Review Fees (Based on the Proposed Allowable Emission Rate for the single highest fee po										
	Proposed Allowable Emission Rate Equal to or greater than 1 tpy and less than 5 tpy	\$915	2302							
	Proposed Allowable Emission Rate Equal to or greater than 5 tpy and less than 25 tpy	\$1,830	2303							
	Proposed Allowable Emission Rate Equal to or greater than 25 tpy and less than 50 tpy	\$3,661	2304							
	Proposed Allowable Emission Rate Equal to or greater than 50 tpy and less than 75 tpy	\$5,491	2305							
	Proposed Allowable Emission Rate Equal to or greater than 75 tpy and less than 100 tpy	\$7,321	2306							
	Proposed Allowable Emission Rate Equal to or greater than 100 tpy	\$9,152	2307							
	Not Applicable	See Section Above								

	Federal Program Review Fees (In addition to the Stationary Source Application Review Fees above)								
	40 CFR 60 - "New Source Performance Standards" (NSPS)	\$1,220	2308						
	40 CFR 61 - "Emission Standards for Hazardous Air Pollutants (NESHAPs)	\$1,220	2309						
X	40 CFR 63 - (NESHAPs) Promulgated Standards	\$1,220	2310						
	40 CFR 63 - (NESHAPs) Case-by-Case MACT Review	\$12,202	2311						
	20.11.61 NMAC, Prevention of Significant Deterioration (PSD) Permit	\$6,101	2312						
	20.11.60 NMAC, Non-Attainment Area Permit	\$6,101	2313						
	Not Applicable	Not Applicable							

### III. MODIFICATION TO EXISTING PERMIT APPLICATION REVIEW FEES:

If the permit application is for a modification to an existing permit, please check all that apply. If this application is for a new stationary source facility, please see Section II.

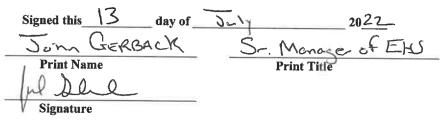
Check All That Apply	Modifications	Review Fee	Program Element					
	Modification Application Review Fees (Not Based on Proposed Allowable Emission Rate)							
	Proposed modification to an existing stationary source that requires a permit pursuant to 20.11.41 NMAC or other board regulations and are not subject to the below proposed allowable emission rates	\$ 1,220	2321					
	Not Applicable	See Sections Below						
	Modification Application Review Fees (Based on the Proposed Allowable Emission Rate for the single highest fee pollu	itant)						
	Proposed Allowable Emission Rate Equal to or greater than 1 tpy and less than 5 tpy	\$915	2322					
	Proposed Allowable Emission Rate Equal to or greater than 5 tpy and less than 25 tpy	\$1,830	2323					
X	Proposed Allowable Emission Rate Equal to or greater than 25 tpy and less than 50 tpy	\$3,661	2324					
	Proposed Allowable Emission Rate Equal to or greater than 50 tpy and less than 75 tpy	\$5,491	2325					
	Proposed Allowable Emission Rate Equal to or greater than 75 tpy and less than 100 tpy	\$7,321	2326					
	Proposed Allowable Emission Rate Equal to or greater than 100 tpy	\$9,152	2327					
	Not Applicable	See Section Above						
	Major Modifications Review Fees (In addition to the Modification Application Review	Fees above)						
	20.11.60 NMAC, Permitting in Non-Attainment Areas	\$6,101	2333					
	20.11.61 NMAC, Prevention of Significant Deterioration	\$6,101	2334					
	Not Applicable	Not Applicable						
(This se	Federal Program Review Fees ction applies only if a Federal Program Review is triggered by the proposed modificatio addition to the Modification and Major Modification Application Review Fees a		s are in					
	40 CFR 60 - "New Source Performance Standards" (NSPS)	\$1,220	2328					
	40 CFR 61 - "Emission Standards for Hazardous Air Pollutants (NESHAPs)	\$1,220	2329					
	40 CFR 63 - (NESHAPs) Promulgated Standards	\$1,220	2330					
	40 CFR 63 - (NESHAPs) Case-by-Case MACT Review	\$12,202	2331					
	20.11.61 NMAC, Prevention of Significant Deterioration (PSD) Permit	\$6,101	2332					
	20.11.60 NMAC, Non-Attainment Area Permit	\$6,101	2333					
	Not Applicable	Not Applicable						

#### IV. ADMINISTRATIVE AND TECHNICAL REVISION APPLICATION REVIEW FEES: If the permit application is for an administrative or technical revision of an existing permit issued 20.11.41 NMAC, please check one that applies.

pursuant to

Check One	Revision Type	Review Fee	Program Element	
	Administrative Revisions	\$ 250.00	2340	
	Technical Revisions	\$ 500.00	2341	
	Not Applicable	See Sections II, III or V		

### V. PORTABLE STATIONARY SOURCE RELOCATION FEES:


If the permit application is for a portable stationary source relocation of an existing permit, please check one that applies.

Check One	Portable Stationary Source Relocation Type	Review Fee	Program Element
	No New Air Dispersion Modeling Required	\$ 500.00	2501
	New Air Dispersion Modeling Required	\$ 750.00	2502
	Not Applicable	See Sections II, III or V	

### VI. Please submit a check or money order in the amount shown for the total application review fee.

Section Totals	Review Fee Amount				
Section II Total	\$1,220.00				
Section III Total	\$ 3,661.00				
Section IV Total	\$0				
Section V Total	\$0				
<b>Total Application Review Fee</b>	\$ 4,881.00				

I, the undersigned, a responsible official of the applicant company, certify that to the best of my knowledge, the information stated on this checklist, give a true and complete representation of the permit application review fees which are being submitted. I also understand that an incorrect submittal of permit application reviews may cause an incompleteness determination of the submitted permit application and that the balance of the appropriate permit application review fees shall be paid in full prior to further processing of the application.



Definition of Qualified Small Business as defined in 20.11.2 NMAC:

"Qualified small business" means a business that meets all of the following requirements:

- (1) a business that has 100 or fewer employees;
- (2) a small business concern as defined by the federal Small Business Act;
- (3) a source that emits less than 50 tons per year of any individual regulated air pollutant, or less than 75 tons per year of all regulated air pollutants combined; and
- (4) a source that is not a major source or major stationary source.

**Note:** Beginning January 1, 2011, and every January 1 thereafter, an increase based on the consumer price index shall be added to the application review fees. The application review fees established in Subsection A through D of 20.11.2.18 NMAC shall be adjusted by an amount equal to the increase in the consumer price index for the immediately-preceding year. Application review fee adjustments equal to or greater than fifty cents (\$0.50) shall be rounded up to the next highest whole dollar. Application review fee adjustments totaling less than fifty cents (\$0.50) shall be rounded down to the next lowest whole dollar. The department shall post the application review fees on the city of Albuquerque environmental health department air quality program website.

Application Review Fees February 2022